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Recent breakthroughs in pluripotent stem cell technologies have enabled a new class of in vitro systems for
functional modeling of human brain development. These advances, in combination with improvements in
neural differentiation methods, allow the generation of in vitro systems that reproduce many in vivo features
of the brain with remarkable similarity. Here, we describe advances in the development of these methods,
focusing on neural rosette and organoid approaches, and compare their relative capabilities and limitations.
We also discuss current technical hurdles for recreating the cell-type complexity and spatial architecture of
the brain in culture and offer potential solutions.
Introduction
Much of our current understanding of brain development and

function is based upon a long history of observational and func-

tional studies in a variety of animal models. These foundational

studies have revealed general features of vertebrate and

mammalian brain development that are shared across taxa,

especially early events of brain patterning and neuron genera-

tion. However, specific features of human brain development

and disease aremuch less understood. For example, of all mam-

mals, humans exhibit the largest encephalization quotient,

a measure of brain size that takes into account body size (Roth

and Dicke, 2005). Furthermore, according to some measure-

ments, the primate brain exhibits at least seven times the

neuronal density of that of a rodent brain (Herculano-Houzel,

2009). Thus, the uniqueness of the human brain seems to be a

product of a high neuronal density that is typical of primates,

along with further expansion of overall brain size. However, the

cell biological mechanisms leading to this dramatic neuronal

expansion are still unclear (Geschwind and Rakic, 2013; Somel

et al., 2013), and this field of research would benefit greatly

from in vitro models of human brain development.

Another area of research in need of a human model system is

the study of neurological disorders. Mental health disorders in

particular have seen a dismal rate of new therapies in the last

40 years, whichmany have argued is due to problems translating

findings from animals to the clinic (Matthews et al., 2005). An

illustrative example of this is the psychiatric disorder schizo-

phrenia. Many symptoms of this disorder, such a disorganized

thinking, delusions, speech difficulties, and cognitive dysfunc-

tion, are difficult to examine in mice because they disrupt quin-

tessentially human characteristics. Thus, more recent emphasis

has been placed on defects at the genomic, cellular, or network

level that may more likely translate from animal models to hu-

mans (Powell and Miyakawa, 2006). However, even at this level,

human-specific features are evident and have been suggested

to play a role in the disorder. For example, dendrite morphology

in humans is more complex than in mice, with increased

branching and larger spines (Defelipe, 2011), and this elaborate

morphology has been demonstrated to be disrupted in both

schizophrenia and autism (Penzes et al., 2011). These cellular

phenotypes could be studied in in vitro human models, which

would nicely complement existing animal models, the combina-
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tion of which could better inform development of future thera-

peutics.

In this Protocol Review, we will provide an overview of the

important discoveries that led to the current technologies

being used to model human brain development in vitro. We

will describe the key protocols, compare and contrast their

strengths and weaknesses, and highlight unique features that

make them important tools in this new era of human neurobi-

ology. Finally, we will describe current technical obstacles in

recapitulating in vivo phenotypes and explore possible solutions.

Overview of Mammalian Brain Development
Recent advances in understanding mammalian brain develop-

ment have been essential for developing stem cell-based tech-

niques aimed at reproducing developing brain tissue in vitro.

The vertebrate brain begins as a pseudostratified epithelial

sheet, the neuroepithelium (Price et al., 2011). This neural plate

bends and folds to eventually close and generate the neural

tube, which extends along the length of the developing embryo.

The neural tube then expands laterally at varying rates along

the anterior-posterior axis to give rise to various regions of the

CNS, including the spinal cord, the hindbrain and cerebellum,

the midbrain, and the forebrain, which in mammals gives rise

to the cerebral cortical hemispheres and striatum.

Because of its epithelial nature, the neural tube is composed of

apicobasally polarized neuroepithelial (NE) cells that surround a

central fluid-filled lumen, which will later become the brain ven-

tricles. After initial lateral expansion, NE cells transition to so-

called radial glia (RG), which maintain their epithelial characteris-

tics but become highly elongated as the tissue thickens (Bystron

et al., 2008). The thickening of the tissue occurs as a result of the

production of more differentiated cell types that migrate basally

outward. These cell types are generated from self-renewing

asymmetric divisions of RG which, in the mammalian cerebral

cortex, can result in direct generation of neurons, or the produc-

tion of intermediate transient amplifying populations that later

differentiate to neurons (Figure 1). Intermediate populations

include intermediate progenitors (IPs) and basal RG (bRG, or

outer RG) (Fietz et al., 2010; Hansen et al., 2010; Johnson

et al., 2015). bRG exhibit a relatively similar expression makeup

to RG (Betizeau et al., 2013; Fietz et al., 2012; Florio et al., 2015;

Pollen et al., 2015) but show heterogeneous morphologies (De
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Figure 1. Schematic of Neurogenesis in the
Mouse and Human Cerebral Cortex
In both humans and mice, radial glia are the neural
stem cells (NSCs) that generate more differenti-
ated daughter cells including neurons, intermedi-
ate progenitors, and basal radial glia. The radial
glia possess a long basal process that attaches to
the outer (basal) surface. Radial glia that reside in
the ventricular zone (VZ) divide at the apical sur-
face. Intermediate progenitors and basal radial glia
reside in the subventricular zone (SVZ). In humans
the SVZ is dramatically expanded with separation
into an inner and outer SVZ (ISVZ and OSVZ,
respectively). Neurons use the basal processes to
migrate through the intermediate zone (IZ) into the
cortical plate (CP). In humans, the CP is much
expanded compared with mice and the cortex
is highly folded with numerous gyri and sulci,
whereas the mouse brain is completely smooth.
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JuanRomero and Borrell, 2015), often lacking the apical connec-

tion.While RGmaintain the cell bodywithin a dense apical region

called the ventricular zone (VZ), IPs and bRG translocate their

cell bodies to a more basal territory termed the subventricular

zone (SVZ).

Importantly, these intermediate populations (IPs and bRG)

have been implicated in human brain expansion. The SVZ is

generally more elaborate in larger-brainedmammals such as fer-

rets, sheep, cats, and apes (De Juan Romero and Borrell, 2015),

and it is separated into an inner and an outer SVZ (ISVZ and

OSVZ, respectively). The OSVZ is completely absent in rodents

(Figure 1), making it impossible to study formation of this progen-

itor-rich zone in mouse models. Furthermore, humans exhibit

increased numbers of progenitors within the OSVZ compared

with other mammals (Reillo et al., 2011), suggesting that human

IPs are expanded within this zone.

Once neurons are produced, they must migrate to their proper

locations. Neurons generated within the cortex rely on the long

basal fascicle of the RG as a guide (Figure 1) to translocate radi-

ally (Evsyukova et al., 2013) from the VZ or SVZ through a cell-

poor region termed the intermediate zone (IZ) to find their final

resting place within the outer cortical plate (CP). The earliest-

born neurons form an outer layer termed the preplate, which

helps guide incoming neurons. Subsequent waves of neurons

position themselves in an inside-out manner with the deepest

layers representing earlier-born neurons while more superficial

layers are composed of later-born neurons. In addition to these

excitatory neurons, there are several interneuron types that

modulate network dynamics in the adult brain and are thought

to be key to development of a number of neurological disorders
such as epilepsy, autism, and schizo-

phrenia (Marı́n, 2012). These neurons are

generated predominantly by the ventral

forebrain and must migrate long dis-

tances tangentially around the ventricle

and through the cortex to eventually inte-

grate within the CP. Upon reaching their

target location and even during migra-

tion, neurons extend axons, often over

long distances, to target other neurons

and begin forming a rudimentary neural
network. These connections are made even before incoming

stimuli and are thus intrinsically patterned, only later undergoing

stimulus-driven remodeling (Sur and Leamey, 2001).

History of Neural Differentiation Methods and the
Evolution of Current Techniques
Early Neural Cell Cultures

The first neural cultures were performed over a century ago.

Ross Granville Harrison generated cultures from frog embryo ex-

plants in vitro and observed remarkable outgrowths of migrating

neurons (Harrison, 1907). This seminal work suggested the pos-

sibility that neurons could be isolated from fetal or adult brains

and cultured for in vitro examination (Millet and Gillette, 2012).

Decades later, careful determination of culture conditions, media

formulations, and growth factor supplementation allowed long-

term culture of various neuron types, such as hippocampal,

cortical, and cerebellar neurons (Brewer, 1995). While these

studies allowed careful observation of neuronal function, and

even network formation (Potter and DeMarse, 2001), the study

of neurogenesis in vitro has been a more recent development.

Even though the term did not yet exist, neural stem cells

(NSCs) were first observed by Wilhelm His at the end of the

19th century (His, 1889) with detailed descriptions of mitotic cells

at the ventricular surface of the human cortex, which led him to

conclude that neurons are generated at the ventricular surface

and later migrate to the outer pial surface. Santiago Ramón y Ca-

jal subsequently described the morphological features of what

would later be termed radial glia (Rakic, 2003; Ramón y Cajal,

1909), and seminal work from Pasko Rakic identified the RG

basal process as a guide for neuronal migration and positioning
Cell Stem Cell 18, June 2, 2016 737
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(Rakic, 1972, 2003). We now know that His had enormous fore-

sight, because it wasn’t until the early 2000s that solid evidence

proved that RG are the source of neurons and glia in the devel-

oping brain (Malatesta et al., 2000; Noctor et al., 2001; Tamamaki

et al., 2001).

Sally Temple reported the first culture of isolated NSCs in

1989, showing that embryonic rat forebrain progenitors pro-

duced both neurons and glia in culture (Temple, 1989). This

work began a period of intense investigation of various NSC

types in vitro, isolated from different regions of both the embry-

onic (Lendahl et al., 1990) and adult (Reynolds and Weiss, 1992)

CNS. Because of their ability to generate a variety of brain cell

types, it became clear that cultured NSCs held enormous

potential not only for basic discovery, but also for therapeutic

possibilities (Horner and Gage, 2000). However, further careful

characterization revealed that isolated NSCs in culture exhibited

important differences from their in vivo counterparts, most

notably an inability to recapitulate the entire range of neural line-

ages including intermediate amplifying populations (Conti and

Cattaneo, 2010). Thus, although the therapeutic potential is still

strong, the fidelity of modeling the developing brain in vivo with

isolated NSCs is lacking.

As one might imagine, intact cultures of neural tissue, rather

than isolated cells, have been able to better recapitulate the ar-

chitecture of the developing brain. Cultures of intact CNS tissue

were first performed with pieces of the embryonic chick CNS

(Hoadley, 1924; Tansley, 1933; Waddington and Cohen, 1936),

which displayed the remarkable ability to develop in vitro to

form histologically intact early retinal tissue. Decades later, ‘‘or-

ganotypic’’ cultures of brain slices (Crain, 1966) became a highly

valuable tool that allowed the observation of cellular behaviors

within the context of a histologically intact tissue (Humpel,

2015). Such organotypic slice cultures are still heavily used today

to investigate species-specific differences in brain development

and neurogenesis (Lui et al., 2014).

Although slice cultures provide an important tool for descrip-

tive analyses of brain development in a number of species,

including humans, they can be difficult to acquire and the po-

tential for functional genetic studies is limited. Instead, a sys-

tem for recapitulating histologically intact tissue from individual

cells would provide a tool to both perform functional studies

and allow the faithful reconstruction of tissue development.

The first studies of brain histogenesis from isolated cells

were performed during the 1960s and 1970s when dissocia-

tion-reaggregation studies flourished (Garber, 1972; Garber

and Moscona, 1972; Ishii, 1966). These experiments were per-

formed primarily with isolated cells from embryonic chick tis-

sues, which had previously displayed the remarkable ability

to self-organize upon reaggregation and transplantation to

the chick chorioallantoic membrane (Moscona and Moscona,

1952). This ability was demonstrated for a large number of tis-

sues including kidney, liver, limb bud, skin, and various regions

of the CNS. Indeed, the first description of self-organizing NE

cells into tissues resembling the neural tube, so-called neural

rosettes, were described in these early studies with tissue frag-

ments (Tansley, 1933) and reaggregates (Moscona, 1957).

As we will discuss, neural rosettes are now a vital member of

the current toolbox of in vitro methods in developmental

neurobiology. However, it took another important leap in
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stem cell biology to make them applicable to human neurobi-

ology.

Neural Differentiation from Human Pluripotent Stem

Cells

The derivation of the first human embryonic stem cell (ESC) lines

in 1998 by Thomson et al. suddenly provided a pluripotent start-

ing point to recapitulate embryonic development and derive a

variety of tissue cell types (Thomson et al., 1998). Another leap

came with the discovery of reprogramming factors to produce

induced pluripotent stem cells (iPSCs), which could be gener-

ated from a variety of adult somatic cell types (Takahashi and Ya-

manaka, 2006). This technology opened the door to pluripotent

stem cells (PSCs) from patients with genetic disorders, allowing

the in vitro study of disease pathogenesis. Finally, the recent

boom in genome editing technologies, such as CRISPR-Cas9

(Doudna and Charpentier, 2014), has allowed precise genetic

manipulations to introduce or correct disease-associated muta-

tions (Hockemeyer and Jaenisch, 2016), in turn allowing accu-

rate functional analyses. It is fortuitous that these three technol-

ogies have been developed within such a short time of each

other. Their convergence has provided the vital tools now allow-

ing the generation and functional study of developing human

brain tissues entirely in vitro.

Although neural rosettes were initially generated from isolated

cells in early reaggregation studies (Moscona, 1957), the first

derivation of human neural rosettes from ESCs was performed

in 2001 (Zhang et al., 2001) (Figure 2). Zhang et al. showed

that spontaneously differentiating aggregates of PSCs, called

embryoid bodies (EBs), could be directed toward a neural line-

age and plated on coated dishes to generate clusters of NE cells

that self-organized to form rosettes. These rosette formations

resemble features of the embryonic neural tube, displaying

epithelial characteristics and surrounding an apical lumen.

Furthermore, rosettes better recapitulate the in vivo properties

of RG, as they generate intermediate populations and even a

rough organization of progenitor zones similar to the VZ and

SVZ (Edri et al., 2015; Shi et al., 2012). Under specific conditions,

these rosettes can even be propagated and expanded (Elkabetz

et al., 2008; Koch et al., 2009), an important step in functional or

high-throughput studies.

Another important foundational study came from Ying et al. in

2003 (Figure 2) with the description of a protocol to differentiate

ESCs to neural precursors in the complete absence of serum,

growth factors, or other inductive signals (Ying et al., 2003),

demonstrating the remarkable ability of PSCs to spontaneously

acquire neural identities due to autocrine signaling. Modification

of this method enabled the generation of dorsal forebrain pro-

genitors capable of generating cortical neurons with the same

temporal pattern as that seen in vivo (Gaspard et al., 2008).

The combination of the EB-derived rosette approach and the

absence of serum described in these two earlier studies allowed

the establishment of the so-called SFEB (serum free culture of

embryoid bodies) method (Watanabe et al., 2005) (Figure 2). Wa-

tanabe et al. demonstrated that EBs cultured under serum-free

conditions, but with the addition of specific inductive signals,

could generate forebrain neural precursors when plated on

coated dishes. The further development of this method, termed

SFEBq, in the same laboratory allowed the formation of remark-

ably large rosettes when these aggregates were plated on



Figure 2. Timeline of Recent In Vitro Methods of Neural
Differentiation
A simplified representation of the recently developed in vitro methods for the
generation of neuronal tissue from human and mouse PSCs. For details of
individual protocols, please see main text and Table 1.
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coated dishes and allowed to differentiate further (Eiraku et al.,

2008). When this method was applied to human cells in the

same study, the resulting rosettes became quite large, display-

ing elongated lumens and thick apicobasal architecture. Indeed,

because of the initially long period of 3D development, it seems

that the tissues do not completely flatten upon plating. Thus, the

SFEBq method pioneered and further developed by the group

of Yoshiki Sasai can be thought of as existing somewhere in

between 2D and 3D cultures.

The SFEBq approach has proven highly advantageous for

the further development of a variety of brain regions, including

adenohypophysis (Suga et al., 2011), retina (Eiraku et al.,

2011), cerebellum (Muguruma et al., 2015), forebrain (Kadosh-

ima et al., 2013), and hippocampus (Sakaguchi et al., 2015).

Furthermore, this method can be applied to the study of human

neurological conditions because SFEBq aggregates can be

generated from iPSCs (Mariani et al., 2012). Notably, a further

modification of this method with reaggregation after plating dis-

played large rosettes in 3D floating culture that recapitulate the

developing forebrain remarkably well (Mariani et al., 2015) .

Although neural induction was previously shown to occur in

the absence of serum or morphogens, the efficiency of differen-

tiation required improvement. A large body of work, primarily in

X. laevis embryos (Muñoz-Sanjuán and Brivanlou, 2002), has

shown that germ layer specification is highly dependent on the

TGFb superfamily, which signals through a number of down-

stream effectors called SMADs. Non-neural identities are pro-

moted by TGFb members, particular Bmp and Nodal/Activin

signaling (Pauklin and Vallier, 2015). Based on these observa-

tions, Chambers et al. devised an approach for efficient produc-

tion of neural rosettes directly from PSCs by applying dual-

SMAD inhibition to the cultures (Chambers et al., 2009), thus

bypassing the need for an intermediate EB stage (Figure 1).

This method was further modified with the addition of retinoids,

which improved the efficiency of specification toward a forebrain

identity (Shi et al., 2012).

The Development of Brain Tissues Entirely in 3D: Brain

Organoids

The first entirely 3D neural culture displaying intact tissue archi-

tecture was accomplished in an elegant study by Eiraku et al. in

2011 (Figure 2) with the generation of self-organizing optic cups

from human PSCs (Eiraku et al., 2011). This method built upon

the previous SFEB and SFEBq methods, but by combining an

alteredmedia formulation to promote retinal identity withmainte-

nance in floating culture rather than plating on coated dishes,

the tissues that formed recapitulated the developing retina with

remarkable fidelity. This study provided the first indication that

neural tissue maintained in 3D floating culture could self-orga-

nize and develop histologically accurate tissue architecture.

While methods for neural differentiation from hPSCs were

booming, a new field was emerging in an area of biology that

at the time was quite disparate from neurobiology: the field of

so-called organoids (Huch and Koo, 2015; Lancaster and Kno-

blich, 2014a). In a seminal study from the laboratory of Hans

Clevers, Sato et al. reported that adult intestinal stem cells could

generate remarkably organized 3D tissues in vitro that resem-

bled the intestinal crypt and epithelium (Sato et al., 2009). The

key discovery was the finding that embedding cells in a support-

ive extracellular matrix gel, called Matrigel, provided the 3D
Cell Stem Cell 18, June 2, 2016 739



Figure 3. The Trade-Off between Homogeneity and Complexity
(A) A scale showing the relationship of the complexity of the cells/tissue produced by individual protocols and the homogeneity of the cells/tissues generated. For
individual methods, please seemain text. The individual cells/tissues are not shown to scale. The color scheme does not represent the exact number of cell types.
(B) Cartoons depicting individual regions of cortical tissue from various methods demonstrating their relative sizes. Traces were performed on actual images from
the following studies in left to right order: Neural rosettes: Figure 3d-i of Chambers et al. (2009) and Figure 1d of Kirwan et al. (2015); SFEBq: Figure 6N of Eiraku
et al. (2008); cortical spheroids: Figure 2a of Pasxca et al. (2015); forebrain organoids: Figure 3A of Kadoshima et al. (2013); cerebral organoids: Figure 4 of Karus
et al. (2014) (this is an image of a cerebral organoid cultured as in the original Lancaster et al., 2013). Images chosen for the tracing were at similar stages of
development based on timing and thickness of the VZ compared to outer regions. For those with multiple matched images, the largest was used for tracing. All
images are scaled to one another; scale bar in all images represents 100 mm.
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context for the self-organization of these cells into organized

epithelia with typical apicobasal polarity. Subsequent studies

for a variety of epithelial organs, such as stomach (Stange

et al., 2013), liver (Huch et al., 2013), lung (Dye et al., 2015),

and kidney (Takasato et al., 2016), have demonstrated a similar

capacity for Matrigel to promote this self-organization in various

contexts.

The realization that Matrigel could provide a supportive matrix

for epithelia, and the fact that the brain develops as an epithe-

lium, was an important step in the development of brain organo-

ids (Lancaster et al., 2013) (Figure 2). Brain organoids arose from

the combination of an EB approach in the absence of serum or

growth factors and embedding in Matrigel. Because of the lack

of inductive signals, the resulting tissues exhibited a variety of

brain regional identities including hindbrain, midbrain, forebrain,

and even retinal tissues. Due to this broad regionalization, these

tissues were termed cerebral (from the Latin ‘‘of or relating to the

brain’’) organoids, but here we also refer to them as whole-brain

organoids to avoid confusion with region-specific tissues such

as cerebral cortical or forebrain organoids. Finally, the addition

of later agitation in the floating cultures promoted formation of

much larger tissues than previously described. Individual orga-

noids could reach up to 4 mm in diameter with large (>1 mm in

length) continuous brain lobes (Figure 3B) containing fluid-filled

cavities that resembled ventricles rather than the small neural-

tube-like lumens seen in rosettes.

Likely because of their increased size, dorsal forebrain re-

gions of cerebral organoids were also shown to exhibit highly
740 Cell Stem Cell 18, June 2, 2016
expanded progenitor zones, even displaying a separate OSVZ,

similar to human progenitor zone organization (Lancaster et al.,

2013; Qian et al., 2016). Furthermore, neurons showed proper

localization to the basal surface and even exhibited an organiza-

tion reminiscent of an IZ and preplate, the precursor to the CP.

This remarkable organization was also observed in forebrain-

specific organoids generated by Kadoshima et al., who used

the previously described SFEBqmethod with forebrain inductive

signals in conjunction with continued 3D culture and addition of

dissolvedMatrigel (Kadoshima et al., 2013) (Figure 2). In both ce-

rebral and forebrain organoids, the support provided by Matrigel

seems to be a key factor for building structured brain elements.

Matrigel has also been shown to promote formation of neuroepi-

thelial cysts directly from human PSCs in a very short time frame

which could differentiate to retinal pigmented epithelium (Zhu

et al., 2013) and even patterned spinal cord (Meinhardt et al.,

2014).

These whole-brain and regionally restricted organoids have

recently been further modified to give rise to specific subregions

(Figure 2). The combination of the strong neural inductive capa-

bility of dual-SMAD inhibition with a SFEB-type approach was

recently shown to generate tissues composed of many large ro-

settes within a 3D context that were capable of generating the

various neural and glial identities of the dorsal cortex (Pasxca
et al., 2015). Along these lines, Qian et al. performed dual-

SMAD inhibition in combination with the cerebral organoid

approach of Matrigel embedding and agitation (Qian et al.,

2016), which similarly led to pure forebrain tissues, rather than
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the heterogeneous regional identity of the original protocol. The

authors also demonstrated the ability to derive purer midbrain

and hypothalamic tissues using other combinations of inductive

signals. But perhaps the most promising modification of the or-

ganoid method described in this study was the use of 3D printed

mini-bioreactors for scaled-up production of neural organoids.

The scale of production of brain organoids has been a limiting

factor in applying this method to drug discovery, but this

approach is a step toward making drug testing in regionally

specified brain organoids more feasible.

Capabilities and Limitations of Current Techniques
Each of the describedmethods has certain limitations in addition

to their many benefits. When deciding which method to use, one

must consider multiple variables such as technical consider-

ations, the timescale required for the particular method, and

the specific biological question. We will consider each of these

aspects for the three major approaches described here: 2D neu-

ral rosettes, organoids or spheroids for individual brain regions,

and whole-brain organoids.

Technical Considerations

While all three approaches are feasible in most tissue culture

(TC) laboratories, some require more specialized equipment or

complicated culture conditions. The first major hurdle for many

labs interested in using these techniques is establishing human

PSC culture as a routine practice. Human PSCs are notoriously

finicky, but improved protocols, for example feeder-free ap-

proaches (Chen et al., 2014; Ludwig et al., 2006), have made

the process much less laborious. Nonetheless, a laboratory

already proficient in human PSC culture can more easily imple-

ment any of the described methods, often with minimal equip-

ment costs and low activation energy.

Rosettes require the least in terms of equipment as they can

be grown with standard TC equipment and good sterile culture

technique (Table 1). Particularly the dual-SMAD direct differenti-

ation approaches (Chambers et al., 2009; Shi et al., 2012) are

quite straightforward and have a high efficiency of generating

neural rosettes. Furthermore, these methods do not contain

any 3D steps and therefore do not require special low-attach-

ment dishes, or manual isolation of rosettes, unlike EB-derived

rosettes (Elkabetz et al., 2008; Koch et al., 2009; Zhang et al.,

2001).

3D tissues require more specialized TC conditions (Table 1)

and in order to maintain their 3D nature, these tissues must be

grown on low-attachment plates or dishes (Eiraku et al., 2008).

Furthermore, the majority of those methods that maintain the

culture entirely in 3D even at later stages require a method to in-

crease oxygen exchange. This can be accomplished by culturing

in a high oxygen environment (40%), which requires a special

incubator and access to O2 lines (Eiraku et al., 2008; Kadoshima

et al., 2013; Sakaguchi et al., 2015), or by agitation, either in a

spinning bioreactor or orbital shaker (Lancaster et al., 2013; Lan-

caster and Knoblich, 2014b; Qian et al., 2016). This requires

equipment in addition to the standard TC set up. Finally, many

3D methods also require manual steps such as the dissection

of regions in the retinal organoid approach (Eiraku et al., 2011),

the manual isolation and aggregation culture of rosettes that

was recently developed (Mariani et al., 2015), and the embed-

ding of cerebral organoids in Matrigel droplets (Lancaster
et al., 2013; Lancaster and Knoblich, 2014b). These can be tech-

nically challenging, but are typically feasible with practice.

Timing

As a rule, differentiation protocols are much accelerated when

performed with mouse PSCs compared with human PSCs

(Table 1). The dramatic difference in timing between human

andmouse can be seen in the finding that, regardless of method,

mouse cells generate polarized NE cells within 4–5 days (Eiraku

et al., 2008) and the first neurons are generated as early as 5 days

after beginning differentiation (Ying et al., 2003). In contrast,

methodswith human cells require 7–10 days to generate NE cells

(Chambers et al., 2009; Zhang et al., 2001) and the first neurons

are not visible until approximately 20 days (Lancaster and Kno-

blich, 2014b; Shi et al., 2012). This timing does not seem to be

dependent on method as this trend is seen in both 2D and

3D methods. Instead, there seems to be strong intrinsic time

keeping of the cells during developmental events. Indeed,

when transplanted into the mouse brain, human PSC-derived

neurons exhibited protracted maturation despite their surround-

ing (Espuny-Camacho et al., 2013; Maroof et al., 2013; Nicholas

et al., 2013), indicating a cell-intrinsic timing reflecting human

neurodevelopmental neoteny.

Thus, neural tissues can be generatedmuch faster withmouse

PSCs than human PSCs. However, often the use of human PSCs

is desirable particularly for modeling human-specific features or

utilizing patient-derived iPSCs. The main consideration when

contemplating timing of human-derived methods is what stage

of neural development is most important for the question at

hand. For example, studies of tissue patterning could be per-

formed as early as 10–15 days, while neuronal studies must be

performed after 30–40 days, and even up to 100 days in the

case of synaptic maturation (Kirwan et al., 2015). This timing is

quite comparable to that seen in the human fetal brain, where

neural induction begins at day 12 with primitive streak formation,

neurogenesis begins to escalate at 40–50 days, and synapto-

genesis begins at approximately 80–90 days (Silbereis et al.,

2016). Furthermore, expression analyses have demonstrated

the ability of a variety of methods to recapitulate first trimester

human fetal brain development (until 8–10 weeks of gestation)

(Camp et al., 2015; Mariani et al., 2012; van de Leemput et al.,

2014) and even up to mid-gestation (19–24 weeks gestation)

(Pasxca et al., 2015; Qian et al., 2016).

The Trade-Off between Homogeneity and Complexity

Current methods for human neural differentiation in vitro span a

wide range of complexity (Figure 3A). At one end of the spec-

trum, monolayers of unpolarized NSCs are the least complex,

but most homogeneous (Pollard et al., 2006). These cells

represent a fairly pure population of a single identity that has

limited differentiation potential. However, because of their ho-

mogeneity, these NSCs are a useful system for high-throughput

screening (Garavaglia et al., 2010; Kim et al., 2012).

Neural rosettes are also cultured in 2D but with increasing

complexity. Because these are polarized epithelial cells, they

self-organize to form a characteristic radial arrangement. This

arrangement allows for better recapitulation of neurodevelop-

mental events with intermediate populations that even migrate

to the basal edge of the rosette, producing a zone reminiscent

of the SVZ (Shi et al., 2012). The strong interdependence of

structure and function is demonstrated here by the fact that
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Table 1. Overview of Current Methods

Result

EB

Step? Growth Factors or Inhibitorsa
Entirely

3D? Protocol Overview

Technical

Requirementsb Timingc Reference

Neural rosettes yes FGF2 no ESC/EBs/plating/ rosettes manual isolation 7 days Zhang et al., 2001

Neural progenitors (NPs) no none no ESC/NPs none 4 daysx Ying et al., 2003

Forebrain NPs yes Wnt inh., Nodal/Act/TGFb inh. no ESC/EBs/plating/ forebrain NPs none 10 daysx Watanabe et al., 2005

Propagating rosettes yes FGF2, SHH, FGF8, AA, BDNF no ESC/EBs/plating/ rosettes/propagation manual isolation 12–16 days Elkabetz et al., 2008

Cortical NPs no cyclopamine no ESC/ cortical NPs none 10–14 days Gaspard et al., 2008

Large forebrain rosettes yes Wnt inh., Nodal/Act/TGFb inh.,

BMP inh.

no ESC/EBs/plating/ forebrain rosettes none 10 daysx,
46 days

Eiraku et al., 2008

Neural rosettes no Nodal/Act/TGFb inh., BMP inh. no ESC/neural rosettes none 11 days Chambers et al., 2009

Propagating rosettes yes FGF2, EGF no ESC/EBs/plating/ rosettes/propagation manual isolation 8–15 days Koch et al., 2009

Retinal organoids yes none yes ESC/EBs/optic cup /retinal organoids manual dissection,

40% O2

24 daysx Eiraku et al., 2011

Adenohyphysis

organoids

yes Hh agonist, additional

depending on endocrine

types

yes ESC/EBs/Rathke’s pouch pituitary

progenitors

40% O2 21–33 daysx Suga et al., 2011

Neural rosettes no Nodal/Act/TGFb inh., BMP inh.,

retinoids

no ESC/neural rosettes none 15 days Shi et al., 2012

Large forebrain rosettes yes FGF2, Wnt inh., Nodal/Act/

TGFb inh., BMP inh.

no iPSC/EBs/plating/ forebrain rosettes none 45–50 days Mariani et al., 2012

Neuroepithelial cysts no none yes ESCs/NE cysts/retinal pigment epithelium;

or spinal chord

none 5 days Zhu et al., 2013;

Meinhardt et al., 2014

Whole-brain organoids yes none yes ESC/iPSC/EBs/Matrigel embed/

agitation/ brain organoids

manual embedding,

agitation

30–40 days Lancaster et al., 2013

Forebrain organoids yes Nodal/Act/TGFb inh., Wnt inh. yes ESC/EBs/forebrain organoids 40% O2 42 days Kadoshima et al., 2013

Cerebellar organoids yes Nodal/Act/TGFb inh., FGF2,

FGF19, SDF1

yes ESC/EBs/cerebellar organoids none 35 days Muguruma et al., 2015

Cortical spheroids yes Nodal/Act/TGFb inh., BMP inh.,

FGF2, EGF, BDNF, NT3

yes iPSC/EBs/cortical spheroids none 43 days Pasxca et al., 2015

Aggregates of large

forebrain rosettes

yes BMP inh., Wnt inh., FGF2, EGF no iPSC/EBs/plating/ forebrain rosettes/

floating aggregates

manual isolation 42–44 days Mariani et al., 2015

Hippocampal-Choroid

plexus organoids

yes Wnt inh., Nodal/Act/TGFb inh.,

Wnt(CHIR), BMP4

yes ESC/EBs/Hippocampal-Choroid plexus

organoids

40% O2 35–42 days Sakaguchi et al., 2015

Forebrain, midbrain, or

hypothalamic organoids

yes Nodal/Act/TGFb inh., BMP inh.,

additional depending on region

yes iPSC/EBs/Matrigel embed/scaled-up

agitation/ regional organoids

manual embedding,

3D printed agitation

in multi-well

28 days Qian et al., 2016

Methods are listed chronologically. Inh., inhibition; Act, Activin; AA, ascorbic acid.
aFactors in neural induction or regional specification are listed.
bTechnical requirements beyond standard sterile TC culture.
cTiming from human PSCs (except x, which indicates mouse PSC timing) to achieve the result listed in the table.
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NSCs in this context have increased differentiation capacity and

can better recapitulate the lineage of the developing brain.

The SFEBq-based methods developed by the Sasai group

represent a substantial elaboration of 2D rosette methods, and

they can be rather thought of as 2.5D. Although these are

plated on coated dishes, the tissues do not entirely flatten and

maintain a high level of complexity with more extended

apical surfaces (Figure 3B). The derived tissues exhibit an

architecture that is remarkably similar to the early forebrain, dis-

playing organized progenitor zones. In contrast to neural ro-

settes, these zones are well maintained over time and neurons

remain within the tissue rather than migrating away throughout

the dish.

3D methods are at the far end of the spectrum; they are

highly complex, but also more heterogeneous compared with

2D methods (Figure 3A). The spontaneous nature of their self-

organization results in variability in morphology between various

areas of the tissue (Eiraku et al., 2011; Lancaster et al., 2013) and

between different batches (Lancaster and Knoblich, 2014b).

Despite this heterogeneity, individual regions show expanded

tissue architecture not seen with 2D methods (Figure 3B).

However, high heterogeneity inherently leads to issues with

reproducibility, making it difficult to perform high-throughput

screening with a robust and reliable readout. Thus, these

methods are typically utilized for testing specific hypotheses

where careful morphological analyses can be performed.

For example, such an approach has been applied to the study

of microcephaly (Gabriel et al., 2016; Lancaster et al., 2013),

revealing a dramatic reduction in overall organoid size and

reduced neurons and progenitors. Further analyses demon-

strated premature neuronal differentiation and depletion of RG

progenitors. More recently, forebrain tissues based on the

SFEBq approach have been utilized for the study of idiopathic

autism (Mariani et al., 2015). In this case, forebrain aggregates

derived from patient iPSCs displayed overproduction of inhibi-

tory interneurons. Finally, very recent studies with brain organo-

ids have revealed a strong effect of Zika virus infection on neural

progenitor survival (Cugola et al., 2016; Dang et al., 2016; Garcez

et al., 2016; Qian et al., 2016). In all of these examples, the phe-

notypes were quite dramatic and importantly lied outside the

normal phenotypic range of such 3Dmethods. Furthermore, pre-

vious animal model and clinical studies had hinted at potential

mechanisms that could be examined in organoids, allowing the

targeted analysis and identification of these phenotypes. Thus,

in the context of disease pathogenesis, 3D organoid approaches

are currently most useful for testing specific hypotheses under-

lying strong phenotypes.

The heterogeneity of organoids is not only dependent on the

3D nature of the culture method. In fact, the degree to which

the resulting tissue is restricted to a particular regional identity

is likely more influential. For example, the recently described

cortical spheroids are cultured entirely in 3D and yet display

remarkably homogeneous morphology with multiple cortical

rosette-like structures that are highly similar within a single

spheroid (Pasxca et al., 2015). Instead, whole-brain organoids

exhibit the highest level of complexity described to date, with

highly expanded regions of different identities (Lancaster et al.,

2013). However, identity determination varies from experiment

to experiment, and neural induction is not always complete,
with occasional non-neural identities forming (Camp et al.,

2015). This is likely due to the lack of exogenous inductive

growth factors. Furthermore, brain regional identity appears

spontaneously, leading to stochastic formation of various re-

gions in configurations that are unique to each individual

organoid.

Yet this patchwork of brain regions seems to be beneficial for

tissue architecture. For example, tangential migration of inter-

neurons from ganglionic eminence tissue to dorsal cortex has

been reported within a single whole-brain organoid (Lancaster

et al., 2013), which importantly recapitulates communication be-

tween these brain regions. Furthermore, neurons within organo-

ids can extend very long axons from one region to another

within the organoid, suggesting the intriguing possibility that

intrinsically patterned connectivity, such as that seen in the intact

developing brain, may be recapitulated in this context.

The balance between complexity and heterogeneity is an

important feature to consider when deciding which method to

use for a particular study (Figure 3A). A more homogeneous sys-

tem would be needed for screening approaches, and making

neural differentiation methods even more homogeneous will

be necessary to translate them to drug testing paradigms. 3D

methods are instead more suited to hypothesis testing that re-

quires a more accurate representation of the tissue. However,

these approaches can be used to perform disease modeling in

amore efficaciousmanner because targets of interest are in their

physiologically relevant context. Finally, the even more complex

whole-brain organoids are perhaps most suited to studies

requiring the presence of various brain regions, such as long-

range neuronal migration, or network formation between brain

regions. An ideal model system would be both complex in its

morphology and reproducible, thus coming as close to possible

to the in vivo situation. As we will discuss, perhaps future

technological advances will enable this ideal model (Figure 4).

Future Outlook: Technical Strategies to Advance
Models of Human Brain Development
Current Technical Obstacles

While individual methods develop different repertoires of brain

regional identities, they all have a similar technical hurdle, namely

the lack of overall spatial patterning of a developing brain in vivo.

None of the methods generate tissues that have the overall

shape of a developing human brain, and this is likely due to the

lack of embryonic body axes that would normally guide the

directionality of brain development. Whether in whole-brain or-

ganoids or isolated forebrain organoids, there are no anterior-

posterior or dorsal-ventral axes that remain continuous through

the organoid and pattern across the tissue. This is a serious lim-

itation, not only with regard to recapitulation of events in vivo, but

also because this deficiency is largely responsible for the hetero-

geneity and variability from organoid to organoid. Whereas

in vivo, any two brains look quite similar even from the outside,

two organoids do not. This heterogeneity can also prove chal-

lenging during analysis, as extra care needs to be taken in order

to ensure that the desired brain region is actually present in a

given organoid.

A second limitationconcerns later neural tissuematuration, and

particularly the organization of neurons as they reach the basal

surface of cortical tissues. While several 3D and 2.5D methods
Cell Stem Cell 18, June 2, 2016 743



Figure 4. High-Throughput Engineering of
Vascularized Organoids
A cartoon showing the potential technical im-
provements that would lead to highly reproducible
brain organoid cultures on a large scale. Organoids
might be grown in multi-well dishes or some
other large-scale system. Vasculature-like network
might be achieved by using degradable networks
for the constant supply of oxygen and nutrients.
Axial patterning could be accomplished with the
usage of patterning beads, either incorporated into
the organoid or as a part of the scaffold.
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have described remarkable morphologies of cortical progenitor

zones (Eiraku et al., 2008; Kadoshima et al., 2013; Lancaster

et al., 2013; Mariani et al., 2015; Pasxca et al., 2015), neurons fail

to generate key structures in cortical development. Specifically,

in vivo, neurons initially formadisorganized layer on the outer sur-

face called the preplate. However, subsequently born neurons

migrate into the preplate and cause it to split into the marginal

zone and the subplate, positioning themselves in a dense, radially

aligned band. This band is the early CP, and over time it thickens

with the addition of new neurons and forms the layers character-

isticof thecerebral cortex. The initial splittingandcondensationof

the CP has been shown to be necessary for subsequent layer for-

mation in vivo (Olson, 2014;Raki�cet al., 2006),whileCajal-Retzius

cells in the resultant marginal zone are necessary for proper in-

side-out layer formationand thedevelopment of six distinct layers

(Frotscher, 1998).

Remarkably, several 3D methods have demonstrated at least

rudimentary separation of early-born and late-born neurons into

deep and superficial layers (Kadoshima et al., 2013; Lancaster

et al., 2013; Pasxca et al., 2015; Qian et al. 2016). Perhaps the

most dramatic illustration of this was seen in cortical spheroids

(Pasxca et al., 2015) and forebrain organoids (Qian et al. 2016),

which showed a clear segregation of deep and upper layer neu-

rons into separate zones. This is striking given that this seemed

to occur in the absence of a marginal zone or subplate and

without preplate splitting and CP condensation. The lack of

these supportive zones, and even a lack of an IZ, raises ques-

tions as to how these neurons are able to self-organize into

discrete regions. It will be important to further examine the devel-

opment of these 3D systemswith particular attention to the radial
744 Cell Stem Cell 18, June 2, 2016
glial scaffold, the presence of guidance

cues, and later potential separation into

six discrete layers. Because neuronal

connectivity is determined by relative po-

sition within these layers (Harris and

Mrsic-Flogel, 2013), recapitulation of this

organization would be important in future

modeling of network formation.

A final major limitation, for 3D models

specifically, is the inadequate supply of

nutrients and oxygen to the central re-

gions of the tissue. Because cells farther

than 200–400 mm from the surface of brain

tissue fail to receive enough nutrients

through diffusion (Rambani et al., 2009),

healthy tissue is limited to the surface of
organoids (Lancaster et al., 2013). This has effects on everything

from overall tissue patterning to later expansion of individual

brain regions. Indeed, this may contribute to the observation in

3D systems of deep and superficial zones, but not six discrete

layers. In the human cortex, these layers span over 2 mm (Defe-

lipe, 2011), a length well beyond the diffusion limit. Thus, the lack

of nutrients deep within the tissue will be an important hurdle to

overcome in the future.

Expectations for Future Technological Advances

We expect that the years to come will see a coming together of

two fields: tissue engineering and organoids (Yin et al., 2016).

Likely this will impact organoids for a variety of organs, but

specifically for the brain, such a synergy could provide significant

advantages. With regard to shape and the lack of body axes,

scaffolds could provide the necessary structure to pattern

the organoids and at the same time deliver morphogens in a

spatially restricted manner (Carlson et al., 2016; Langer and Va-

canti, 2016; Pan and Ding, 2012). Alternatively, beads releasing

patterning factors could be implanted into organoids to provide

these cues (Lee et al., 2011). In thisway, external bodyaxes could

beprovided thatwould help shape theorganoid and reproducibly

generate continuous brain regions across the organoid (Figure 4).

Another future advance could include co-cultures of brain

organoids with supportive non-neural types. In vivo, later neural

development relies on increasing numbers of extra-CNS cell

types. Initially, the brain develops without vasculature, but at

around 3 weeks of development (Bauer et al., 1992), blood ves-

sels begin to penetrate the developing brain from the overlying

pia, or meninges, a non-neural membrane that provides not

only vasculature but also the basement membrane to which
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RG attach their basal processes. This attachment is thought to

be key to the maintenance of the radial glial scaffold for proper

neuronal migration (Haubst et al., 2006). Thus, this key non-neu-

ral membrane is vital for both vascularization and neuronal

migration. Perhaps ectopic co-cultures of meninges with brain

organoids would not only support the RG scaffold, but also allow

vascularization of brain organoids.

The lack of vascularization has been an issue for the field of tis-

sue engineering even before the first organoids were established

(Rouwkema et al., 2008). As a result, bioengineers have devised

inventive approaches to mimic vascular networks entirely in vitro

(Auger et al., 2013). For example, endothelial cells can be

cultured in microfluidic channels and will line the inner surface

of the channels just as they would within a blood vessel (Schimek

et al., 2013; van Duinen et al., 2015). Furthermore, microfluidic

channels made from degradable materials, such as collagen

gels, allow vascular remodeling and the growth of new vessels

de novo (Rouwkema and Khademhosseini, 2016). Perhaps

the co-culture of an organoid on such a degradable vascular

network would allow angiogenesis of the organoid completely

in vitro (Figure 4).

Although co-cultures with vascular cells, either derived from

meninges or as individual endothelial cells, may be capable of

forming tubular networks within organoids, there remains the

issue of nutrient supply. Without a source of blood or blood-sub-

stitute as well as a means to pump the fluid through the network,

the tissue would still suffer from nutrient and oxygen depletion.

Thus, an alternative approach may be transplantation into an

animal host. Ectopic transplantations have been performed

with liver organoids with quite high success (Takebe et al.,

2013). This powerful combination of an in vitro human organoid

and an in vivo animal environment led to perfused tissues that

were able to secrete factors into the host blood stream. Perhaps

such an ectopic transplantation approach would enable brain or-

ganoids to mature to later stages of neural development when

questions regarding neuronal migration or maturation could be

examined.

Finally, perhaps the greatest application of these in vitro

methods will be for disease modeling and drug discovery. How-

ever, the current scale of production, particularly for 3D organo-

ids, is highly limiting and reproducibility remains an issue.

Reliable disease modeling and identification of drug-induced

phenotypes will require both highly reproducible and scaled-up

systems. Notably, both these issues have very recently been

addressed with the work from Qian et al. demonstrating the

use of 3D printed bioreactors that can easily be scaled up

(Qian et al., 2016). The combination of higher throughput with

dual-SMAD inhibition leads to reproducible forebrain organoids

that hold great promise for future therapeutic avenues.

Conclusions
Modern developmental neurobiologists are in the fortuitous posi-

tion of doing research at a time of rapid technological advance-

ment. As a result, extraordinary progress has been made in

recent years in the development of in vitromodels of human brain

development. Since the first neural 3D systemwas described for

the retina 5 years ago (Eiraku et al., 2011), at least eight new neu-

ral organoid methods (Table 1) have been developed, ranging

from isolated brain regions (i.e. cortical spheroids; Pasxca et al.,
2015) to larger regional identities (forebrain organoids; Kadosh-

ima et al., 2013; Mariani et al., 2015) and whole-brain organoids

(Lancaster et al., 2013). While these methods span a range of

complexity, they also display an opposing range of homogeneity

and reproducibility. This trade-off is an important consideration

for researchers contemplating using these approaches, and

the choice depends highly on the scientific question at hand.

However, we are hopeful that future endeavors will enable 3D

model systems that recapitulate both the complexity of the hu-

man brain and its reproducible formation. If this can be achieved,

such a systemwould provide a relevantmodel that could be used

for a broad array of studies. These include basic neurobiological

studies of human neurodevelopment and evolution, as well as

the study of neurological and mental health disorders, such as

schizophrenia and autism. Furthermore, recent findings with

Zika virus open the door to a variety of potential studies of other

infectious agents such as cytomegalovirus. The hope is that one

day, these approaches will complement existing animal studies

to enable targeted design of novel therapeutic drugs.
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