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Until only a few years ago, single-particle electron cryo-microscopy (cryo-EM) was usually not the
first choice for many structural biologists due to its limited resolution in the range of nanometer to
subnanometer. Now, this method rivals X-ray crystallography in terms of resolution and can be
used to determine atomic structures of macromolecules that are either refractory to crystallization
or difficult to crystallize in specific functional states. In this review, I discuss the recent break-
throughs in both hardware and software that transformed cryo-microscopy, enabling understand-
ing of complex biomolecules and their functions at atomic level.
A major goal of structural biology is to provide mechanistic

understanding of critical biological processes. Themost detailed

insights come from atomic structures of macromolecules and

complexes involved in these processes in relevant functional

states. Beyond basic research, obtaining atomic structures

of drug targets is also a standard approach in the pharma-

ceutical industry in the design and optimization of therapeutic

compounds.

Prior to 2013, most atomic structures deposited in the protein

data bank (PDB) were determined by X-ray crystallography. This

technique starts with crystallization of molecules that are homo-

geneous in both composition and conformation. Once the 3D

crystals are of sufficient size to diffract X-rays, they are used

for structure determination. The resolution of crystal structures

is largely determined by how well the molecules are ordered

(or aligned to each other) in the crystal. After 100 years of devel-

opment and maturation, X-ray crystallography has become a

routine method, delivering a wealth of structural information

about important biomolecules and cellular processes (Jones,

2014; Shi, 2014). While X-ray crystallography will continue to

play an important role in answering many biological questions,

it completely depends on growth of well-ordered 3D crystals.

Producing such crystals, however, is a major bottleneck for chal-

lenging targets, such as integral membrane proteins of mamma-

lian origin or chromatin in complex with its modifiers. In the last 2

years, single particle electron cryo-microscopy (cryo-EM) has

emerged as a technique for determining atomic resolution struc-

tures at better than 4-Å resolution, comparable to many solved

using crystallographic approaches. It has now determined a

number of structures of proteins and complexes that have vexed

crystallographers.

The Way Electron Cryo-Microscopy Works
Rather than determining structures from diffraction of 3D crys-

tals, single-particle cryo-EM determines structures by computa-

tionally combining images of many individual macromolecules

in identical or similar conformations (Frank et al., 1978). In this
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approach, samples of purified molecules in solution are applied

to an EMgrid coveredwith a thin holey carbon film and blotted by

a filter paper to remove most of solution so that the a thin liquid

layer is formed across the holes in the carbon film. This is

followed by plunge-frozen in liquid ethane cooled by liquid nitro-

gen. This method was originally developed by Dubochet and

colleagues (Dubochet et al., 1982), and improved significantly

with semi-automated plunge-freezer machine to improve

reproducibility. After plunge-freezing, frozen-hydrated mole-

cules are embedded in a thin layer of vitreous ice (Figure 1A)

that preserves the native structure to the atomic level (Taylor

and Glaeser, 1974), prevents dehydration of biological samples

within the vacuum of an electron microscope, and reduces the

effects of radiation damage (Stark et al., 1996). Molecules

embedded in a thin layer of vitreous ice adopt a range of

orientations, which are then imaged using an electron beam

(Figure 1B). Each particle image is a 2D projection of a molecule,

whose spatial orientation and position are defined by six geo-

metric parameters. These include three Euler angles and two

in-plane positional parameters. The sixth parameter is the defo-

cus that defines the z position along the direction of the electron

beam and is often assumed to be the same for all particles in a

micrograph (or image). After further correction for aberrational

errors of the microscope, a 3D structure can be reconstructed

by combining images of many molecules that have been aligned

to each other. The resolution of the reconstruction is improved

iteratively by refining the first five geometric parameters for

each particle to high accuracy (Frank, 1996). The final 3D recon-

struction is a Coulomb potential density map that can be inter-

preted in the same way as electron density maps determined

by X-ray crystallography (Figures 1C and 1D).

Both X-ray and electron beams cause radiation damage to

biological samples. For X-ray diffraction, a larger crystal with

coherently packed molecules can tolerate a high total dose

and often diffracts to high resolution because more molecules

contribute to the diffraction. For single-particle cryo-EM, the to-

tal electron dose used to image eachmolecule is set to a very low
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Figure 1. Single-Particle Cryo-EM
(A) Purified biological molecules are embedded
in a thin layer of vitreous ice, in which they ideally
adopt random orientations. The orientations are
specified by the in-plane position parameters,
x and y, and three Euler angles a, b, and g, which
are refined iteratively to high accuracies. The
defocus values of the images are currently often
determined separately.
(B) Typical image of frozen-hydrated archaeal 20S
proteasomes.
(C) 3D reconstruction of the 20S proteasome at
3.3-Å resolution.
(D) Side-chain densities of the map shown in
(B) are comparable with those seen in maps
determined by X-ray crystallography at a similar
resolution.
level to preserve structural information at the subnanometer-res-

olution level. The consequence of such low-dose imaging is that

individual images have a very poor signal-to-noise ratio (SNR).

Hence, images from many identical or similar molecules must

be averaged to enhance the SNR as well as to provide the

different views needed to calculate a 3D reconstruction (De

Rosier and Klug, 1968). Therefore, the total number of particle

images used in a reconstruction has a similar significance to

the size of a 3D crystal. Similarly, the accuracy of image align-

ment in single-particle EM is analogous to how well molecules

are packed in a 3D crystal.

Provided that a sufficient number of images containing high-

resolution information are classified and aligned accurately, sin-

gle-particle cryo-EM will produce a 3D reconstruction at atomic

resolution. An atomic model can then be built de novo based

on fitting the known sequences into the density map from the

reconstruction. Furthermore, electron micrographs are real-

space images containing both amplitude and phase information.

Thus, cryo-EM structure determination does not have a ‘‘phase

problem’’ as in X-ray crystallography, but its amplitudes are

less accurate than that measured from X-ray diffractions.

Resolution Determinants of Single-Particle Cryo-EM
Reconstructions
Considering the scattering power of electrons versus X-rays, and

the amount of information present in an image of a single mole-

cule that can be used to determine the precise position and

orientation of the molecule, Richard Henderson predicted that

single-particle cryo-EM can, in theory, determine atomic-reso-

lution structures of biological molecules as small as 100 kDa in

molecular weight (Henderson, 1995). However, there are many
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practical limitations that resulted in a

gap between what physics allows and

what can be accomplished by using the

existing technologies. Some limitations

are related to the intrinsic properties of

low-dose imaging of frozen hydrated bio-

logical molecules, while others are related

to the properties of frozen-hydrated

samples used in single-particle cryo-EM

(Typke et al., 2004). Overcoming these
obstacles took many years, but by 2008, it was possible to

achieve resolutions that were sufficient to visualize side-chain

densities (�3.8 Å) (Yu et al., 2008; Zhang et al., 2008), and to

determine the first de novo atomic structure (3.3 Å) of a non-

enveloped icosahedral virus (Zhang et al., 2010). Because of

their large sizes and high symmetry, icosahedral virus particles

were among the first for which high-resolution maps were ob-

tained, and now it is quite feasible to determine reconstructions

of such samples at resolutions better than 4 Å (Chen et al., 2009;

Wolf et al., 2010; Yu et al., 2011). However, it has been much

harder to achieve similar resolutions for molecules that are

smaller and/or less symmetric.

Nowadays, an electron microscope with 200 kV or 300 kV ac-

celeration voltage and a field emission gun (FEG) electron source

can typically deliver images with a resolution of better than 2 Å.

Therefore, the achievable resolution of single particle cryo-EM is

not limited by the resolution power of a modern microscope

itself, but rather by the conditions required to image frozen-

hydrated biological samples and the unique properties of such

samples. Determining a high-resolution 3D reconstruction re-

quires that 2D projection images contain sufficient information

at both high and low resolutions. The amount of high-resolution

information present in images determines the possible final res-

olution of a 3D reconstruction. However, low-resolution informa-

tion, i.e., image contrast, is also required to visualize particles.

Together, they determine how well a homogeneous set of

molecules can be computationally selected for averaging, how

accurately these images can be aligned, and the total number

of images that are required to achieve a certain resolution. For

any electron micrographs, both image amplitudes and phases

are modulated by the contrast transfer function (CTF) of the
61, April 23, 2015 ª2015 Elsevier Inc. 451



Figure 2. Influence of CTF on Image Contrast and Resolution
(A and B) Image of human transferrin receptor-transferrin complex recorded
using a scintillator camera. The microscope was equipped with a FEG and
operated at 200 kV. Particles in image recorded with a defocus of 1.2 mm (A)
are almost invisible, but shown with strong contrast in the image recorded with
a defocus of 3.0 mm (B).
(C) Simulations of CTF at 1.2 mm (red) and 3.0 mm (blue) defocuses, with an
acceleration voltage of 200 kV and angular spread of 0.07 mrad. Note that
3 mm defocus generates sufficient contrast for particles with a molecular
weight of�300 kDa, CTF envelop drops to close to zero at 3-�4-Å resolution.
microscope, which is mostly a sine function with an envelope

that reduces the amplitude at high resolution, such as shown

in Figure 2C. The overall envelope of the CTF function combines

effects from many factors, including the spatial and temporal

coherence of the electron beam, specimen motion, the modula-

tion transfer function (MTF) of the image recording device, and

others. The contribution of the spatial coherence to the envelope

is also a function of the defocus. A small defocus maximizes the

envelope at high resolution but minimizes the CTF at low resolu-

tion. Thus, to obtain the best high-resolution signal, an image

must be recorded with a small defocus, which results, however,

in a poor image contrast. The converse is also true: to obtain

good contrast, an image has to be recorded with a relatively

large defocus, which reduces, however, the high-resolution

signal (Figure 2). Both low- and high-resolution signals are further

reduced by the MTF of the image-recording device.

This is not a serious problem for a radiation-resistant spec-

imen. Using a sufficient electron dose, a modern electron micro-

scope can image, for example, a single layer of graphene at

atomic or near-atomic resolution with good contrast (Urban,

2011). The weak low-resolution signal is compensated by a

high-electron dose, which generates sufficient image contrast.

However, this approach is not possible for biological samples,

which are sensitive to radiation damage (Henderson and

Glaeser, 1985). To visualize frozen-hydrated biological mole-
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cules with sufficient contrast, one has to record images with

some defocus (Figures 2A and 2B), which causes a reduction

in the high-resolution signal (Figure 2C). Hence, imaging

frozen-hydrated biological molecules always requires a fine bal-

ance between contrast and resolution. Note that such balance

is always influenced by the microscope hardware, such as the

spatial coherence of the electron beam, the image recording de-

vice, etc., as well as by the size and symmetry of the molecule

being studied.

The first breakthrough in boosting the resolution of single-

particle cryo-EM maps came from the use of FEGs, which

generate an electron beam with much better spatial coherence

than a thermo-ionic electron source (Zhou andChiu, 1993).While

FEGs do not change the oscillation of the CTF function, at the

same defocus, high-resolution signal is better preserved in

images recorded with a microscope equipped with a FEG than

with a thermo-ionic electron source. FEGs thus enable struc-

ture determinations at subnanometer resolutions for molecules

ranging from icosahedral viruses (Böttcher et al., 1997; Conway

et al., 1997; Zhou et al., 2000) to molecules as small as�300 kDa

with mere 2-fold symmetry (Cheng et al., 2004).

Manufactures made many efforts to improve microscope

performance. State-of-the-art electron microscopes nowadays

use constant-power electromagnetic lenses to improve stability,

parallel illumination to reduce image phase error induced by

beam tilt (Glaeser et al., 2011), very high vacuum to reduce water

contamination on frozen-hydrated samples loaded into the mi-

croscope column, and better computer control for sophisticated

and automated microscope tuning and data acquisition (Sulo-

way et al., 2005), etc. All these features helped to improve the ef-

ficiency of as well as the resolution achievable by single-particle

cryo-EM, and they eventually enabled the first de novo atomic

structure determination of an icosahedral virus (Zhang et al.,

2010). Large and highly symmetrical particles, such as icosahe-

dral viruses, have certain advantages in achieving better resolu-

tion by single-particle cryo-EM. They can be imaged with very

small defocus to preserve the high-resolution signal while still

provide sufficient image contrast. However, the same approach

does not work for small molecules. Images of small molecules

must be recorded using a much larger defocus, thus trading

high-resolution signal for image contrast. The need to use a rela-

tively large defocus to generate image contrast was a major

obstacle in achieving even subnanometer-resolution maps for

proteins smaller than 300 kDa without high symmetry. Over-

coming these limitations required new technologies. The simple

use of small defocus without any other means to generate suffi-

cient image contrast led to featureless images and controversial

results (Henderson, 2013; Mao et al., 2013).

Recent Technological Advances in Single-Particle
Cryo-EM
Some recent technological advances led to a major break-

through in achievable resolution, resulting, in a short period of

time, in 3- to �5-Å-resolution structures of biological molecules

ranging from ribosomal particles to integral membrane proteins

(Allegretti et al., 2014; Amunts et al., 2014; Liao et al., 2013; Lu

et al., 2014; Vinothkumar et al., 2014). Some of these structures

were determined for proteins with known atomic structures,



Figure 3. Direct Electron Detection Camera

Enabled Major Breakthroughs in Single

Particle Cryo-EM
(A) An image of frozen hydrated T. acidophilum
20S proteasome recorded using K2 Summit
camera with a 300-kV microscope and a defocus
of �0.9 mm.
(B) Fourier transform of a typical imperfect image
of frozen hydrated 20S proteasome, showing a
predominant resolution cutoff caused by beam-
induced motion.
(C) Fourier transform of the same image after
motion correction. Thon ring is restored to reso-
lution of �3 Å.
(D) 2D class averages of TRPV1 ion channel
calculated from images recorded with a scintillator
camera (left) and K2 Summit camera (right) (Liao
et al., 2013).
(E) Two different views of TRPV1 3D reconstruc-
tion determined from a dataset collected with a
scintillator camera.
(F) Same views of the TRPV1 3D reconstruction
determined from a dataset collected with a K2
Summit camera. (A–C) are reproduced from (Li
et al., 2013).
validating the methodological advancements (Bartesaghi et al.,

2014; Li et al., 2013). Others were determined ab initio for pro-

teins that resisted crystallization for years (Liao et al., 2013; Lu

et al., 2014). Here, I will briefly summarize the recent technolog-

ical advancements and how they enabled a ‘‘resolution revolu-

tion’’ (Kühlbrandt, 2014).

Camera Technology

Image-recording devices are characterized by the detective

quantum efficiency (DQE), which describes the signal and noise

performance in a digitally recorded image over the spatial fre-

quency range (McMullan et al., 2009a; Mooney, 2007). Tradition-

ally, EM images were recorded on photographic film that was

subsequently digitized or with scintillator-based digital cameras,

such as charge-coupled device (CCD) or complementary metal-

oxide semiconductor (CMOS) cameras. These cameras use a

thin layer of phosphor scintillator to convert electron signals to

photons, which are coupled through fiber optics to the camera

sensor. Photographic film has a relative poor DQE at low
Cell 1
spatial frequency, leading to poor image

contrast. Thus, recording on photo-

graphic film typically requires imaging at

a higher defocus to ensure sufficient

contrast for reliable particle picking and

accurate image alignment. Scintillator-

based cameras have a better low-fre-

quency DQE than photographic film,

resulting in a better image contrast. How-

ever, the high-frequency DQE of these

cameras is significantly poorer than that

of film, making them less suitable for

high-resolution imaging (Booth et al.,

2006; Meyer et al., 2000).

As their name suggests, the new direct

electron detection cameras no longer

convert electron signals to light signals
but detect the electrons directly (McMullan et al., 2009b; McMul-

lan et al., 2009c). All commercially available direct detection

cameras have significantly higher DQEs than photographic film

and scintillator-based cameras in both the low- and high-resolu-

tion regimes (Li et al., 2013; McMullan et al., 2014; Ruskin et al.,

2013). These cameras typically operate in two distinct modes,

the linear charge-integration mode or the electron-counting

mode. In the linear mode, charges generated from electrons

striking the detector are integrated, while in the counting mode

individual electron events are identified and counted. An advan-

tage of operating in the counting mode is that both Landau noise

(i.e., the fluctuation in energies generated by each electron

striking the camera sensor) and readout noise are removed.

Combining direct electron detection with single electron count-

ing significantly improves the DQE further, particularly at low fre-

quencies (Li et al., 2013). Electron-counting cameras thus enable

recording low-dose cryo-EM images of small particles with

much smaller defocus values (Figure 3A), providing a much
61, April 23, 2015 ª2015 Elsevier Inc. 453



better balance between the requirements for both image

contrast and high-resolution signal (Li et al., 2013; Liao et al.,

2013; Lu et al., 2014).

Another important feature of the newly developed direct

detection cameras is their fast frame readout rate. It enables

the already low total electron dose used to image biological sam-

ples to be fractionated into many subframes. Computational

alignment of these subframes before averaging them can correct

for motion-induced image blurring, which results from beam-

induced image motion and mechanical instability of the spec-

imen holder (Bai et al., 2013; Brilot et al., 2012; Campbell et al.,

2012; Li et al., 2013). The combination of dose fractionation

and motion correction greatly improves the efficiency of data

acquisition, because nearly all images can be corrected to

recover high-resolution information (Figures 3B and 3C). It also

provides novel means to optimize usage of the total electron

dose (Baker and Rubinstein, 2010). The contrast can be maxi-

mized by using a higher total dose and using all frames for par-

ticle alignment. However, the later frames that record images

of molecules with higher accumulated electron dose and thus

more severe radiation damage can later be eliminated or prop-

erly down-weighted so as to minimize the effect of radiation

damage on the final 3D reconstruction (Li et al., 2013; Scheres,

2014). These novel technologies are now being applied in

many cryo-EM laboratories. They marked the beginning of a

new era in single-particle cryo-EM, in which atomic structures

of a broad range of biological macromolecules can be deter-

mined de novo and without crystallization (Figures 3D–3F).

Maximum Likelihood-Based Classification

A major advantage of single-particle cryo-EM is that it does not

require absolute sample homogeneity. Computational image

analysis can deal with a certain level of heterogeneity, both

conformational and compositional. Such heterogeneity may pre-

vent crystallization, but in single-particle EM, particles can be

computationally sorted into different classes, some of which

may contain relatively homogeneous subsets of particles. Sin-

gle-particle cryo-EM datasets consist of 2D projection images.

As determining the orientation parameters of these 2D projec-

tions is intertwined with the classification of a heterogeneous

dataset into homogeneous subsets, it is always challenging to

distinguish whether different 2D projection images represent

different views of the same molecule or views of molecules

with different conformations or compositions. While there are

many ways to classify particles according to their conformations

or functional states, a particularly powerful approach is to use a

maximum likelihood-based method for classification and refine-

ment (Scheres et al., 2007). Implementing sophisticated

maximum likelihood-based classification and refinement algo-

rithms (Sigworth, 1998; Sigworth et al., 2010) into user-friendly

software packages (Lyumkis et al., 2013; Scheres, 2010, 2012)

made this method easy to use in practice. It has become routine

now to classify particle images into different 3D classes, each of

which may be amenable to refinement into higher-resolution

reconstructions than the global ensemble. The process of 3D

classification may separate a number of conformations of the

molecule being studied, or separate fully intact particles or com-

plexes from incomplete, truncated or fragmented complexes, or

from those damaged during vitrification (Fernández et al., 2013;
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Liao et al., 2014). Note that the better image quality provided by

direct detection cameras and motion correction enabled suc-

cess of these classification procedures. Almost all newly pub-

lished near-atomic resolution 3D reconstructions, in one way

or another, utilized such classification procedures.

The use of automated data acquisition (Suloway et al., 2005)

with automated particle-picking procedures enables collecting

very large datasets with millions of particle images in relatively

short periods of time. With large numbers of particles it will be

possible to classify particle images with very subtle conforma-

tional differences and thus to detect and quantify even subtle

conformational states that exist within a population. This has

been achieved at somehow moderate resolution (Fischer et al.,

2010). It is only a matter of resources and time before single-par-

ticle cryo-EM is able to provide solution structures of molecules

in multiple conformations at near-atomic resolution and to pro-

vide quantitative comparisons of population occupancies under

different conditions.

Single-Particle Cryo-EM Is Complementary to X-Ray
Crystallography
There are many large protein assemblies and dynamic com-

plexes that are difficult or may even be impossible to crystallize.

Thus, single-particle cryo-EM has always been viewed as a sup-

plementary method to X-ray crystallography for studying such

assemblies or complexes, such as clathrin coats (Fotin et al.,

2004), the 26S proteasome (da Fonseca et al., 2012; Lander

et al., 2012; Lasker et al., 2012), the anaphase promoting com-

plex (Chang et al., 2014; da Fonseca et al., 2011), and chromatin

fibers (Song et al., 2014), to name just a few. In these studies,

structures were typically determined by single-particle methods

to subnanometer resolution. Crystal structures of domains and

fragments or sequence-based homology models were then

fitted into the cryo-EM density maps by molecular dynamic sim-

ulations or other computational methods (DiMaio et al., 2015;

Seidelt et al., 2009; Trabuco et al., 2009; Zhao et al., 2013).

Such hybrid approachesmade, for example, subnanometer-res-

olution structures of integral membrane proteins very meaningful

in providing rich structural insights into large membrane protein

complexes (Efremov et al., 2015; Vinothkumar et al., 2014) or for

dissecting function-related conformational changes (Kim et al.,

2014; Meyerson et al., 2014).

With the resolution improved to a level sufficient for sequence-

based de novo model building, structures determined by single-

particle cryo-EM are comparable to those determined from

crystals (Bartesaghi et al., 2014; Li et al., 2013). Therefore, for

many difficult crystallographic targets, either because they are

refractory to crystallization or difficult to express and purify in

sufficient quantities for crystallization, single-particle cryo-EM

is becoming the method-of-choice for structure determination.

Recent successes in structure determination of mammalian inte-

gral membrane proteins clearly demonstrated this capability

(Liao et al., 2013; Lu et al., 2014; Yan et al., 2015; Zalk et al.,

2015). Even for those targets that could be crystallized, it is

now feasible to use single-particle cryo-EM to determine high-

resolution structures of the targets in specific functional states

or in complexes with co-factors. We can anticipate that such

successes will continue rapidly, with many more structures of



various types of biological molecules being determined to near-

atomic resolution. Besides large complexes such as ribosome

and icosahedral viruses, integral membrane proteins or mem-

brane protein complexes will be amajor area in which single-par-

ticle cryo-EM will play a role that is equally significant as X-ray

crystallography. Another class of targets that is difficult to crys-

tallize but suitable for single-particle cryo-EM is chromatin in

complex with its modifiers, which is essential for understanding

the complexities of gene expression. Progress of crystallo-

graphic studies in this area has been slow with only a few atomic

structures available for nucleosomes alone or in complex with

modifiers, each having led to major discoveries in chromatin

biology (Cramer, 2014). Recent work, although still limited to

nanometer resolution, has shown the tremendous promise of

single-particle cryo-EM in this important structural biology field

(Song et al., 2014).

Future Perspectives for Single-Particle Cryo-EM
Without a doubt, single-particle cryo-EM is no longer ‘‘blob-

ology’’ but is now amethod that can provide resolutions compa-

rable with X-ray crystallography. However, unlike X-ray crystal-

lography, which often ends up with a binary result of either

having or not having a diffracting crystal, single-particle cryo-

EM always yields some information (although not always at

atomic resolution). Even a reconstruction at a modest resolution

provides information of how to improve the preparation as well

as valuable biological insights. Thus, single-particle cryo-EM is

probably even more attractive than X-ray crystallography in

studying macromolecules.

However, the technology of single-particle cryo-EM is still far

from perfect and technological developments are still moving

forward rapidly. The current resolution is still unsatisfactory in

many ways. For example, extending the achievable resolution

to beyond 3 Å is necessary to convincingly visualize the location

of ions, or to visualize not only where but also how small ligand

molecules bind to target proteins. The latter is of particular inter-

est for the pharmaceutical industry because it can facilitate

structure-based drug design and optimization. A recent review

discusses in detail the current technical limitations of single-par-

ticle cryo-EM, particularly in achieving higher resolution, and

possible solutions (Agard et al., 2014). Related to insufficient res-

olution, time spent on de novo model building and refinement is

often far more than that used to determine the reconstruction it-

self. While many tools from X-ray crystallography can be applied

to cryo-EM density map-basedmodel building and refinement, it

requires significant modifications (Amunts et al., 2014; Brown

et al., 2015). Also, the traditional validation criterion in X-ray

crystallography, such as the free R-factor, is no longer valid for

models built into cryo-EM density maps. Therefore, tools and

methodologies for efficient model building, refinement, and vali-

dation all need further developments.

In addition to improving the technology itself, there are other

factors that limit the wide application of single-particle cryo-

EM. First, the method itself is not yet a ‘‘turnkey’’ method.

Even with automated data acquisition technology and stream-

lined data processing, image acquisition, and processing is still

too complex for a novice to learn with minimal training or by

studying manuals. Second, the needed infrastructure, including
fully functional cryo-EM equipment and computational re-

sources for data processing and storage, requires significant

financial investment. In addition to the initial investment, the

ongoing costs required to maintain and operate a high-end

cryo-EM facility are significant. Third, there are currently too

few synchrotron-like cryo-EM facilities dedicated for high-

throughput cryo-EM data acquisition for the community at large.

These limitations set the threshold for entering the field far too

high, and improving access will require efforts from multiple

parties. Therefore, making the technology robust and relatively

easy to learn, reducing the equipment and operational costs,

and providing access to ready-to-use facilities staffed with

experts will all be important steps toward making cryo-EM

as widely used as X-ray crystallography. While the future of

single-particle cryo-EM is bright, it requires strong support

from the scientific community as well as from funding agencies

to make the single particle cryo-EM as popular as X-ray

crystallography.
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