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SUMMARY

Structural phenotyping based on classical image feature detection has been adopted to elucidate the molecular mechanisms behind
genetically or pharmacologically induced changes in cell morphology. Here, we developed a set of 11 metrics to capture the increasing
sarcomere organization that occurs intracellularly during striated muscle cell development. To test our metrics, we analyzed the locali-
zation of the contractile protein a-actinin in a variety of primary and stem-cell derived cardiomyocytes. Further, we combined these
metrics with data mining algorithms to unbiasedly score the phenotypic maturity of human-induced pluripotent stem cell-derived

cardiomyocytes.

INTRODUCTION

Several efforts have been reported in the emerging field of
structural phenotyping for the integration of image acqui-
sition, processing, and analysis to assess the response of
cells and tissues to various challenges (Eliceiri et al.,
2012). All of these methodologies are predicated on the
assumption that cell shape is an important indicator of
the cell pathophysiological state and rely on (1) image-pro-
cessing algorithms for the extraction of morphological fea-
tures and (2) machine-learning strategies to mine the cell
morphology data (Crane et al., 2012; Jones et al., 2009; Tre-
iser et al., 2010).

Many intracellular structures, such as the contractile
cytoskeleton in striated muscles, are also predictors of cell
function (Feinberg et al., 2007). Additionally, while a cell
specifies along the myocyte lineage (Mummery et al.,
2012; Qian and Srivastava, 2013), it also progresses through
myofibrillogenesis as force-generating units, known as sar-
comeres, self-assemble along the actin cytoskeleton (Gros-
bergetal., 2011; Parker et al., 2008). Moreover, the contrac-
tile proteins of mature myocytes are continuously turned
over and their spatial organization remodeled to adapt to
pathophysiological stimuli (McCain et al., 2013; Sun
et al., 2012; Wang et al., 2014). Therefore, while the pres-
ence of contractile proteins is necessary for myocytes func-
tion (Cahan et al. 2014; Mummery et al., 2012), it is not
sufficient to define the developmental stage (Sheehy et al.,
2014), the health status (Wang et al., 2014), or the func-
tional capabilities of these cells (Feinberg et al., 2012).

Here, we designed a set of 11 metrics (Figure S1; Table 1)
that intrinsically score myocyte structural phenotypes by
the increasing degree of organization and alignment that
sarcomeres acquire during myofibrillogenesis. We utilized

these metrics to score the phenotypic maturity of primary
and stem cell-derived cardiomyocytes based on the degree
of sarcomeric structural organization observed in a-actinin
images.

RESULTS

Quantitative Analysis of the Contractile Cytoskeleton
in Striated Muscle Cells

Sarcomeres are ~2 pm long ultrastructures delimited by
Z-disks that are rich in the contractile protein a-actinin
(red in Figure 1A). The localization of this protein can be
taken to indicate the maturity of cardiac myocytes (Gros-
berg et al.,, 2011): in differentiating cells, «-actinin is
diffuse in the cytoplasm (Figure 1Aii); in immature myo-
cytes, it appears as a fibrous structure or as aperiodically
spaced puncta known as Z-bodies (Figure 1Aiii); and in
mature myocytes, a-actinin localizes into the regular lat-
tice of Z-disks (Figure 1Aiv). Therefore, we focused our
analysis (Figure 1B) on identifying how regularly spaced
and well-aligned sarcomeric a-actinin-positive structures
were in the images. We first associated each sarcomeric
a-actinin-positive pixel with the orientation (color coded
in Figure 1Ci) of its local neighborhood and then fitted a
bimodal distribution to the resulting orientation histo-
gram (red and black curves in Figure 1Cii). This enabled
the extraction of several metrics: the global orientational
order parameter (Grosberg et al.,, 2011) (OOP) a value
that ranges from O to 1 as contractile elements become
more aligned and separate OOPs for the two fitted modal
distributions, representing Z-disks and Z-bodies, as well
as their relative presence. Further, we radially integrated
the image power spectrum (Figure 1Ciii), yielding a 1D
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Table 1. List of Metrics of Sarcomere Organization Developed, Integrated, or Updated for This Study

Metric Number

Metric Name

Metric Description

The average distance between Z-disks in the entire field of view.

The total amount of spatially varying immunosignal.

The amount of immunosignal with a spatial periodicity given by SL.

The fraction of immunosignal that localized in a regular lattice at a distance SL.
The degree of alignment of all foreground elements in the field of view.

The degree of alignment of foreground elements that are oriented orthogonally to the

The degree of alignment of foreground elements that are oriented parallel to the actin

The fraction of foreground elements that are recognized as Z-bodies.

Calculated by multiplying the sarcomeric 00P (00P1) and the weight 7. In this sense, it
represents both the abundance and relative alignment of the Z-disks in the imag.

Calculated as the percentage of the image pixels that have an intensity value higher
than user-specified threshold. It estimates the a-actinin coverage.

1 sarcomere length (SL)
2 total energy
3 sarcomeric energy
4 sarcomeric packing density (SPD)
5 orientational order parameter (O0P)
6 sarcomeric 00P (00P1)
actin bundles (Z-disks).
7 nonsarcomeric 00P (00P2)
bundles (Z-bodies).
8 Z-disks relative presence ()
9 weighted 00P
10 coverage quality control
11 coherency quality control

Calculated as the percentage of a-actinin-positive pixels that have a value of the
coherency higher than a user-selected threshold. It is useful for artifact removal and for

image quality control.

See Figure S1 for a schematic representation of the role of each parameter.

representation (Figure 1Civ) that highlights the relative
importance of each spatial frequency. In particular, the
peaks (red curve) represent a-actinin-positive elements ar-
ranged at a distance on the order of the sarcomere length
(SL) and therefore become more prominent as sarcomero-
genesis progresses. Through nonlinear fitting, we sepa-
rated this component from the aperiodic contribution of
Z-bodies and other image artifacts (black curve). Relevant
metrics in this case included the area (shaded in red) under
the periodic component, the total area under the data
curve, and their ratio, a quantity we termed sarcomere
packing density (SPD). Taken together, this set of metrics
has a direct biophysical interpretation: substantially
more mature myofibrillar architectures exhibit a regular
lattice of well-oriented Z-disks, resulting in elevated values
of SPD and OOP. Additionally, this analysis is robust to
common imaging artifacts such as out-of-focus blurriness,
salt-and-pepper noise, or poor contrast (Figure S2).

Quantitative Analysis of the Contractile Cytoskeleton
in Murine Primary and Stem Cell-Derived Single
Cardiomyocytes

To test our analysis tool, we asked whether we could quan-
tify the ability of human and murine-induced pluripotent
stem cell-derived cardiomyocytes (hiCMs and miCMs,
respectively) to replicate the contractile cytoskeletal archi-
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tecture observed in murine primary cardiomyocytes
(mpCMs) in vitro (Parker et al., 2008). Qualitatively, we
observed that mpCMs (Figure 1Di) and miCMs (Fig-
ure 1Dii) 3 days after seeding on square fibronectin islands
showed mature myofibrillar architecture, characterized by
uniformly distributed sarcomeric a-actinin-rich striations.
Conversely, hiCMs (Figure 1Diii) exhibited sparse Z-disks
solely in the perinuclear region and arranged in ring-like
myofibrils (red arrow in Figure 1Diii). In addition, close
to the hiCM membrane, the actin and sarcomeric a-actinin
signals were diffuse (yellow arrows) and resembled the
cortical architecture observed in immature and/or migra-
tory cells (Parker et al., 2008; Sheehy et al., 2012). Quanti-
tatively, while local regions of aligned Z-disks could be de-
tected (color-coded insets below the panels in Figure 1D),
the Fourier analysis clearly demonstrated a globally
reduced periodicity in the sarcomere distribution of hiCMs
than observed in miCMs and mpCMs (insets on the right
of the panels in Figure 1D). Consistently, the SPDs
measured in mpCMs and miCMs were two times higher
than in hiCMs (Figure S3). Notably, all myocytes consid-
ered in this study were positive for sarcomeric a-actinin,
suggesting that they would have been clustered in the
same group by traditional assays detecting the presence
of this protein or its transcript (Cahan et al. 2014; Mum-
mery et al., 2012).
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Figure 1. Metrics of Contractile Architecture to Characterize the Progression of Myofibrillogenesis

(A) Schematic representation of a sarcomere (i) and of the distribution of a-actinin (red) during myofibrillogenesis: in the cytoplasm (ii),
along the actin (green) filament in the form of Z-bodies (iii), and incorporated into the Z-disks (iv).

(B) Algorithmic detection of the orientation and periodic registration of a-actinin-positive structures using the image spatial (co-
ordinates x,y) and Fourier (coordinates u,v) domains.

(C) Color-coded orientations (i, from the inset of synthetic image Figure 1Bii) displayed into a histogram (ii) can be fitted to identify
orientations belonging to Z-disks (red) and Z-bodies (black). In parallel, the 2D Fourier power spectrum (iii) was integrated into a 1D curve
(iv) and fitted to identify the contribution of periodically spaced Z-disks (red) and aperiodic Z-bodies (black).

(D) a-actinin immunostains (white) of mononucleated (DAPI, blue) murine primary (mpCM, i) and murine (miCM, ii) or human (hiCM, iii)
induced pluripotent stem cell-derived cardiomyocytes. The color-coded representation of the a-actinin orientation in the inset is reported
below the image. The positive semiplane for the Fourier transform is reported on the right of each image.

Scale bar represent 20 pm. See also Figures S2 and S3.

Quantitative Analysis of the Maturity of the maturation strategies by integrating our metrics of myofi-
Contractile Cytoskeleton in Human Stem Cell-Derived brillar architecture with machine-learning algorithms for
Cardiomyocytes structural phenotyping. While available platforms require

We and others have previously shown that extending time  a user-selected training set, a set of images that an “expert”
in culture (Lundy et al., 2013; McCain et al., 2014a) could assigns to all phenotypic classes (Eliceiri et al., 2012), we
be beneficial for obtaining hiCMs with a more mature took advantage of our ability to recapitulate myofibrillo-
phenotype than we observed here. However, evaluating genesis in vitro using primary cardiomyocytes from
the quality of mass-produced stem cell-derived myocytes neonate rats (rpCMs) (Agarwal et al., 2013; Parker et al.,
requires an extensive structure-function characterization 2008) to create such a training set. First, we cultured
and a direct comparison against myocytes exhibiting a rpCMs and hiCMs as engineered tissues that mimic the
postnatal phenotype (Sheehy et al.,, 2014). We reasoned native architecture of the myocardium (Sheehy et al.,
that since the process of myofibrillogenesis is highly 2014) (Figures 2A and S4). Second, we assigned the sets
conserved across species (Sissman, 1970) we could design  of features (Figure S1; Table 1) extracted from images
a prescreening tool that estimates the effectiveness of collected at 6 (Figure 2Ai), 24 (Figure 2Aii), and 48 hr

Stem Cell Reports | Vol. 4 | 1-8 | March 10,2015 | ©2015 The Authors 3




http://dx.doi.org/10.1016/j.stemcr.2015.01.020

Please cite this article in press as: Pasqualini et al., Structural Phenotyping of Stem Cell-Derived Cardiomyocytes, Stem Cell Reports (2015),

rpCM 6 hr
tiated Phenotype (D)
o ST

Fourier

Spectrum Immat

rpCM 48 hr
Mature Phenotype (M)

Fourier hiCM 96 hr

Spectrum

3\ Strdeture

B C
m6hr 48 hr

0.3 @24hr « hicMs .
B
o E
n 0.2 ° % K
® 34 g
- m ® ® I

01 g m® u

=
0.0

02 00 02 04 06 08 1.0
wOOP %o

(Figure 2Aiii) after seeding to the classes of differentiated,
immature, and mature myocytes, respectively. We
collected digital images from more than 100 cells (insets
in Figure 2A and Figure S4A-B) in each condition. Third,
we utilized the automatically annotated dataset to train a
simple naive Bayes classifier as well as two more advanced
supervised learning strategies based on neural networks
and tree bagging (Figure S4C). We selected three ma-
chine-learning strategies that operate under various as-
sumptions (Table 2) to demonstrate that our classification
was not biased (Eliceiri et al., 2012) by the choice of one
specific algorithm. Finally, we asked the three classifiers
to confirm whether or not hiCMs (Figure 2Aiv) possess a
mature structural architecture.

At the tissue level, as rpCMs in culture underwent my-
ofibrillogenesis, we observed that weighted OOP (wWOOP)
and SPD increased as expected (Figure 2B). In compari-
son, hiCMs scored values consistent with their immature
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Figure 2. Structural Phenotyping of Stem
Cell-Derived Cardiomyocytes

(A) a-actinin (white) and chromatin (blue)
images of rpCMs at 6 (i), 24 (ii), and 48 hr
(iii) as well as hiCMs at 72 hr (iv) after
seeding with color-coded orientations and
Fourier representations. Scale bar repre-
sents 25 pum.

(B) Scatter plot showing how our metrics of
myofibrillar architecture quantitatively
captured the progression of myofibrillo-
genesis in rpCM tissues from differentiated
(6 hr, brown squares) to immature (24 hr,
red circles) and finally mature (48 hr, green
triangles) myocytes. In contrast, the hiCM
tissues (orange diamonds) exhibited a
relatively immature myofibrillar organiza-
tion.

(C) A dataset comprising ~120 sarcomeric
a-actinin images per conditions (insets in
Ai-Aiv) was acquired, and the features ex-
tracted from this dataset were utilized to
train several classifiers to distinguish the
classes of differentiated (D), immature (I),
and mature (M) myocytes. The classifiers
assigned only ~29% of the 118 hiCM im-
ages to the class of myocytes with a mature
structural phenotype, with the rest showing
differentiated or immature contractile ar-
chitectures.

Results are shown as mean + SEM. See also
Figure S4.

Fourier
Spectrum

Fourier
Spectrum

48 hr

myofibrillar organization. Further, all classifiers trained
on the rpCMs dataset failed to recognize a mature myofi-
brillar architecture in the majority of hiCMs images
(Figure S4D). Specifically, ~70% of the 118 hiCM images
were not classified as mature by the naive Bayes classifier,
~71% by the neural network classifier, and ~77% by
the tree bagging classifier. For example, the neural
network classified ~40% of hiCMs as differentiated
myocytes and ~31% as immature myocytes (Figure 2C).
Interestingly, 29% of the cells embedded in anisotropic
hiCM tissues did display mature myofibrillar architec-
tures, suggesting a pool of hiCM with enhanced
myogenic potential may exist (Hartjes et al.,, 2014).
Thus, we (1) provided quantitative metrics for the organi-
zation of the contractile cytoskeleton of primary and
stem cell-derived cardiomyocytes and (2) utilized this
information to unbiasedly and robustly quantify their
maturation.



Please cite this article in press as: Pasqualini et al., Structural Phenotyping of Stem Cell-Derived Cardiomyocytes, Stem Cell Reports (2015),
http://dx.doi.org/10.1016/j.stemcr.2015.01.020

Table 2. Machine Learning Algorithms Adopted for the Analysis of the Myofibrillogenesis Dataset

Classifier Number Classifier Name

Pros

Cons

1 naive Bayes
2 neural network (NN)
3 tree bagging

One of the simplest classifiers, based on
intuitive probability models, and it is
computationally very treatable.

A popular machine learning algorithm for
structural phenotyping. Extensive literature
shows how a NN classifier can always be
constructed, providing that one has a good
enough dataset.

A popular machine-learning algorithm for
structural phenotyping. The data model is

It simplistically assumes that all the features are
statistically independent, which may not be true
for sarcomeres whose structure, during
myofibrillogenesis, becomes more periodic and
well-aligned.

The data model is not intuitive. The neural
network optimization is not trivial and requires
considerations for the dataset size as well as the
stochastic initialization.

Optimization of the tree bagging algorithm is not
trivial and requires careful consideration of the

more intuitive than NN.

sample and tree sizes.

See Figure S4.

DISCUSSION

Quantitative methods to characterize the contractile cyto-
skeleton of striated muscle cells have been previously pro-
posed. For example, the analysis of the orientation of
intracellular elements has been conducted adopting
mean orientations (Rao et al., 2013). Unfortunately, the
specific circular statistics tests (Berens, 2009) required to
compare and contrast these mean orientations are only
rarely adopted. By using the OOP values in the range of
0-1, we were able to employ classical statistical tools,
such as ANOVA (Figure S3). Additionally, approaches
based on nonlinear fitting of multiple Von Mises distribu-
tions have been proposed (Rezakhaniha et al., 2012); in
the context of fluorescence bioimaging though, these
methods may suffer from overfitting issues, given the large
numbers of parameters that are needed to identify multi-
ple distributions. Here we restricted ourselves to only
two distributions, centered on the two biophysically rele-
vant principal directions of Z-disks and Z-bodies that are
orthogonal to one another. We were thus able to limit
the number of fitting parameters, largely reducing the
risk of overfitting. Fourier analysis has also been previously
considered in the estimation of sarcomere length (Lundy
et al., 2013; Wei et al., 2010). Our automatic approach of-
fers significant advantages in that the contractile cytoskel-
eton within the entire cell is considered, reducing the user
bias (Eliceiri et al., 2012) introduced by manual selections
in the spatial (Lundy et al., 2013) or Fourier (Wei et al.,
2010) domains. Moreover, our algorithm not only yields
an estimate of the sarcomere length across the entire
spatial extension of the cell/tissue, but also reveals the
relative presence of well-formed sarcomeres irrespectively
from the direction of their alignment. When the myofi-

brils are highly aligned (Figure 2Aiii), the Fourier spectrum
exhibits peaks along one principal direction; conversely,
when sarcomeres are well organized along many direc-
tions (Figure 1Di), the Fourier spectrum shows a circular
pattern. By integrating across all directions in the Fourier
domain, we are able to quantify the sarcomeres transla-
tional periodicity across all directions in the spatial
domain.

Finally, the method proposed here for the calculation of
the SPD significantly improves our previous efforts
(McCain et al., 2014b; Wang et al., 2014). By normalizing
the energy of the periodic component to the total energy
of the sarcomeric a-actinin image, we estimate a signal-
to-noise ratio that is bound in the unit interval, a desirable
property for many machine-learning algorithms (Shamir
et al., 2010).

In conclusion, we have developed 11 metrics to charac-
terize the structural phenotype of primary and stem cell-
derived cardiomyocytes in a way that is biophysically
related to their functional proficiency (Feinberg et al.,
2012). Moreover, by engineering myocyte shape and tissue
architecture, we were able to generate a myofibrillogenesis
dataset that allows structural phenotyping of stem cell-
derived cardiomyocytes in an unbiased fashion and that
is largely robust to the choice of a specific machine-
learning strategy. Finally, while assessing the quality of
human pluripotent stem cell-derived myocytes remains
critical, to date, their maturation has been suboptimally
estimated (Mummery et al., 2012; Sheehy et al., 2014), as
healthy human myocytes are not readily available. Since
myofibrillogenesis is an extremely well-conserved physio-
logical process (Sissman, 1970), our method allows for a
quantitative characterization of myocytes maturation
that naturally overcomes this limitation.
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EXPERIMENTAL PROCEDURES

Substrate Engineering

Photolithographic masks bearing desired features were drawn in
AUTOCAD (Autodesk). UV light was shone through the mask
into a silicon wafer (Wafer World), previously spin coated with
SU-8 3005 photoresist (MicroChem). The wafer was then devel-
oped in propylene glycol methyl ether acetate (Sigma) and utilized
to cast polydimethylsiloxane (PDMS, Sylgard 184; Dow Corning;
10:1 ratio) stamps. Glass coverslips were also coated with PDMS
and treated for 8 min in the UV ozone cleaner before coming
into contact with PDMS stamps inked with fibronectin
(50 pg/ml; BD Biosciences).

Alternatively, coverslips were coated with polyacrylamide hydro-
gels (streptavidin-acrylamide/bis ratio 7.5/0.3%). To transfer fibro-
nectin islands, the hydrogel was dried (37°C, 10 min), brought into
contact with stamps inked with biotinylated fibronectin (Pierce),
and finally sterilized with UV exposure (15 min).

Primary Harvest

Ventricular myocytes were isolated from day 2 neonate Balb/c mice
and Sprague Dawley rats according to procedures approved by the
Harvard University institutional animal care and use committees.
Isolated ventricles were incubated in cold (4°C) 0.1% (w/v) trypsin
(USB) solution for approximately 12 hr. Ventricular tissue was
further exposed to serial treatments (2 min each) of 0.1% (w/v)
warm (37°C) collagenase type II (Worthington Biochemical) solu-
tion. Isolated rat and mouse cardiomyocytes were seeded onto en-
gineered substrates at a density of 10,000 and 20,000 cells/cm?,
respectively. Culture medium consisted of Medium 199 (Invitro-
gen) supplemented with 10% (v/v) heat-inactivated fetal bovine
serum (FBS), 10 mM HEPES, 20 mM glucose, 2 mM L-glutamine,
1.5 pl vitamin B12, and 50 U/ml penicillin for the first 48 hr. The
FBS concentration was then reduced to 2%.

Stem Cell Culture

hiCM and miCMs were kindly provided by Cellular Dynamics and
Axiogenesis (CorAt-iPS), respectively. Cells were cultured as per
manufacturers’ recommendations: hiCMs were seeded in the pres-
ence of vendor-provided plating medium; miCMs were positively
selected after plating onto 10 mg/ml fibronectin coated flasks. Af-
ter 72 hr, both cell types were dissociated with 0.05% trypsin-EDTA
solution (Invitrogen, 25200-072) and seeded onto the engineered
substrates at a density of 10,000 cells/cm?.

Immunocytochemistry and Imaging

At room temperature (RT), cells were treated with 4% paraformal-
dehyde and 0.05% Triton X-100 in PBS (v/v) for 10 min and
incubated with anti-sarcomeric o-actinin (A7811; Sigma) and
anti-fibronectin antibodies (F3648; Sigma) for 1 hr (1:200 dilu-
tion). Samples were further treated with DAPI (Invitrogen), Alexa
Fluor 633-conjugated phalloidin (A22284, Invitrogen), and Alexa
Fluor 488-conjugated goat anti-mouse IgG and Alexa Fluor 546-
conjugated goat anti-rabbit IgG secondary antibodies (Invitrogen)
for 2 hr at RT. Samples were imaged with a Zeiss LSM confocal
microscope (Carl Zeiss Microscopy) equipped with the EC Plan-
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Neofluar 40x/1.30 oil DIC M27 objective; 1024 x 1024 pixels
per image were acquired for a final pixel size of 160 nm.

Image Processing and Future Extraction

Preprocessing was performed with ImageJ/FIJI (Schindelin et al.,
2012). The tubeness (Sato et al., 1998) and Orientation] (Rezakha-
niha et al., 2012) plugins were used to highlight the filamentous
structure and calculate the orientations of foreground pixels,
respectively. MATLAB (Mathworks) was adopted for feature
extraction.

Orientational Order Parameter

The structure tensor method generated orientations {¢4,95,...,9n}
whose frequency of occurrence we plotted in a histogram, such
as in Figures 1Ci, 1Cii, and S3. The OOP was calculated using the
mean resultant vector from circular statistics (Berens, 2009)

0oP= % ‘Zi & )v (Equation 1)

where i = v/—1 is the complex unit, e is Euler’s number (~2.71), and
¥ is the jth orientation in {¢}1,95,...,9x}. The sum of unit vectors in
Equation 1 is bound by O (for a set of randomly oriented vectors)
and 1 (for a set of perfectly aligned vectors). Further, we fitted
the orientation histogram with the following linear mix of Von
Mises Distributions

explor cos(¥ — py)]
27l (01)

exp[d, cos(® — pi,)]
27y (62) ’
(Equation 2)

f(0; 11,01, 42, 02,7) =7 +(1-7)

where u;, and 6, , represent the localization and spread parame-
ters for the Z-disks and Z-bodies peak, respectively, v indicates
the fraction of orientations allocated into the Z-disk peak, and I,
is the modified Bessel function of order 0. We then sampled
1,000 orientations from the two fitted Von Mises probability den-
sity distributions and calculated OOP; and OOP;, for the Z-disk and
Z-body peaks, respectively. In addition, we introduced a weighted
version of the OOP: wOOP = v * OOP, that quantifies both the pres-
ence (y) and the alignment (OOP;) of the Z-disks in the image.

Sarcomeric Packing Density

To calculate the degree of spatial organization of sarcomeres, we
first considered the Fourier power spectrum P(u,v) of the prepro-
cessed sarcomeric a-actinin image I(x,y)

P(u,v)=|F(u,v)]

{F(u7 V)= // I(x,y)expli 2m(xu+yv)|dxdy” (Equation 3)
J Jr?

Equation 3 uses the Fast Fourier Transform algorithm to establish
a correspondence between the spatial domain of the image I(x,y)
and the Fourier domain where the power spectrum P(u,v) is
defined. The signal energy (Eror) was sampled and integrated
along 1,024 directions to obtain a 1D representation (I'(w)) that ex-
hibits periodic peaks (subscript p), in correspondence of spatial fre-
quencies that are integer multiple of o, modulated by an aperiodic
noise term (subscript ap).
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Eror = //ZP(u, v)dudy = /0“ |:w " P(w, 19)d0:| dw= AM[I‘(w)]du
(Equation 4)

Equation 4 states that the total energy in the image can be ex-
pressed integrating the 2D power spectrum P(u,v) or, alternatively,
through the integration of its 1D representation I'(w). To approxi-
mate this 1D function, we chose the relationships in Equation 5,
where fap is a decaying exponential and lA“,, is the sum of three
Gaussian peaks.

N T(w:8) =T (w:4,) + Tap(w: £4p)
v}—‘np(w;gap) =a exp(fw/h): gap:{avb} .
Tp(wig) =, avexp| = (0 =k wo)’ /bl &= {abiwokras

(Equation 5)

We fitted the function to the data using Matlab “Isqnonlin” func-
tion that uses the Trust Region Reflective algorithm (Coleman and
Li, 1996). With this approach, we were able to calculate (see
Equation 6) the sarcomere length the area under the periodic
component E, (or sarcomeric energy), as well as its ratio with the
total area (total energy), a quantity we named sarcomeric packing
density (SPD):

Ep:/f‘,,(w;fl,)dw
Jp
SPD=E, /Eror
SL=w,!

(Equation 6)

Machine Learning

The naive Bayes, neural network, and tree bagging classifiers were
implemented using Matlab built-in functions (see also Supple-
mental Information). Ten random iterations were seeded to ensure
that the results were stochastically robust. For the naive Bayes and
tree bagging classifiers, training was performed with a 10-fold
cross-validation test. For the neural network, we used 70%, 15%,
and 15% of the rpCMs dataset for the training, validation, and
testing phases, respectively.

Downloadable Content

The myofibrillogenesis dataset and the ImageJ code utilized in this
paper can be downloaded from the Disease Biophysics Group web-
site: http://diseasebiophysics.seas.harvard.edu/.
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Supplemental Information includes Supplemental Experimental
Procedures and four figures and can be found with this article on-
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