


complex-positive cells were detected in theMuse-rich samples at
significantly larger numbers compared with the Muse-poor
samples (Muse-rich, 71.4 6 4.6 cells per mm2; Muse-poor,
34.26 4.6 cells permm2;p = .0006). A significantly thicker epider-
mis was also noted in theMuse-rich samples (p = .0053). Injected
hyaluronic acid deposits were generally recognized in the subcu-
taneous layer. The cells positive for human Golgi complex were
also positive for PECAM-1 (Muse-rich, 186.1 6 9.8 cells per mm2;
Muse-poor, 156.7 6 13.9 cells per mm2; p = .144). In contrast,
many Golgi complex-positive cells in the middle to lower dermis

were not positive for human PECAM-1 or isolectin in the Muse-
rich samples at day 14 (Fig. 7). The number of PECAM-1-
positive vascular endothelial cells was comparable between the
Muse-rich and Muse-poor samples (Muse-rich, 186.1 6 9.8 cells
permm2;Muse-poor,156.76 13.9cellspermm2;p= .144),although
the ratio of human-derived cells in the PECAM-1-positive cells was
higher in the Muse-rich samples (Muse-rich, 22.8% 6 3.2%;
Muse-poor, 12.5%6 1.1%;p= .02). Thesedata suggest that trans-
plantedMuse cells survived in the dermis and have differentiated
into vascular endothelial cells or other cell types.

Figure 6. Immunohistologic findings for humanGolgi complex of diabetesmellitus-induced severe combined immunodeficiencywounds trea-
ted with Muse-rich orMuse-poor cell populations. Shown are high-magnification views of the intact epidermis (a), repaired epidermis (b), and
wounded area (c, d) in Muse-rich sample. Also shown are high-magnification views of the intact epidermis (e), repaired epidermis area (f), and
wounded area (g, h) in Muse-poor sample. Human Golgi complex-positive cells, which are equivalent to transplanted human cells, were ob-
served in the epidermis and dermis of the wounded area in bothMuse-rich andMuse-poor samples after 14 days. However, human Golgi com-
plex-positive cellswere not detected in the surrounding intact area in either group. Transplanted human cellswere significantlymore frequently
detected in Muse-rich samples compared with Muse-poor samples (p = .0006). A significantly thicker epidermis was also noted in Muse-rich
samples (p = .0053). p, p , .05. Abbreviation: Muse, multilineage-differentiating stress-enduring.
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DISCUSSION

In the present study, we used a single pluripotent stem cell
marker, SSEA-3, for Muse cell isolation and purification. Previous
reportshave investigatedMusecells derived fromhumanadipose
tissue (previously termed “adiposeMuse” [10], “Muse-AT” [9], or,
inour study,MuseASCs),whichwere shown toalsobepositive for
CD105 and to differentiate into cells representative of the three
germ layers froma single cell [10]. In addition,Muse cells could be
efficiently isolatedas cells singlepositive for SSEA-3 inhumander-
mal fibroblasts, because nearly all dermal fibroblasts were posi-
tive for CD105 [6, 12]. Although fluorescence activated cell
sorting (FACS) or stress conditions were used in previous studies
[6, 9, 12, 18, 19],weused autoMACS,withdouble collectionof the
positive fraction after preliminary optimization experiments.
MACS purification of Muse cells was not perfect (less than
90%). However, MACS appears to be the most practical method
to purify Muse cells, because it is a clinically approved cell sepa-
ration method and enabled higher Muse purification than other
isolations using FACS or stress application. Although Muse cells
were initially identified as stress-tolerant cells [6], selection using
SSEA-3 collected the same Muse population [10, 12]. Because it
remains challenging to efficiently expand the number of Muse
cells, we used regular adherent cell culture with hundreds of cul-
ture dishes to achieve sufficient numbers ofMuse cells for the an-
imal experiments.

We confirmed the superiority of Muse cells compared with
non-Muse MSCs (i.e., nearly equal to general ASCs in the present
study) in promoting wound healing in diabetic mice, which have
impaired healing of skin defects. Ulcers treated with Muse-rich
cells healed faster with a thicker epidermis than those treated
with Muse-poor cells, with the duration of wound closure even
shorter than that in WT mice. In order to test the therapeutic
value of human Muse cells for diabetic ulcers, we prepared a di-
abetic immunodeficientmicemodel by inducing DM in SCIDmice
using STZ injections. This mouse model showed impaired wound
healing. Our protocol of STZ injection induced DM in SCID mice
with a consistent success rate of approximately 75%. Hyperglyce-
mia was well maintained, even 1 year after induction (data not
shown). Although systemic administration procedures (e.g., in-
travenous injection) of Muse cells were reported previously
[6, 8], we used local injection of Muse cells with hyaluronic acid
as the carrier to treat localized skin wounds to avoid unfavorable
cellmigration andachievebetter concentrated treatment effects.
The injections were histologically confirmed and localized in the
subcutis around the wound. Hyaluronic acid has been used as
a preferable carrier or scaffold, although the appropriate state
(cross-linked or non-cross-linked) and concentration are contro-
versial and should be optimized in future studies [20–22].

The mechanism of the wound healing-promoting effects of
Muse cells remains to be elucidated. Although Muse-poor ASCs
also promoted wound healing in DM-SCID mice, the Muse cells

Figure 7. Immunohistologic findings of differentiationmarkers expressed by transplantedMuse-rich cells. Double immunohistochemistrywas
performed for human-specific proteins (humanGolgi complex) and differentiationmarkers (PECAM-1 or isolectin) to characterize transplanted
Muse-rich cells at day 14. Some cells expressing human Golgi complex were positive for PECAM-1 or isolectin, suggesting differentiation into
vascular endothelial cells in the upper dermis; however, human Golgi complex-positive cells in the middle and lower dermis were negative for
PECAM-1 and isolectin. Thenumber of PECAM-1+ cells permicroscopic fieldwas counted,with no significant difference between the two groups
(p= .144), although the ratio ofhuman-derived cellswashigher in theMuse-rich samples (p= .02). Abbreviations: h-Golgi, humanGolgi complex;
Muse, multilineage-differentiating stress-enduring; PECAM-1, platelet endothelial cell adhesion molecule-1.
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in the ASC populations showed a higher power to accelerate tis-
sue repair, suggesting that SSEA-3+Muse ASCs are a selected ASC
population with distinct therapeutic potential. Our histological
assays showed that Muse-rich ASCs were integrated into the
repaired dermis. Some of the injected cells were detected as vas-
cular endothelial cells and as other cells in the upper and lower
dermis, respectively. Although the proliferative capacity of Muse
cells is not that great, they were previously mentioned as plurip-
otent stem cells but are nontumorigenic and might be a potent
tool for clinical use [6, 9, 10, 18], which was partly supported
our findings.

In addition, ASCs have been reported to home to damaged
regions and secrete the growth factors required for the inflamma-
tory and proliferating phases of wound healing, such as PDGF,
bFGF, TGF-b, andEGF [23].Microarray assays inour study showed
that the expression of growth factors, including PDGF-A, EGF, and
SDF-1, was upregulated in Muse-rich cells cultured under hyper-
oxic conditions (20%O2), although a limitation existed in that the
array used only one sample from each group. In addition, upregu-
lation of pluripotent markers, such as NANOG, suggest a high dif-
ferentiation potential for Muse cells. Our ELISA results also
indicated that Muse cells secrete several growth factors, includ-
ing PDGF-BB, TGF-b, bFGF, and TNF-a, in larger amounts than in
non-Muse cells, particularly under hypoxic (1% O2) conditions
compared with normoxic (6% O2) conditions. PDGF-BB, TGF-b,
andbFGFare known tobe involved in the initial coagulating phase
of wound healing to promote a series of subsequent events [24].
In contrast, TNF-a is released during the acute inflammatory
phase and triggers the inflammatory cascade [25, 26]. TNF-a null
mice showeddelayed epithelialization indorsal full-thickness skin
defects, suggesting that TNF-a is essential forwoundhealing [27].
These data collectively suggest that Muse cells might function
better under stressful conditions (e.g., hypoxia) and coordinate
cellular events in the wound healing process by releasing soluble
factors. The diabetic skin ulcers used in the present study are gen-
erally refractory to healing, with ischemia and chronic inflamma-
tion present, and appear to be a reasonable therapeutic target of
Muse cells.

CONCLUSION

In the present study, a selected population of ASCs, namelyMuse
cells, was shown to have greater therapeutic effects in accelerat-
ing the impaired wound healing associated with type 1 DM. On
the basis of the suspected mechanisms, our data further suggest

their clinical potential in a variety of stem cell-depleted or ische-
mic conditions of any organ or tissue. Adipose tissue has been
gaining more attention as a practical source of adult stem cells.
The therapeutic potentials of ASCs were suggested for treating
various DM conditions, such as hyperglycemia [28] and autoim-
mune DM [29]. ASCs were shown to share most biological char-
acteristics, and to have comparable functions, with bone
marrow-derived MSCs. Recent studies have suggested that ASCs
(and also other tissue-resident MSCs) can be supplied from the
bone marrow as tissue-localized stem/progenitor cells [30, 31].
Bone marrow is the central factory and bank of stem/
progenitor cells, which are mobilized and delivered on demand
by peripheral organs. These data suggest that invasive damage
to the bone marrow while harvesting bone marrow-derived cells
might have been underestimated. ASCs can be obtained in much
largerquantitiesusingminimally invasive approaches thatwill not
damage thebonemarrow, suggesting a clinical potential forMuse
ASCs in the future.
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