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The genomic revolution enabled the clinical inclusion of an immense body of person-specific information to
an extent that is revolutionizing medicine and science. The gut microbiome, our ‘‘second genome,’’ dynam-
ically integrates signals from the host and its environment, impacting health and risk of disease. Herein, we
summarize how individualized characterization of the microbiome composition and function may assist in
personalized diagnostic assessment, risk stratification, disease prevention, treatment decision-making,
and patients’ follow up. We further discuss the limitations, pitfalls, and challenges that the microbiome field
faces in integrating patient-specific microbial data into the clinical realm. Finally, we highlight how recent in-
sights into personalizedmodulation of themicrobiome, by nutritional and pre-, pro-, and post-biotic interven-
tion,may lead to development of individualized approaches that may enable us to harness themicrobiome as
a central precision medicine target.
Introduction
For many decades, modern medicine has focused on the identi-

fication of disease-specific diagnostic, preventive, and thera-

peutic modalities. Most such methods were found to be efficient

in some, but not all, patients, although the person-specific fac-

tors driving individualized disease manifestations and response

to treatment remained elusive. With the advent of genomic un-

derstanding of human physiology in the past two decades, the

focus has been shifting from disease-specific toward patient-

specific diagnostics and therapeutics, a new field termed

personalized or precision medicine (Jameson and Longo,

2015). Most early advances in precision medicine were made

in human oncology (Jameson and Longo, 2015; Hamburg and

Collins, 2010), in which person-specific genomic screening for

germ-line encoded mutations enables implementation of

patient-tailored preventative or early treatment measures. Ex-

amples include preventive mastectomy for BRCA1/2 mutation

carriers (Rebbeck et al., 2004), periodic colonoscopies for pa-

tients with familial adenomatous polyposis (FAP) syndrome (Wi-

nawer et al., 2003), and prophylactic thyroidectomy in multiple

endocrine neoplasia (Skinner et al., 2005). In addition, genomic

characterization of somatic mutations in sporadic cancers

(Druker et al., 2006) increasingly enables an accurate diagnosis

of cancer subtypes, leading to custom-made tailoring of molec-

ular therapy, as in the case ofEML4-ALK non-small cell lung can-

cer and Crizotinib treatment (Kwak et al., 2010).

Non-cancer precision medicine is also being gradually inte-

grated into clinical practice, enabling better diagnosis of dis-

eases and their variants in multiple conditions ranging from

celiac disease (Sollid, 2000) to cardiomyopathies (Biswas

et al., 2014). In addition, stratification of patients by treatment
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responsiveness and susceptibility to adverse effects is attain-

able through characterization of allelic gene variations, such as

the risk of cardiovascular events in patients receiving clopidogrel

therapy correlating to CYP2C19 gene variants (Simon et al.,

2009). In some cases, medication dosesmay vary in accordance

with patients’ genetic profiles, such as in the case of oral antico-

agulant warfarin, whose effective dosage was suggested to

depend on allelic variations in the VKORC1 and CYP2C9 genes

(Wizemann et al., 2010).

Parallel to the ‘‘genomic revolution,’’ the recent decade has

witnessed the advent of microbiome research, a complex

ecosystem of microorganisms living on and inside our bodies

whose genome outnumbers that of the host and influences

multiple physiological functions. The association of the micro-

biome with host health and disease risk has materialized in

the pioneering works of Jeffrey Gordon and colleagues, who

were among the first to link the microbiome with obesity. Since

these works, numerous other studies showed associations

between alterations in the composition and function of the

microbiota, termed dysbiosis, with ‘‘multi-factorial’’ disorders

such as glucose intolerance (Zhang et al., 2013; Suez et al.,

2014), obesity (Le Chatelier et al., 2013), type 2 diabetes mellitus

(T2DM) and insulin resistance (Qin et al., 2012; Vijay-Kumar

et al., 2010; Le Chatelier et al., 2013), aging-related disease

(Claesson et al., 2012) and non-alcoholic fatty liver disease

(Yan et al., 2011). At present, microbiome research is moving

beyond description of community structure and disease associ-

ations, toward a deeper molecular understanding of its contri-

butions to the pathogenesis of complex disorders. As such,

recent next-generation DNA sequencing-based studies are

suggesting that the utilization of person-specific microbiome
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Figure 1. Microbiome and Precision
Medicine
The microbiome, and its rapid modulation by fac-
tors such as diet, may impact multiple aspects of
personalized medicine.
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data may contribute to the development of precision medicine,

personalized diagnostic and treatment modalities. Here, we will

review these recent advances and their relevance to potential

future application of microbiome-based knowledge in personal-

ized patient care (Figure 1).

Microbiome in Personalized Disease Prevention and
Risk Stratification
Assessing disease risk in susceptible subpopulations is one of

the hallmarks of precision medicine, allowing for stratifications

of these subpopulations in a manner that improves the accuracy

and cost-effectiveness of follow up and treatment. In addition,

such personalized diagnostics may increasingly allow, in some

cases, initiation of prophylactic treatment that would otherwise

be considered too aggressive for an entire population at risk.

As the function, composition, and growth dynamics of the gut

microbiome are associated with many host physiological and

pathological states, non-invasive sampling methods and

decreasing profiling costs make it a feasible avenue for early

diagnosis and disease risk assessment.

Obesity research highlights the potential of microbiome-

based disease risk stratification. As the obesity pandemic is

becoming a substantial global health and economic burden,

personalized diagnosis of individuals at risk of developing

obesity and its metabolic complications becomes a critical un-

met need (Ng et al., 2014). The gut microbiome is believed to

be a marker and contributor to the development of obesity. Indi-
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vidual microbiome configurations feature

differential capabilities of harvesting en-

ergy from food (Turnbaugh et al., 2006),

leading to individualized effects on host

energy storage (Bäckhed et al., 2004).

Even in childhood, altered microbiome

compositions have been suggested to

be predictive of a propensity for

becoming overweight later in adulthood

(Koleva et al., 2015). Likewise, lower bac-

terial diversity and altered functional mi-

crobial pathway abundance have been

strongly associated with obesity (Turn-

baugh et al., 2006, 2009; Le Chatelier

et al., 2013). These microbiome configu-

rations directly contribute to obesity

development, as colonization of GF

mice with microbes from obese murine

or human donors induce a significant

weight gain in recipient mice (Turnbaugh

et al., 2006; Ridaura et al., 2013). Corre-

spondingly, these obesogenic effects

were ameliorated by cohousing recipient

mice with GF littermates receiving the mi-

crobiome of a lean donor (Ridaura et al.,
2013). This strong association between dysbiosis and the pro-

pensity for obesity, starting early in human life (Koleva et al.,

2015), may thus allow for identification, stratification, and pre-

ventive intervention of susceptible individuals at risk to develop

obesity and its complications.

Similarly, the gut microbiome has been recently suggested to

affect susceptibility to multiple other disorders, even those sys-

temically occurring at remote extra-intestinal organs. Children

with a high risk for developing type 1 diabetes mellitus (T1DM)

exhibit dysbiosis and reduced abundance of lactate- and buty-

rate-producing species even before the overt manifestations of

the disease (de Goffau et al., 2013; Kemppainen et al., 2015;

Brown et al., 2011). Similarly, some features of dysbiosis have

been correlated with asthma and atopy in children. These disor-

ders subsided in a murine model upon reversion of bacterial

composition to normality (Arrieta et al., 2015; Bisgaard et al.,

2011). Increased predisposition to rheumatoid arthritis (RA) has

been linked to gastrointestinal microbiota alterations, and it

has been proposed that Porphyromonas gingivalis, which

normally resides in the oral cavity, might be involved in its path-

ogenesis (Taneja, 2014). In all of these examples, microbiome

characterization in individuals at risk, or of family members of

diagnosed patients, may potentially aid in diagnosis and patient

stratification leading to improved follow up and patient care.

Likewise, microbiome assessment may contribute to early

detection and patient stratification in a number of neoplastic dis-

orders. Colorectal cancer, for example, was associated with
9, January 13, 2016 ª2016 Elsevier Inc. 13
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dysbiosis, characterized in some, but not all, patients by over-

abundance of Fusobacterium, among several other commensal

gut microbes (Marchesi et al., 2011; Kostic et al., 2012; Castel-

larin et al., 2012; Sobhani et al., 2011; Ahn et al., 2013). Analysis

of the salivary microbiome composition is suggested to aid in

early detection of pancreatic cancer (Farrell et al., 2012; Torres

et al., 2015). As such, integration of features related to the

composition of the gut microbiome with other known clinical

risk factors may potentially enhance early cancer detection

(Zackular et al., 2014).

While personalized microbiome profiling holds promise of im-

pacting disease risk stratification, much research is still required

in order to more accurately investigate the associations between

personalized microbiome signatures and the susceptibility to

develop human diseases. For such predictive modeling systems

to be integrated into clinical practice, personalized microbiome

readouts far richer than relative composition, such as metage-

nomic, meta-transcriptomic, metabolomics, and metaproteo-

mic analyses, should be included. Such extensive microbial

characterization, coupled with inclusion of the gut virome and

fungome into predictive modeling, would greatly add to the

accuracy and reproducibility of disease risk assessment. On a

positive note, in contrast to host genomics, the microbiome is

readily modifiable, potentially allowing for not only the detection

and risk stratification of individuals at risk for disease, but also

their comprehensive follow up and reevaluation. With the auto-

mation of microbiome analysis, such longitudinal microbiome-

based follow up may become accessible and cost-effective

even at local community settings.

Microbiome and Precision Disease Diagnosis
Beyond the above potential utility of the microbiome in risk

assessment, primary prevention, and follow up of patients at

risk, microbiome analysis may aid in the actual diagnosis of dis-

eases, as well as in the treatment decision-making process and

prognosis estimation. Changes in the gut bacterial composition

not only provide unique fingerprints of various conditions, but

may also predict patient-specific disease activity, manifesta-

tions, severity, and responsiveness to treatment.

Bacterial (Frank et al., 2007; Manichanh et al., 2006) and viral

(Norman et al., 2015) alterations in the gutmicrobiome have been

widely described to associate with inflammatory bowel disease

(IBD). Thesemicrobial alterationsmay contribute to inter-individ-

ual phenotypic variation in disease manifestations. For example,

the microbiome may differentiate between ileal and colonic

Crohn’s disease (CD). This distinction is of major clinical impor-

tance, as these two IBD variants differ in their response to anti-

biotic regimens (Steinhart et al., 2002; Greenbloom et al., 1998)

and enteral nutrition (Afzal et al., 2005). Patients with ileal CD har-

bor strikingly different bacterial populations as compared to pa-

tients with colonic CD or their healthy counterparts (Willing et al.,

2009, 2010). Notably, the ileal CD phenotype was associated

with reduced abundance of Faecalibacterium prausnitzii and

enrichment with Escherichia coli as compared to the colonic

CD phenotype. The increase in E. coli abundance coincides

with previous studies, which showed elevated levels of anti-

bodies directed against the E. coli outer membrane protein C

(OmpC) and flagellin in ileal CD but not in colonic CD (Arnott

et al., 2004; Targan et al., 2005), an effect potentially attributed
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to decreased production of alpha-defensins and diminished

antimicrobial activity (Wehkamp et al., 2005). Furthermore,

E. coli strains isolated from ileal CD patients were found to be

more virulent and to correlate with the severity of disease (Baum-

gart et al., 2007). These data suggest that characterization of the

microbiome holds potential as a non-invasive biomarker for dis-

ease phenotype, potentially even to a greater extent than the

host genotype. Moreover, recent studies suggested that

the prognosis of CD patients undergoing surgical resection of

the terminal ileum may be predicted by the degree of dysbiosis,

as patients who maintained post-surgical remission exhibited a

higher microbial diversity as compared to individuals who expe-

rienced recurrence (Dey et al., 2013). Specifically, increased

abundance of F. prausnitzii on resected ileal mucosa obtained

during the surgery was found to be associated with decreased

recurrence of the disease 6 months later (Sokol et al., 2008).

Likewise, in pediatric CD, dysbiosis and diminished species rich-

ness was found to be correlated with disease severity and could

predict outcome as quantified by a 6-month Pediatric CDActivity

Index (PCDAI; Gevers et al., 2014). In UC patients who under-

went colonic surgical resection and subsequent ileal pouch-

anal anastomosis (IPAA), pouch microbiota composition and

diversity was correlated with the presence and extent of pouch

inflammation and CD-like complications (Tyler et al., 2013).

The emerging role of the microbiome in predicting disease

manifestations, prognosis, and response to treatment can be

illustrated in various other medical conditions. For example, in

celiac disease a lower duodenal microbiome diversity and

enhanced dysbiosis, dominated by Proteobacteria, was associ-

ated with gastrointestinal symptoms, as compared to patients

suffering from extra-intestinal celiac-associated skin manifesta-

tions (Wacklin et al., 2013). Patients with new-onset rheumatoid

arthritis (NORA) were recently shown to feature a striking gut mi-

crobiome expansion ofPrevotella copri, as compared to patients

with chronically treated RA, psoriatic arthritis, and healthy con-

trols (Scher et al., 2013).

Taken together, these early studies suggest that integrating

microbiome profiling into patient care may allow for a faster,

more accurate, and less invasive clinical decision-making pro-

cesses. Moreover, patient-specific microbiome features may

be prospectively followed in a non-invasive ambulatory manner

that would potentially allow for the assessment of disease activ-

ity or responsiveness to treatment, as is detailed below.

Microbiome and Personalized Treatment
Inter-personal differences in response to therapeutic regimens

are often noted in medical treatment. However, despite the

fact that gut commensals are notable for their capabilities to

modulate drugs by a variety of bio-transformation processes,

such as by hydrolysis and reduction, their potential effects on

pharmacokinetics of orally and systemically administered medi-

cations have largely remained elusive. An early example of a ma-

jor idiosyncratic adverse effect driven by gut microbiome activity

involved the drug sorivudine, which was removed from the mar-

ket in 1993 due to a lethal interaction with the chemotherapeutic

agent 5-FU, secondary to intestinal bacteria-induced inactiva-

tion of the liver enzyme dihydropyrimidine dehydrogenase

(DPD; Okuda et al., 1998). Similarly, the chemotherapeutic

agents topotecan and irinotecan (CPT-11) are glucuronidated



Cell Host & Microbe

Perspective
into an inactive form by hepaticmetabolism, but when they reach

the gut they can undergo beta-glucuronidation by bacterial en-

zymes into the active form, thereby causing severe diarrhea

(Wallace et al., 2010).

Only recently has the paradigm been shifting toward a more

comprehensive investigation of the gut microbiome contribu-

tion to drug metabolism (Nicholson et al., 2005). The critical

roles the microbiome plays in drug metabolism are exemplified

in the case of digoxin, a cardiac glycoside used to treat

congestive heart failure, which features a narrow therapeutic

window leading to risk of toxicity. Long before the advent of mi-

crobiota research, Lindenbaum et al. (1981) noticed that some

patients tend to chemically reduce the drug, thus rendering it

inactive. Even stool cultures from these subjects converted

the drug to its reduced form, while the administration of antibi-

otics eliminated the secretion of the inactive form and resulted

in a 2-fold increase in plasma digoxin concentration, leading

to a conclusion that enteric bacteria may modulate digoxin

metabolism. A more recent study (Haiser et al., 2013) demon-

strated that digoxin indeed undergoes inactivation by the spe-

cies Eggerthella lenta and that the administration of antibiotics

can offset this effect.

Acetaminophen, a compound found in many commonly pre-

scribed analgesic drugs, exhibits a profound inter-individual

variation in its clinical effects. A potential explanation of this

personalized response has been recently linked to variation in

microbiome function, with some individuals harboring p-cresol-

generating bacteria, which favor acetaminophen glucuronida-

tion over O-sulfonation due to competitive O-sulfonation of

p-cresol. The same mechanism may apply to metabolism of

other drugs that rely on sulfonation for their metabolism and

excretion (Clayton et al., 2009). Statins, widely used for reduction

of plasma low-density lipoprotein (LDL) cholesterol levels, are

another example of microbiome-driven personalized drug

responsiveness. Favorable responders to statin therapy, exhibit-

ing a marked improvement in their plasma LDL levels, were

found to feature certain secondary bile acids that are modulated

by intestinal bacteria. Furthermore, a positive correlation was

found between clinical response rate to statins and pre-treat-

ment bacterial-derived coprostanol (COPR) levels, suggesting

that the abundance of coprostanol-producing bacteria may pre-

dict the efficacy of statin therapy (Kaddurah-Daouk et al., 2011).

Likewise, the efficacy of chemotherapeutic agents is consider-

ably influenced by commensal bacteria (Iida et al., 2013). Two

recent papers shed light on the essential role of distinct gut mi-

crobiota in cancer immunotherapy. Sivan et al. (2015) studied

the effect of commensal bacteria on anti-PD-L1 treatment in

mousemodels of melanoma and found that a definedmicrobiota

composition was associated with an augmented T cell-mediated

antitumor immunity, which was transferable to other mice by

gastric gavage and abrogated by cohousing. The Bifidobacte-

rium genus was identified as the causative agent for this favor-

able effect, with oral administration of this bacterium improving

tumor control. Vétizou et al. (2015) investigated the interplay be-

tween gut bacteria and anti-CTLA-4 antibodies inmurine models

of cancer and inmelanoma patients. They demonstrated that the

microbiota induced an inflammatory response and conferred a

beneficial effect on tumor growth in mice, which was abrogated

in germ-free mice or after the administration of antibiotics. In hu-
mans, CTLA-4 blockade resulted in dysbiosis with propensity

toward an increase of several Bacteroides species, which

were suggested to be responsible for the observed antitumor

properties.

Together, the notion that the microbiome plays a predominant

role in drug modification is now gaining wider acceptance.

Future pharmaceutical developments should take into account

the unique effects that differential microbiota compositions and

functions may have on drug metabolism, absorption, efficacy,

and toxicity. These differencesmay also shed light on the varying

efficacies of generic drugs with similar active compounds.

Compiling these data may aid in prescribing the appropriate

medical treatment, in a custom-made personalized fashion, to

achieve safer andmore effective treatment outcomeswhile mini-

mizing adverse effects.

Microbiome and Personalized Nutrition
The past century has seen a pandemic of metabolic diseases

including obesity, T2DM, non-alcoholic fatty liver disease, and

associated cardiovascular diseases that impact large popula-

tions, thereby posing a substantial medical and economic

burden on modern society. As such, there is a growing aware-

ness of the need for primary preventive measures to modify

the risk for the development of these disorders. Although dietary

intake has long been known to play a role in the pathogenesis of

obesity, T2DM and their complications, various generalized

nutritional recommendations, available and updating for over

four decades, do not seem to abate their rising incidence. In a

recent paper (Zeevi et al., 2015), we presented evidence for

marked inter-individual variability in postprandial (post-meal)

glycemic responses to identical meals and that this variability as-

sociates with microbiome composition and function.

Previous works have presented similar evidence from different

perspectives. Works by Stanley L. Hazen and colleagues (Koeth

et al., 2013, Tang et al., 2013) demonstrated that the gut micro-

biome mediates the well-known link between red meat con-

sumption and atherosclerosis. The metabolism by gut micro-

biota of L-carnitine, a nutrient abundant in red meat, produced

trimethylamine-N-oxide (TMAO), a proatherogenic species. It

was further shown that omnivorous human subjects produced

more TMAO than vegan or vegetarian participants via this micro-

biome-dependent pathway. This suggests that global recom-

mendation to reduce consumption of red meat (Hu et al., 2000;

Sinha et al., 2009; Rohrmann et al., 2013) as ameans of reducing

cardiovascular diseases may be more relevant for people with

specific microbiome configurations, calling for personalized

adjustment of universal recommendations.

Similarly, we have previously presented (Suez et al., 2014) a

microbiome-dependent induction of glucose intolerance caused

by consumption of non-caloric artificial sweeteners (NAS). In a

pilot prospective study, we proposed that even short-term con-

sumption of NAS may cause glucose intolerance in a subpopu-

lation of human individuals and that NAS-sensitive individuals

harbored distinct microbial composition prior to NAS consump-

tion. Our study suggests that general recommendations for the

reduction of sugar consumption via the widespread use of

NAS may be harmful to some population subsets and that we

might need to personalize this recommendation according to

the individual’s microbiome.
Cell Host & Microbe 19, January 13, 2016 ª2016 Elsevier Inc. 15
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These highly personalized associations between the micro-

biome, nutrition, and metabolic consequences have led us to

believe that the microbiome can be helpful in characterizing

the metabolic state of healthy and prediabetic individuals. To

this end, we conducted a personalized nutrition study, in which

we continuously monitored blood glucose levels in an 800-per-

son cohort and measured the postprandial glycemic response

(PPGR) to more than 45,000 real-life meals and more than

5,000 standardized meals (Zeevi et al., 2015). We found large in-

ter-personal differences in the response to both types of meals.

Correlated with this highly variable range of responses were

many metabolic markers, such as glycated hemoglobin

(HbA1c%), BMI and wakeup glucose, and many microbiome

markers. We then devised a machine-learning algorithm that in-

tegrates blood parameters, dietary habits, anthropometrics,

physical activity, and gut microbiome composition and function

measured in this cohort and showed that it accurately predicts

personalized PPGR to real-life meals (Zeevi et al., 2015).

To gain insight into the contribution of different features to al-

gorithm predictions, we utilized partial dependence (PD) analysis

(Elith et al., 2008), observing themarginal effect of a given feature

on PPGR prediction outcome after accounting for the average

effect of all other features. As such, we termed the features for

which predicted PPGR increased with feature value as non-

beneficial; and features for which predicted PPGR decreased

with feature value as beneficial, and were able to discern 21

and 28 beneficial and non-beneficial microbiome-derived fea-

tures, respectively. For example, growth of Eubacterium rectale

was mostly beneficial, as 430 participants with high inferred

growth for E. rectale were associated with a lower PPGR (Zeevi

et al., 2015). Interestingly, E. rectale was also found to be nega-

tively associatedwith T2DM in aChinese cohort (Qin et al., 2012).

As another example, relative abundances of Parabacteroides

distasonis were found non-beneficial by our predictor, and this

species was also suggested to have a positive association with

obesity (Ridaura et al., 2013).

Incorporating microbiome-derived features significantly

improved PPGR prediction accuracy. We note, however, that

predictive power does not imply causality, and establishing

such links necessitates future studies. Nevertheless, since we

found that microbiome-derived features can replace most other

personal features (e.g., blood tests, medical questionnaires) with

little loss of accuracy, an intriguing possibility is that further

research may be able to utilize microbiome features as a simple

and cost-effective means of profiling for individuals and

providing personalized dietary insights.

A central determinant of microbiome composition and func-

tion is the host diet. The prototypical dietary patterns across

mammalian phylogeny were shown to drive convergence in

the microbiomes of these mammals (Muegge et al., 2011). For

example, carnivorous and herbivorous microbiomes promote

opposing directionality for amino acid metabolism, regardless

of their phylogeny. Carnivore microbiomes are enriched with

amino acid degradation pathways, while the microbiomes of

herbivores are enriched with amino acid biosynthesis pathways

(Muegge et al., 2011). Even within a single species, the micro-

biome composition and function was found to be dominated

by diet, rather than by host phylogeny (Carmody et al., 2015).

Diet was shown to alter the gut microbiome on two separate
16 Cell Host & Microbe 19, January 13, 2016 ª2016 Elsevier Inc.
timescales. Long-term dietary patterns, obtained from food-fre-

quency questionnaires, were shown to strongly associate with

core microbial properties. High long-term protein and fat con-

sumption was associated with a microbiome dominated by bac-

teria of the Bacteroides genus, whereas high long-term carbo-

hydrate consumption was associated with genus Prevotella

(Wu et al., 2011). Notwithstanding, extreme dietary changes

can quickly alter the microbiome in a reproducible manner.

Community differences in the microbiome were shown to occur

after only a single day on a strictly animal-based diet, and the

microbiome of these individuals reverted to its normal state

2 days after the animal-based diet ended. Plant-based diet

was also shown to have a significant effect on the microbiome

(David et al., 2014). Notably, the effect of these short-term diets

mirrored the aforementioned differences between carnivores

and herbivores (Muegge et al., 2011). In a short-term experi-

ment on healthy subjects consuming only white rice, we have

shown that such an extreme change in diet is also immediately

reflected in the growth dynamics of species within the micro-

biome (Korem et al., 2015). Likewise, a recent study showed

that a 3-day consumption of barley kernel-based bread resulted

in improved glucose metabolism, which was attributed to a

higher Prevotella/Bacteroides ratio (Kovatcheva-Datchary

et al., 2015).

Similarly, during the personalized nutrition study, we conduct-

ed a blinded randomized controlled study, which assigned

personalized nutritional intervention based on either the PPGR-

prediction algorithm or on expert examination of continuous

glucose measurements. For each participant, we constructed

two 1-week diets: a diet composed of the meals expected to

have low PPGRs (the ‘‘good’’ diet) and a diet composed of the

meals expected to have high PPGRs (the ‘‘bad’’ diet). We de-

tected changes in the microbiome following both the ‘‘good’’

and the ‘‘bad’’ dietary interventions, andwhile many of these sig-

nificant changes were person specific, several taxa changed

consistently in most participants (Zeevi et al., 2015). For

example, T2DM has been associated with low levels of Rosebu-

ria inulinivorans (Qin et al., 2012), Eubacterium eligens (Karlsson

et al., 2013), and Bacteroides vulgatus (Ridaura et al., 2013), and

all these bacteria increase following the ‘‘good’’ diet and

decrease following the ‘‘bad’’ diet.

Personally tailored dietary interventions aimed at altering the

microbiome to a more beneficial configuration may thus hold

promise, but also face important challenges. The microbiome

is modified by both host nutrition and its own metabolic state

and in turn regulates the host metabolic homeostasis. As such,

personalized nutritional interventions must take into account

these intricate and bilateral relationships between the micro-

biome and host, which may be ‘‘reset’’ to a new steady state

by longstanding personalized nutritional modifications. Like-

wise, such changes may necessitate further nutritional modifica-

tions to be implicated once this new host-microbiome equilib-

rium has been reached.

Future studies focusing on personalized nutrition-based mi-

crobiome and host metabolic modification will further charac-

terize the nutrition-microbiome-host metabolism axis at a larger

scale. Moreover, they may allow integration of a personalized

diet and its effects on the host as part of a multi-disciplinary ther-

apeutic approach toward multi-factorial diseases, thereby
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harnessing nutritional considerations into the clinical decision-

making process.

Limitations and Challenges of Microbiome Integration
into Personalized Medicine
While microbiome impact on diagnosis, follow up, and treatment

of disease holds promise in potentially transforming personal-

ized medicine, many challenges, pitfalls, and limitations still

need to be addressed in order for microbiome profiling to be fully

integrated into common medical practice.

The microbiome shows a remarkable degree of inter-personal

variability among people (Eckburg et al., 2005), both in steady-

state conditions and in response to a variety of lifestyle changes

including dietary alterations, use of medication (Carmody et al.,

2015; Mikkelsen et al., 2015), and aging (Claesson et al., 2012).

The microbiome composition and function even tends to oscil-

late diurnally in an hour-scale resolution (Thaiss et al., 2014). All

of these microbial fluctuations may potentially introduce clini-

cally irrelevant ‘‘noise’’ to microbiome-related data, thereby

introducing potential biases to the interpretation of micro-

biome-based results. Moreover, different collection and analysis

techniques, reagents, and parameters may introduce variations

into microbiome results, further confounding the biologically

relevant personalized variability (Flores et al., 2015; Hamady

and Knight, 2009). Thus, better standardization in collection

methods, reagent use, storage, and processing is greatly needed

in the microbiome research community to assure that micro-

biome-based human data feature the degree of reproducibility

that is adequate for its inclusion into routine clinical practice.

Data processing and interpretation pose another layer of

potentially confounding variability. This represents an immense

challenge, as many researchers employ different microbiome

analysis tools that do not always produce similar results, even

when generated from identical datasets. Moreover, micro-

biome-based biomarkers for personalized diagnostics and prog-

nostics may not be uniformly applicable among populations and

may diverge based on lifestyle, nutrition, genetics, and biogeog-

raphy. Furthermore, interpretation of microbiome associations

with clinical features of ‘‘multi-factorial’’ diseases may be

complicated by difficult-to-recognize clinical confounders. This

caveat has been exemplified in two studies, which identified

compositional and functional alterations in the gut microbiome

to be associated with impaired glucose metabolism in European

and Chinese cohorts (Karlsson et al., 2013; Qin et al., 2012).

Recently, a follow-up study suggested that this association

was at least partially driven by metformin usage by some dia-

betic individuals in these cohorts (Forslund et al., 2015).

While the plasticity of the microbiome holds promise as a

modifiable disease intervention target, it also poses a challenge

related to the stability of the imposed changes. For example,

devising personalized dietary interventions based on micro-

biome characteristics may be tricky, as diet itself is a main driver

of microbiome composition, and thereby dietary alteration may

trigger changes in the microbiome (Zeevi et al., 2015). This

modifiability should merit periodic reassessment and occa-

sional readjustment of the nutritional planning per individual,

or the utilization of more elaborate algorithms, which can iden-

tify dependencies between dietary compounds and specific

bacterial taxa and predict trends of their variation over time.
Equally important, with the present ‘‘microbiome hype,’’ it

should be emphasized that the microbiome composition and

function is only one component of the multiple factors affecting

human physiology and propensity for disease. Thus, only an

integrative multivariable approach, which would integrate hu-

man and microbiome genetics, as well as other environmental

variables, may ensure that precision medicine is implemented

to its fullest potential.

Discussion
Personalized medicine is emerging as potential means of

reducing disease risk, improving diagnosis, enhancing treat-

ment, and whenever possible, preventing disease. Future micro-

biome-based methods for risk assessment could provide early

identification of personal disease risk at all stages of life.

Screening of neonates’ or infants’ microbiomes may provide

means for early detection of allergic disorders, childhood

obesity, T1DM, and asthma and serve as an attractive target

for preventive intervention in these conditions. In early adult-

hood, microbiome assessment may be useful in diagnosis and

risk assessment of metabolic diseases such as obesity and

T2DM. Later in life, microbiome assessment may aid in early

detection of cancer, autoimmunity, and neurodegenerative dis-

ease and may be incorporated as part of the therapeutic arsenal

in these disorders. As such, deciphering the characteristic mi-

crobiome configurations, or ‘‘microbial fingerprints,’’ of different

disorders could facilitate its future application in personalized

disease diagnosis, as a precise, non-invasive, and economically

viable tool that may boost massive population screening for early

detection of multiple disorders.

Themicrobiome is also emerging as a central ‘‘player’’ in many

aspects of personalized drug therapy. Gut commensal bacteria

actively participate in the metabolism of many chemical com-

pounds, thereby potentially impacting drug availability, levels,

and toxicity.

Finally, patient-tailored manipulation of the human micro-

biome may enable the development of precision microbiome-

targeting treatment for a variety of multi-factorial disorders. To

date, such interventions were mainly limited to fecal microbiota

transplantation (FMT) for the treatment of refractory Clostridium

difficile-induced colitis. However, extensive research is under-

way in assessing FMT in other diseases, such as inflammatory

bowel disease (Colman and Rubin, 2014). Other novel and

attractive microbiome-modifying approaches may include

personalized probiotics and prebiotics, personalized diet

devised to alter microbiota composition and function, ‘‘postbi-

otic’’ treatment composed of microbiome-modulated metabo-

lites designed to orchestrate host-microbiome interactions,

and microbiome manipulations using phage therapy.

For these potential microbiome-based usages to be clinically

implementable, the field needs to address several substantial

challenges, mainly related to the development of robust and uni-

form collection, sequencing, and analysis standards that would

improve reproducibility of results and reduce biases in their inter-

pretation.With those challengesmet, incorporatingmicrobiome-

related diagnostics and therapies into commonmedical practice

may emerge as an integral part of modern patient care, thereby

introducing thrilling new dimensions into the prospect of preci-

sion medicine.
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