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SUMMARY

The hair follicle (HF) is a complex miniorgan that
serves as an ideal model system to study stem cell
(SC) interactions with the niche during growth and
regeneration. Dermal papilla (DP) cells are required
for SC activation during the adult hair cycle, but
signal exchange between niche and SC precursors/
transit-amplifying cell (TAC) progenitors that regu-
lates HF morphogenetic growth is largely unknown.
Here we use six transgenic reporters to isolate 14
major skin and HF cell populations. With next-gener-
ation RNA sequencing, we characterize their tran-
scriptomes and define unique molecular signatures.
SC precursors, TACs, and the DP niche express
a plethora of ligands and receptors. Signaling
interaction network analysis reveals a bird’s-eye
view of pathways implicated in epithelial-mesen-
chymal interactions. Using a systematic tissue-wide
approach, this work provides a comprehensive plat-
form, linked to an interactive online database, to
identify and further explore the SC/TAC/niche cross-
talk regulating HF growth.

INTRODUCTION

Embryonic hair follicle (HF) formation, hair growth after birth, and
regulation of the adult hair cycle involve complex signaling inter-
actions among epithelial stem cells (SCs), progenitors, and a
dermal specialized niche compartment, the dermal papilla (DP)
(Lee and Tumbar, 2012; Rezza et al., 2014; Rompolas and
Greco, 2014; Sennett and Rendl, 2012). At the end of the resting
phase of the hair cycle, DP cells signal to bulge/germ SCs to acti-
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vate new HF growth, and recent ligand supplementation exper-
iments and receptor ablation studies in the SCs indicate an
important role for DP-derived TGFB2, FGF7, and inhibitory
BMP signals (Greco et al., 2009; Kobielak et al., 2003; Oshimori
and Fuchs, 2012). Laser-mediated ablation established the ab-
solute requirement of these cells for SC activation during the
hair cycle (Rompolas et al., 2012).

Similarly, during hair growth, DP cells are thought to act as a
core signaling center for surrounding epithelial progenitors
(transit-amplifying cells or TACs) within the wider matrix (Mx)
compartment that proliferate, migrate upward, and differentiate
into the multiple layers of the hair shaft and the inner root sheath
channel (Hsu et al., 2014a). The outer root sheath (ORS) lines the
epithelial HF compartment, is contiguous with the Mx and
epidermis, and contains the SC precursors of the adult HF bulge
during early hair growth (Schlake, 2007). FGF signals from the DP
have been implicated in controlling hair growth (Petiot et al.,
2003), while BMP and WNT signaling play an important role in
hair shaft progenitor differentiation; but, the precise source of
BMP and WNT ligands is unclear (DasGupta and Fuchs, 1999;
Kobielak et al., 2003). SHH is produced by a subpopulation of
TAC progenitors that reside right next to the DP compartment
(Gambardella et al., 2000; Hsu et al., 2014b). It is still unclear if
a broader requirement for TAC-derived signals interacting with
the DP niche exists, as pure TACs of growing HFs have not
been isolated and characterized. Finally, the third major cellular
component in the HF bulb is melanocytes (Mc) that provide
pigment to the epithelial cells and are thought to receive regula-
tory signals from the DP niche (Enshell-Seijffers et al., 2008,
2010). Whether Mc signal with TAC progenitors and Mx cells is
currently unclear.

Previous studies have tried to identify signals involved in
driving HF growth using a global transcriptomic approach (Dris-
kell et al., 2009; Rendl et al., 2005). Isolation of HF cell popula-
tions during the morphogenetic growth phase and subsequent
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gene expression analysis with early microarrays identified en-
riched genes for the DP, as well as for Mc, Mx, and ORS cells
(Rendl et al., 2005). Although this study provided important in-
sights into the molecular composition of major HF cell types, it
was not yet possible to distinguish TAC progenitors from Mx,
HFSC precursors from the remaining ORS, or hair type-specific
DP subpopulations. Indeed, during early postnatal hair growth,
four hair types can be recognized that form in three embryonic
developmental waves and have different HF lengths within the
skin (Figure 1A), as well as different hair shaft sizes, kinks, and
bends externally (Schlake, 2007). Guard (G) HFs, which develop
first, are the largest and extend deepest in the dermis. Awl and
Auchene (AA) follicles develop subsequently, are thinner, and
reach the lower part of the reticular dermis. Zigzag (ZZ) HFs
appear last and are ultimately the shortest. While these
morphological and developmental idiosyncrasies have been
noted for years, it is unclear if hair type-specific DP subpopula-
tions are molecularly distinct and control regulation of hair type
sizes and shapes. In previous work, ZZ-enriched DP cells were
isolated and ZZ-enriched DP genes were described with a
possible role in controlling ZZ hair type (Driskell et al., 2009).
Conversely, another recent study manipulated the total number
of DP cells per HF resulting in hair type switching, suggesting
that the cumulative signaling output from the niche determines
hair type rather than its intrinsic molecular features (Chi et al.,
2013).

Here, we comprehensively define the molecular traits of
all DP subpopulations, SHH-expressing TAC progenitors, and
HFSC precursors from developing HFs, in conjunction with
other major skin/HF cell types, and identify signaling interac-
tions potentially involved in HF growth. For this we utilized six
different fluorescent transgenic mouse reporter lines combined
with immunofluorescence to isolate a total of 14 distinct skin/
HF populations from postnatal day (P)5 back skin, and we per-
formed genome-wide transcriptome analysis by multiplexed
RNA deep sequencing (RNA-seq). We defined molecular signa-
tures of uniquely enriched genes for each population, establish-
ing a comprehensive set of markers and identifying interacting
ligand/receptor combinations for key HF cell types during hair
growth. Molecular characterization of hair type-specific DP
subpopulations showed only few specific signature genes,
revealing a remarkable molecular relatedness at the mRNA
level. We further defined a core DP molecular signature of
genes uniquely enriched and expressed by all DP subpopula-
tions. HFSC precursors from growing HFs showed common
features with adult HFSCs but mostly expressed unique signa-
ture genes as they matured during development. TAC progen-
itors expressed numerous uniquely enriched genes, including
many signaling factors, as was the case for DP, suggesting a
rich crosstalk between these populations. Finally, our global
unbiased analysis of intercellular signaling interaction revealed
a network of multiple ligand/receptor interaction pairs involving
all cell types during HF growth, with a particular density in the
HF bulb. With this study we establish a comprehensive bird’s-
eye view of the complex signaling interactions in growing HFs
of developing skin, and we share it with the community on
the Hair-GEL online database for further validation and investi-
gation (http://hair-gel.net).

RESULTS

Isolation of Key Cell Populations from Growing Skin

and HFs

To purify and molecularly characterize all major cellular con-
stituents of developing HFs during the first hair growth phase,
we devised an integrated approach that utilized pairwise
combinations of six different transgenic reporter mouse lines
together with three specific immunofluorescence stainings. In
this manner we were able to isolate by fluorescence-activated
cell sorting (FACS) of P5 back skins a total of 14 distinct skin/
HF cell populations and subpopulations, including SC precur-
sors and TACs as well as hair type-specific DP niche cells
(Figure 1A).

First, to purify seven core skin and hair cell types, we revisited,
improved, and expanded cell isolations from K14-H2BGFP;
Lef1-RFP transgenic mice previously utilized to obtain HF Mx,
ORS, DP cells and Mc (Rendl et al., 2005). In these reporters, nu-
clear GFP is expressed in all epithelial cells of the epidermis and
HFs under the keratin-14 promoter, while red fluorescent protein
(RFP) is present in DP, Mc, and upper dermal fibroblasts (DFs,
Figure 1B) driven by a Lef1 promoter fragment. P5 back skins
were harvested, and the epidermis and dermis were enzymati-
cally separated and processed to obtain epidermal and HF-en-
riched dermal preparations of single cells. From the epidermal
sample, we selected basal epidermal cells (Epi) as the K14-
H2BGFP* population (81% of live cells) (Figure S1A). The dermal
sample was subjected to further immunofluorescence marker
stainings (Figure 1B). Based on GFP expression alone, we
selected Mx (35%) and ORS (21%) cells as K14-H2BGFP-°"
and K14-H2BGFP9" populations, respectively, as previously
described (Rendl et al., 2005). The RFP* population was sub-
divided to obtain CD117* Mc (2.24%), and DP cells (1.1%) that
express ITGA9, a marker of these cells at P5 (Rendl et al,
2005). Quantification of immunofluorescence stainings of back
skin sections demonstrated that all DP cells from all HF types
express ITGA9 (Figure S1B). As RFP is also strongly expressed
in the papillary dermis of Lefl-RFP mice, we selected
RFP*CD1177ITGA9™ cells to enrich for DFs (0.6%). RFP*
cells of the arrector pili muscle (APM) also were contained
within the DF population. We also gated for negative cells
(GFPTRFP™CD117 ITGAQ") representing an unlabeled mixture
of residual dermal cells that include endothelial, smooth muscle,
and immune cells (Neg, 9%).

Finally, with detailed analysis of K14-H2BGFP;Lef1-RFP P5
back skin sections, we identified GFP-°YRFP* cells in the ante-
rior side or on both sides within the Mx compartment that sur-
rounds the DP (Figure 1B; Figure S1C), strongly resembling the
expression pattern of Shh in a subpopulation of TAC progenitors
(Gambardella et al., 2000; Hsu et al., 2014b). GFP-°“RFP* cells
sometimes also could be found in the most proximal cells of the
inner root sheath. These cells enriched in Shh-expressing TACs
were clearly distinguishable by FACS analysis (Figure 1B, 2%),
allowing the isolation of this subpopulation of specialized
signaling progenitors from growing HFs.

Next, we isolated all populations by FACS, extracted RNAs,
and performed real-time gRT-PCR for known marker genes
to confirm the correct isolation of all cell types (Figure 1B;
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Figure 1. Multicolor Cell Sorting of Stem Cell Precursors, Transit Amplifying Progenitors, and Their Niche from Developing HFs
(A) (Left) Schematic of postnatal day (P)5 back skin with hair follicles (HFs) from the three HF developmental waves. (Right) Cell populations were isolated from six
different fluorescent reporter mouse lines in four double-transgenic combinations.

(legend continued on next page)
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Figure S1D). Epithelial markers K714 and K5 were strongly en-
riched in Epi, whereas Vdr and Lgr5 were most expressed in
ORS. Mx markers Msx2 and Shh were present in the Mx popula-
tion and TACs. Mc markers Dct and Mitf were highest in Mc and
Col1al was strongly enriched in DF, whereas endothelial
markers Tie2 and CD317 were almost exclusively expressed in
the Neg population. Interestingly, Acta2 was strongly expressed
in Neg and DF, confirming the presence of smooth muscle cells
or APM cells in the DF population. DP markers Wif1 and Sox2
were strongly expressed in DP cells. Finally, Shh was highest
in TACs, at even higher levels compared to Mx cells, confirming
the enrichment of an epithelial progenitor subpopulation within
this compartment. Taken together, our gRT-PCR analyses of
marker gene expression confirmed the accuracy of our sorting
strategy for concomitant isolation of epidermal cells, DFs, Mc,
ORS, DP, Mx, and TAC from growing HFs.

To additionally purify the precursors of future bulge SCs
from within the ORS compartment of same-stage growing
HFs (HFSCs), we used a GFP reporter line for the SC
marker Sox9 crossed with an RFP reporter for all skin epithelial
cells under the K14 promoter (Figure 1C), as previously described
(Wang et al., 2013). From K14-RFP;Sox9-GFP transgenic P5 back
skins, we prepared single cells, stained for basement
membrane marker ITGAB6, and sorted by FACS the HFSCs as
the RFPM9NTGABHI"GFP* population. We further co-isolated
the remainder of the ORS (HF-ORS; RFPM9"ITGAG""GFP"),
Mx cells (HF-Mx; RFP-°%), and basal epidermal cells (EpiT;
RFPHONTGAE™9"GFP~ from the epidermal fraction). We then
confirmed the purity of HFSC isolation by gRT-PCR (Figure S1E).
Expression of the HFSC markers Sox9, Lhx2, and Nfatc1 was
strongly enriched in the HFSC population, with Lhx2 also pre-
sent in HF-Mx cells, as previously described (Wang et al.,
2013), whereas Mx markers Shh and Msx2 were only detected
in HF-Mx.

Finally, to isolate and explore potential subtypes of DP niche
cells from the three major back skin hair formation waves, we
utilized two different transgenic reporters together with ITGA9
immunofluorescence. With a Sox2%" knockin reporter line
crossed with Lef1-RFP, we selected pure DPs from ZZ hairs
and distinguished a complementary mixture of G/AA hair DPs
(Figure 1D), similarly to the previously described use of Sox2-
GFP transgenic mice (Driskell et al., 2009). In this configuration,
total DPs were selected as RFP*ITGA9" cells (Figure 1D, 1%),
from which we could distinguish GFP~ ZZ-DP (15%) and GFP*
G/AA-DP cells (80%). Conversely, to isolate pure G DPs as
well as complementary mixtures of ZZ/AA hair DPs, we utilized

Crabp1-GFP transgenic reporter mice (Figure 1E) that we identi-
fied in a screening effort for hair type-specific fluorescent DP
reporter lines (not shown). In P5 back skins of this line, close to
100% of AA-DP and ZZ-DP cells expressed GFP, whereas no
GFP was found in G-DPs, although endogenous Crabp1 was ex-
pressed in these cells (Figure S1F). Using the same Lef1-RFP
ITGA9 strategy, we could then isolate from Crabp1-GFP;Lef1-
RFP P5 pups pure G-DP cells as GFP~ (2%) and a mixture of
AA-DPs and ZZ-DPs (AA/ZZ-DP) as GFP* (90%) DP cells.
Together with the four different DP subpopulations, we further
isolated RFP* DFs and the remaining mixed negative population
(Neg) to confirm cell enrichment and sorting efficiencies. To
determine initial sort purity, we next performed enzymatic
reactions for DP marker Alkaline Phosphatase on isolated and
cytospun DP populations demonstrating >90% enrichment,
compared to 1% in RFP* and 0% in Neg cells. We then ex-
tracted RNA and performed gRT-PCR analyses to confirm
expression of known markers (Figure S1F). All tested DP markers
were found enriched in both DP subpopulations of both isola-
tion strategies, with the exception of barely detectable Sox2
in ZZ-DP. GFP mRNA was only present in GFP* populations
(G/AA-DP and AA/ZZ-DP).

In summary, with combinations of six different mouse trans-
genic reporter lines together with immunofluorescence, we suc-
cessfully isolated 14 epidermal, dermal, and HF cell types for
further molecular characterization, including for the first time
the SC precursors, TAC progenitors, and several DP niche sub-
populations from different hair types.

Transcriptome Profiles of the Major HF Populations by
RNA Deep Sequencing

For all isolated populations, we performed transcriptome pro-
filing with RNA-seq from low RNA amounts (6 ng) in two biolog-
ical replicates, as previously described (Sennett et al., 2015;
Table S1).

We then established global lineage relationships by identifying
differentially expressed genes among all populations. Principal-
component analysis (PCA) of all mapped genes showed that
dermal (DF, DP, and the four DP subpopulations) and epithelial
populations (Epi, ORS, Mx, TAC, HF-SC, and HF-ORS) each
grouped together, whereas Mc cells represented a distinct
expression profile (Figure 2A). Total DP and all DP subpopula-
tions clustered together, as did Mx cells and TACs. To interro-
gate the global relatedness of gene expression profiles between
the developing HF and skin populations, we calculated coeffi-
cients of determination (r?) for all expressed genes (Figure 2B).

(B) Isolation of eight main skin/HF populations from K14-H2BGFP;Lef1-RFP back skin. (Top) P5 skin section shows strong H2BGFP expression in epithelial Epi
and ORS cells and RFP expression in upper DFs, the DP, and Mc. Mx expresses low levels of H2BGFP. The Shh-expressing subpopulation of TAC progenitors
and few differentiating cells co-express H2BGFP and RFP. (Bottom) FACS plots and gates for cell sorting from HF-enriched dermal preparations are shown.
Seven gates mark Mx, ORS, TAC, Mc, and DP from HFs and DF and a mixture of negative cells (Neg) from the dermis. (Right) gRT-PCR of known markers
confirms TAC and DP enrichment. Data are mean + SD from two measurements.

(C) Isolation of HFSC precursors from K14-RFP;Sox9-GFP P5 back skin. (Top) P5 skin section shows GFP expression in the upper ORS of the future bulge area.
All epithelial cells are RFP. (Bottom) FACS plots and gates for isolation of HFSC precursors and the remaining HF-ORS and HF-Mx are shown.

(D and E) Isolation of pure DP subpopulations from P5 back skin. (D) (Top) section of P5 Sox2%7;Lef1-RFP back skin and GFP quantification shows GFP
expression in G-DP and AA-DP cells compared to ZZ-DP. (E) (Top) section of P5 Crabp1-GFP;Lef1-RFP back skin and GFP quantification shows GFP expression
in AA-DP and ZZ-DP cells, but not in G-DP. (Bottom) FACS plots and gates for sorting are shown. Note that all DP subpopulations are highly enriched as RFP* and

ITGA9" cells.
Scale bars, 100 um (B and C) and 20 um (D and E). See also Figure S1.
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Figure 2. Transcriptome Analyses of 14 Distinct Skin/HF Cell Populations with Next-Generation RNA-Seq

(A) PCA of all expressed genes with PC1 (42.07% variance captured), PC2 (11.64% variance captured), and PC3 (7.97% variance captured) is shown.

(B) Heatmap of coefficient of determination (%) for gene expression profiles of all skin/HF populations is shown.

(C) Hierarchical clustering of differentially expressed genes (DEG, p value < 0.05). Note that DP populations are highly similar with replicates not clustering
together. DEGs are listed in Table S2.
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As expected all biological replicate samples displayed high cor-
relation (* > 0.85). Interestingly, all DP populations (DP, ZZ-DP,
G/AA-DP, G-DP, and AA/ZZ-DP) showed highly similar gene
expression profiles with r? > 0.83. They also all exhibited a high
correlation with DF (> > 0.81) but low similarity to every other
population (2 < 0.71). Apart from these, the two closest popula-
tions were Mx and TAC (> 0.91), and both were quite similar to
the other epithelial populations (Epi, ORS; r? > 0.77). Mc showed
a very unique expression profile with plot-wide low r? values
(r? < 0.75), as they are specialized cells of neural crest origin.
HF-SC and HF-ORS were highly correlated to each other (> >
0.85) and similar to ORS and Epi (r? > 0.80).

To determine the enriched genes for each population, we first
compared the fragments per kilobase of transcript per million
mapped reads (FPKMs) of all genes that were differentially ex-
pressed in at least one population (CuffDiff; p < 0.05). Hierarchi-
cal clustering identified a total of 10,627 differentially expressed
genes (Figure 2C; Table S2). The main populations clustered
together in correlation with their epithelial, mesenchymal, and
neural crest origins. Total DP and all DP subpopulations clus-
tered together, but they appeared to exhibit extremely closely
related molecular profiles as biological replicates themselves
were unclustered (Figure 2C). All other biological replicates clus-
tered together. Next we established gene signatures identifying
uniquely enriched genes in each population compared to all rele-
vant others by ANOVA calculations (false discovery rate [FDR] <
0.05) for each of the four cell-sorting strategies. We defined mo-
lecular signatures for the main skin and HF populations including
TAC progenitors, for the four subpopulations of DP, and the
HFSC precursors as subpopulation of the ORS. In total, 3,015
signature genes were identified for all 14 key cell populations
of growing HFs that we discuss in detail below.

Identification of Unique Molecular Characteristics of the
Major HF Populations

A first ANOVA included the main eight populations from the K714-
H2BGFP;Lef1-RFP sort, i.e., Epi, ORS, Mx, TAC, Mc, DF, DP,
and Neg, identifying 5,807 genes (Figure 3A). The epithelial pop-
ulations clustered on one arm, apart from the dermal popula-
tions, while Mc stood alone. Mx and TAC grouped together, as
did DF and DP, illustrating their close lineage relationships. En-
riched signature genes for each population were then selected
from the Cuffdifff ANOVA analyses as genes with FPKM > 1
and an expression fold change (FC) >2 compared to all other
populations (Figure 3B; Table S3). Neg cells were excluded for
comparisons with the epithelial populations (Epi, ORS, Mx, and
TAC). With this approach, we identified a total of 2,049 signature
genes for all seven populations, with 414 for Epi and 145 for
ORS populations. Only 21 signature genes were found for Mx
compared to 128 for TAC, illustrating their highly overlapping
expression profiles. Considering the high similarity and lineage
relationship, Mx and TAC were not compared to each other
and expanded overlapping signature lists contained 96 and
234 genes for Mx and TAC, respectively. The TAC progenitor
population is discussed in detail below. We found that 604 and
124 signature genes defined the Mc and DF populations, respec-
tively. Finally, the total DP population showed a signature of 578
genes.

Considering the hierarchical and/or developmental relation-
ships among these six cell types (Epi, ORS, Mx, Mc, DF, and
DP), we next inspected the shared expressed genes in these
populations (Figure 3B; Table S4). Enriched epithelial-type genes
expressed in Epi, ORS, and Mx were selected as genes with an
FC > 2 compared to every non-epithelial population (Mc, DF,
and DP). These three populations shared 156 genes in common;
46.7% (234/501) of ORS and 51.8% (235/453) of Mx genes are
epithelial enriched and overlap with the Epi population. ORS
and Mx share 278 genes, 55.5% and 61.4% of expressed
epithelial genes, respectively. Similarly, common dermal genes
were identified as genes with an FC > 2 in DF and DP compared
to epithelial populations (Epi, ORS, Mx, and TAC). DP and DF
cells have a large overlap sharing 422 dermal-type genes, 72%
and 40% of DF and DP genes, respectively, that are enriched
compared to epithelial cells.

To gain insights into the biological significance of our gene
signatures, we next analyzed functional categories of gene
ontology (GO) using EnrichR (Figure 3C; Table S5; Chen et al.,
2013). Genes related to epidermis development or epithelial dif-
ferentiation were represented well in all epithelial populations
(Epi, ORS, and Mx), and categories involving cell adhesion and
extracellular matrix (ECM) were associated with Epi and ORS,
as well as with DF and DP in the dermal compartment. The
specialized Mc population showed distinct GO terms such as
pigment cell differentiation and melanosome localization. Finally,
neural categories and signaling pathway regulation (Wnt, BMP,
and Notch) were particularly enriched in the DP niche, as previ-
ously described (Rendl et al., 2005).

To focus on specific genes within the signatures, we first
corroborated that previously known markers described in
expression and/or functional studies of single genes were found
within the signature lists of each population (Figure 3D; Table
S3). Epidermal markers Cdh1, KIf5, Itga6, and Kridap were
most enriched in Epi, whereas SC markers Nfatc1, Sox9, and
Lgr5 were found in the ORS signature, as was Krt19 and Vdr.
Note that Krt14 and Krt5 are more highly expressed in Epi than
ORS. Mx markers DIx3, Foxn1, Fbp1, and Ovol1 were enriched
in Mx. Markers for Mc (Sox10, Pax3, Kit, Mc1r, and Miph) and
DF (CD34 and Itga8) were present in their respective signatures,
aswellas Crabp1, Enpp2, Hhip, Sox2, Sostdc1, and many others
for total DP. Several known marker genes were independently
confirmed by qRT-PCR (Figure S2A). We also identified many
new signature genes for all cell types (Figure 3D; Table S3).
Genes involved in signaling were identified in all populations,
such as the Rho guanine exchange factor Net7 and the growth
factor Figf (Vegfd) in Epi; the TNF-induced metabolic regulator
Steap4 and the connective tissue growth factor (Ctgf) in ORS;
and the frizzled ligand Whnt8a, the hydrolase Liph, and the pla-
code marker Edar in Mx. Similarly, the inducer of Pi3k/Akt
pathway Igf1 and the adrenoreceptors Adrala and Adrald
were present in the DF signature, the activin receptor Acvric
and the chemokine Cc/25 in Mc, and the activator of canonical
Wnt pathway Rspo3 and the BMP ligand Gdf717 in DP. Tran-
scription factors were also uncovered in multiple populations,
including the bHLH family member Asc/4 in Mx and the silencing
factor Satb1 in Epi. The DP niche was further characterized by a
number of previously undescribed neural-associated genes,
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Figure 3. Molecular Signatures of Eight Main Skin/HF Cell Populations
(A) Hierarchical clustering of significantly enriched genes identified by ANOVA of the main eight skin/HF populations from the K14-H2BGFP;Lef1-RFP sort is
shown.

(legend continued on next page)
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such as the receptors Mc3r and Trom3, the cellular migration
regulator Slit2, and the Wnt antagonist guidance protein Draxin.
We validated expression of numerous signature genes by qRT-
PCR (Figure 3E; Figure S2B). Immunofluorescence staining for
the DP signature gene MC3R confirmed its strong expression
in DP cells (Figure 3F), although it also appeared to be expressed
in fibroblasts and/or adipocytes of the lower dermis and
the dermal sheath. Insights into several new signature genes
are described below in detail.

We recently isolated the earliest HF progenitors, dermal
condensate niche, and other distinct skin populations during
embryonic HF formation at embryonic day (E)14.5 and defined
their gene signatures (Sennett et al., 2015). To relate these newly
characterized populations from developing skin after birth with
their embryonic precursors, we compared the gene signatures
for Mc, Epi, DF, and DP with their corresponding embryonic
counterparts (Figure 3G; Table S6). Embryonic and postnatal
Mc showed a large overlap of signature genes (168, 27.8% of
P5 Mc), mostly associated with pigmentation. DF genes (23) at
P5 were found in common with embryonic DF (18.5% of P5
DF), mostly related to ECM organization. Lipid-processing cate-
gories were well represented in the 77 overlapping Epi signature
genes (414, 18.6% of P5 Epi). Finally, only 12.3% (71/578) of the
total DP gene signature at P5 was in common with the E14.5
condensate niche signature, and these genes were highly asso-
ciated with cell adhesion and nervous system development. This
suggests a conserved role of these functional categories in basic
DP biology, while otherwise widespread transcriptional shifts
occur as the cells mature.

A comparison with our previously published P5 molecular sig-
natures (Rendl et al., 2005) showed a majority of Mc (55.2%) and
DP (51.9%) signature genes in both signatures, whereas 25.8%
and 13.1% of previous ORS and Mx signatures overlapped with
our gene lists (Figure S2C; Table S6). We also compared our total
DP signature to the DP markers identified by Driskell and co-
workers at P2 (Driskell et al., 2009). Our total DP signature of
578 genes shared only 82 of 364 genes (22.5%) from that study
(Figure S2D; Table S6). This apparent low overlap is most likely
due to the use of different labeling and sorting methods, as we
employed the stringent combination of Lef1-RFP and ITGA9
for highly enriched DP isolation, whereas Driskell et al. (2009)
used CD133 alone, which also may be expressed in other skin
cell types. Finally, DP cells also have been molecularly charac-
terized during the second hair cycle and compared with bulge
and hair germ SCs (Greco et al., 2009). We revisited this analysis
and defined a total of 2,043 enriched DP genes for all three time
points in that study as genes with an FC > 2 compared to bulge
and germ SCs. Interestingly, 55.8% (207/578) of our P5 DP

signature overlapped with this very large DP gene list (Fig-
ure S2E; Table S6). The 207 common DP genes had a high
association with tissue morphogenesis, ECM organization, neu-
rogenesis, and the hair cycle (data not shown).

In summary, using RNA-seq we gained insights into the mo-
lecular lineage relationships and functional gene categories of
the main skin and HF populations, their relatedness to embryonic
precursors and adult counterparts, and we uncovered a plethora
of signature genes that likely play important roles in the function
of all analyzed cell types.

Hair Type-Specific DP Cells Are Highly Similar and
Exhibit Only a Few Signature Genes

To gain insights into the similarities and differences between in-
dividual DP subpopulations, we next performed two separate
ANOVAs for the four DP subtypes. ZZ-DP and G/AA-DP from
the Sox2%F;Lef1-RFP sorts (Figure 4A) and G-DP and AA/ZZ-
DP from the Crabp1-GFP;Lef1-RFP isolations (Figure 4B) were
compared along with seven of the eight main populations, i.e.,
Epi, ORS, Mx, TAC, Mc, DF, and Neg. To uncover hair type-en-
riched DP genes, we computed gene expression comparisons
between both GFP* and GFP~ DP subpopulations for signifi-
cantly changed genes (FPKM > 1; FC > 1.4x). GFP~ G-DP
and ZZ-DP populations were compared to each other as well.
To our surprise but consistent with the high similarity of the DP
subpopulations in the PCA and clustering analyses (Figure 2),
only 31 and 74 signature genes were identified for the G-DP
and ZZ-DP subpopulations, respectively (Figure 4C; Table S3);
351 and 224 genes were highly enriched in the AA/ZZ-DP and
G/AA-DP signatures, respectively. We then calculated AA-DP
signature genes that were present in both G/AA-DP and AA/
ZZ-DP signatures and had an expression FC > 1.4 compared
to both ZZ-DP and G-DP (Figure 4D; Table S3). We identified
only 76 AA-DP enriched genes, a similarly low number as for
G-DP and ZZ-DP (Figure 4D). In addition to identification of
few signature genes in each DP subpopulation, the level
of enrichment was typically modest. For example, gRT-PCR
demonstrated the previously described ZZ-DP-associated tran-
scription factor Sox18 as highly expressed in ZZ-DP, although it
also was enriched in G/AA-DP compared to all other populations
(Figure 4E). We confirmed a similar pattern for several other
DP subpopulation-enriched genes, such as the frizzled ligand
Wnt5b and the enzyme Manic1 for G-DP, the modulator of
Wnt signaling Frzb (Sfrp3) and the lipid transporter Abcg1 for
ZZ-DP, and the glutathione peroxidase Gpx3 and the transcrip-
tional regulator Plagl1 for AA-DP (Figure 4E; Figure S3A). At the
protein level, immunofluorescence staining for WNT5B and
GPX3 protein confirmed their presence in G-DP and AA-DP,

(B) Venn diagrams of cell-type-specific signatures. The overlaps represent commonly enriched genes in corresponding populations compared to all others.

Overlapping gene lists are in Table S4.

(C) GO analysis of molecular signatures. Notable terms are highlighted; all terms are listed in Table S5.
(D) Total number of signature genes with listed representative cell-type-specific markers organized according to functional categories. Fold change enrichment is
indicated. FPKM fold changes are between Epi versus ORS, ORS versus Mx, Mx versus ORS, Mc versus DF, DF versus DP, and DP versus DF. FDR of q < 0.05;

p value < 0.05. Gene lists are provided in Table S3.

(E) gRT-PCR validation of selected signature genes, relative expression is to dermis. Data are mean + SD from two measurements. See also Figure S2.
(F) Immunofluorescence staining for DP marker MC3R on K714-H2BGFP P5 back skin section is shown. Scale bar, 100 um.
(G) Comparison of P5 signatures with embryonic signatures from Sennett et al. (2015). Overlapping genes are listed in Table S6. Statistically significant overlap

was calculated with Fisher’s exact test.
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(legend continued on next page)
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respectively, but the detectable staining of both proteins in DPs
of the other hair types did not confirm a hair type-specific
expression pattern (Figure 4F). Only very few genes showed
high FC enrichment in only one DP subpopulation, including
Sox2, Sostdc1, and interestingly several noncoding RNAs
(ncRNAs), suggesting DP subpopulations exhibit very limited
hair type-specific signals at the transcriptomic level.

Comparison of our ZZ-DP and G/AA-DP signatures to previ-
ously reported DP genes for the same DP subpopulations (Dris-
kell et al., 2009) showed that our ZZ-DP signature only shared
five genes (6.8%) with the previously published list and G/AA-
DP had 41 overlapping genes (18.3%) (Figure S3B; Table S6).
The low overlap is most likely due to the difference of DP isolation
methods, as CD133 might have been the best marker available
at the time but stains only a subpopulation of DP cells and also
is expressed in non-DP cells (Figure S3C).

As all DP subpopulations isolated in our study showed only
few specific markers, we then defined a robust core DP signa-
ture, consisting of genes enriched in all DP subpopulations to
document their similarity. We first established expanded molec-
ular signatures for each DP subpopulation compared to all other
skin/HF cell types. These were assessed for overlap with each
other and with the total DP signature. For this we calculated
expression FC > 2 by comparing FPKMs (> 1) of all significantly
increased genes (ANOVA/CuffDiff) in each DP subpopulation
with FPKMs of all other main cell types (Epi, ORS, Mx, Mc, DF,
TAC, and Neg). These expanded signatures ranged from 844
genes for G/AA-DP cells to 419 genes for G-DP cells (Figure 4G;
Table S3); 289 ZZ-DP genes (47.9%), 404 G/AA-DP genes
(47.8%), 247 G-DP genes (58.9%), and 364 AA/ZZ-DP genes
(53.5%) were identified previously as signature genes in the total
DP population (Figure 2). As predicted from the PCA and clus-
tering analysis and the low signature gene numbers, all four
DP subpopulations showed strikingly similar molecular profiles
with most genes shared with at least one other DP subpopulation
(90% of ZZ-DP, 78% of G/AA-DP, 93% of G-DP, and 86% of AA/
ZZ-DP). Importantly, 285 genes were common to all four DP sub-
populations (data not shown), and of those a total of 202 genes
(70.9%) also were present in the total DP signature, establishing
with stringent criteria a core DP signature of universally ex-
pressed DP genes (Table S3). As predicted, this core signature
contained all previously identified DP markers, such as WifT,
Corin, Lepr, and Pbx1. Notably, it also identified many core
signature genes such as the calcium channel Trom3, the epox-
yde hydroxylase Ephx2, the neuron navigator family member
Nav3, and the cell morphology regulator Wasf3. Similar to previ-

ous GO analyses, the core signature was enriched for genes
involved in epithelium and nervous system development and
regulation of Smoothened-, Wnt-, and BMP-signaling pathways
(Figure S3D; Table S5).

Taken together, it appears that all DP subpopulations share
most of their genes and differentially express only very few
markers, including several ncRNAs. A convergent analysis of
all hair type-specific DP subpopulations together with total DP
established a comprehensive and stringent core DP molecular
signature that is shared by the DPs of all HF types.

SC Precursors from Developing Follicles Express
Distinct Signature Genes and Are Molecularly More
Similar to Adult Bulge SCs than Embryonic Placode
Progenitors

Many studies have focused on characterizing HFSCs at the
key stages of HF development and cycling (Greco et al.,
2009; Lien et al., 2011; Sennett et al., 2015), but no transcrip-
tome-wide information is available for the precursors of adult
bulge SCs during the early HF growth phase. By subdividing
the ORS into the HFSC precursors and the remaining HF-
ORS, we were able to define the HFSC precursor signature.
With a fourth ANOVA (Figure 5A), we compared HFSC precur-
sor and HF-ORS subpopulations (K74-RFP;Sox9-GFP sort),
again in conjunction with seven of the eight main populations
from the K14-H2BGFP;Lef1-RFP sort (i.e., Epi, Mx, TAC, Mc,
DF, DP, and Neg).

By comparing FPKMs > 1 of all differentially expressed genes
by ANOVA and/or CuffDiff, we identified 127 HFSC precursor
signature genes with an expression FC > 2 compared to all other
populations (Figure 5B; Table S3). Several of these markers were
validated by gRT-PCR (Figure S4A). Only a few signature genes
had been reported previously as HFSC precursor markers in
developing HFs, such as Nfatc1, Sox9, and Lgr6. Several other
signature genes uncovered by our analysis were adult SC
markers, such as Lrig1, Tgfb2, Tgfb3, and Gata6, but previously
not known to be expressed in precursors during early hair
growth. Indeed, 21% (27/127) and 23% (29/127) of these genes
were in common with previously described HFSC signatures
during the second hair cycle at P56 and P43-P69, respectively
(Figure 5C; Table S6). Interestingly, only seven genes (5.5%)
were commonly expressed with E14.5 placode progenitors, sug-
gesting that HFSC precursors at P5 are molecularly closer
already to adult HFSC.

GO analysis of the HFSC precursor molecular signature
showed that enriched genes were highly associated with ECM

(C and D) DP subpopulation-specific molecular signatures. Signature genes are organized according to functional categories. Indicated FPKM fold changes are
between (C) G-DP versus AA/ZZ-DP, ZZ-DP versus G/AA-DP, and (D) AA/ZZ-DP versus G-DP, G/AA-DP versus ZZ-DP. The AA-DP signature is a logical list of
shared enriched genes in AA/ZZ-DP and G/AA-DP compared to each pure G-DP and ZZ-DP (fold change average). FDR of q < 0.05; p value < 0.05. Gene lists are

provided in Table S3.

(E) gRT-PCR validation of signature genes, relative expression is to dermis. Data are mean + SD from two measurements. See also Figure S3.

(F) Immunofluorescence stainings for G-DP marker WNT5B and AA-DP marker GPX3 on K14-H2BGFP P5 back skin sections. Note that, although these proteins
are expressed in the DP subpopulation, they also are expressed in DPs of other hair types. Scale bar, 20 um.

(G) Venn diagram of expanded and total DP gene lists. The expanded DP subpopulation signature includes enriched genes compared to all other cell types
except DP. The overlap between the four expanded DP subpopulation and total DP signatures represents the core DP signature of shared genes in all five

DP populations. Expanded DP gene lists are provided in Table S83.

(H) The core DP molecular signature. Signature genes are organized according to functional categories. Average FPKM fold changes are shown of all DP sig-
natures versus DF. FDR of q < 0.05; p value < 0.05. The full core DP signature is listed in Table S3.
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Figure 5. Molecular Characterization of Bulge SC Precursors

(A) Hierarchical clustering of significantly enriched genes identified by ANOVA for HFSC precursors and the remaining ORS subpopulation from the K714-
RFP;Sox9-GFP sort is shown.

(B) HFSC precursor-specific molecular signature. Signature genes are organized according to functional categories. FPKM fold changes are between HF-SC
versus HF-ORS. FDR of q < 0.05; p value < 0.05. Gene lists are provided in Table S3.

(C) Comparison of the HFSC precursor signature with previously published embryonic placode (Pc) progenitor and adult bulge gene signatures. Some over-
lapping genes are listed here; all are in Table S6. Statistically significant overlap was calculated with Fisher’s exact test.

(D) GO analysis of the HFSC precursor signature. Notable terms are highlighted; all terms are listed in Table S5.

(E) gRT-PCR validation of selected signature genes, relative expression is to dermis. Data are mean + SD from two measurements. See also Figure S4.

(F) Immunofluorescence staining for HFSC precursor marker ITGB8 on K14-H2BGFP P5 back skin section is shown. Scale bar, 100 um.
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organization, cell communication, epithelium development,
regulation of cell adhesion, and SC development (Figure 5D;
Table S5), whereas genes enriched in the rest of the ORS
(HF-ORS) were closely associated with regulation of protein
transport and regulation of cell activation (data not shown).
Enrichment for signature genes including transcription factor
Foxi3, adhesion molecule /tgb8, docking protein Nedd9, and
Wnt receptor Fzd7 was validated by gRT-PCR (Figures 5E and
S4B), and immunofluorescence staining for ITGB8 confirmed
specific expression in the upper part of the ORS around the
area of the future bulge (Figure 5F).

Taken together, our analysis identified many signature genes
as well as several previously described genes from adult bulge
SCs that are already expressed in the HFSC precursors of early
growing HFs. It also confirmed that HFSC precursors at this
stage have continued to molecularly diverge from placode pro-
genitors (Ouspenskaia et al., 2016).

TAC Progenitors of Early Growing Follicles Have a
Unique Signature Enriched in Signaling Factors

TAC progenitors within the larger Mx compartment are thought
to exchange signals with the DP at the base of growing HFs,
and here we isolated and profiled the Shh-expressing TAC sub-
population. As stated earlier, we identified only 21 Mx and 128
TAC signature genes (Figure 3A; Table S2), due to their close
lineage relationship. When Mx and TAC were not directly
compared to each other, 96 and 234 genes were compiled
for each population, respectively, for an expanded signature
including 61 significantly increased genes in both populations
compared to all other cell types (Figure 6A; Table S6). Most pre-
viously described Mx genes, such as Msx2 and Ovol1, were en-
riched in both Mx and TAC progenitors, whereas other Mx
markers were TAC-specific genes and only enriched in this pop-
ulation, including Hoxc13 and Lef1 (Figure 6B; Table S3). The
TAC signature also contained many enriched genes that belong
to several important functional gene categories, such as sig-
naling (Bambi, Bmp2, Kitl, and Tiam2), transcription (Egr3,
Foxq1, Tob1, and Zfhx3), or adhesion (Unc5b, Cdhr5, Dsg4,
and Fndc9) (Figure 6B). Expression of TAC signature genes
was confirmed by gqRT-PCR (Figure 6C). The signature genes
identified here may play an important role in the signal exchange
and cell fate changes that control HF progenitor proliferation,
migration, and differentiation into the hair shaft and inner root
sheath channel.

Epithelial proliferating progenitors previously have been iso-
lated and molecularly characterized from adult HFs during the
anagen growth phase of the hair cycle (Lien et al., 2011). To
explore the similarities and dynamic changes between HF
development and adult re-growth, we directly compared the
signatures (Figure 6D). Our TAC population shared 62 genes
(26.5%) with adult TAC progenitors, many of which have
been implicated in HF morphogenesis/cycling and serine/
threonine kinase signaling (Figure 6B; Table S6). Several GO
categories involving signaling regulation were highly associated
with TAC, such as BMP, Wnt, and Smoothened pathways
(Figure B6E; Table S5). This signaling pathway enrichment was
not detected for other Mx cells (Figure 3C). Fittingly, similar
signaling pathways also are well represented in the DP GO

analysis (Figure 3C; Wnt, BMP, and Notch), underlining the
central importance of signaling crosstalk in these two neigh-
boring populations. In summary, this analysis showcases the
uniqgue molecular profile of the specialized TAC progenitor
subpopulation during early hair growth, with a significant
enrichment of signaling genes and overlap with adult TAC
progenitors.

Intercellular Network Analysis Uncovers Complex
Signaling Crosstalk in the Developing HF

Our transcriptome-wide analyses of molecular features of the
major HF cell types during early growth revealed, in most
populations, expression of many signature genes involved in
signaling pathways and cell communication (Figures 3C, 3D,
6B, and 6E). To systematically identify signals among these
populations, we constructed expression heatmaps for the
seven main populations covering known key signaling path-
ways (Figure S5). Genes were selected from the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway database and
included in this analysis when they were expressed by at least
one population with an FPKM > 1. For Wnt pathway-related
genes, most Wnt ligands were expressed by the epithelial pop-
ulations, whereas secreted Wnt regulators were specifically
expressed by dermal cells, most prominently DP cells. BMP li-
gands and receptors were expressed in both epithelial and
dermal compartments, while BMP inhibitors were mostly ex-
pressed by DP and DF, with the exception of highest Bambi
expression by TAC progenitors. Shh was most strongly ex-
pressed by TAC, as previously shown (Hsu et al., 2014b), while
Ptch1 receptor and downstream effectors were highest in the
DP. Notch ligands were highly expressed in epithelial popula-
tions, and downstream effectors were highly expressed in DP,
Mx, and TAC progenitors.

Although this analysis strategy provided a bird’s-eye view of
major signaling pathways, it could not reveal ligand/receptor in-
teractions and did not include all known signaling pathways. To
comprehensively interrogate the signal exchange among all key
HF populations, we conducted an unbiased intercellular network
analysis using all identified signature ligands and receptors for all
HF cell types (Epi, ORS, Mx, Mc, DF, DP, TAC, and HF-SC). We
first identified 342 and 353 unique ligands and receptors,
respectively, and described 878 unique interaction pairs (Fig-
ure 7A; Table S7). A similar approach was previously used to
define a cell-cell communication network in the human hemato-
poietic system (Qiao et al., 2014). Several signature ligands
and receptors were identified (Figure 7B). Mx cells uniquely
expressed only one single receptor (Edar), while TAC pro-
genitors produced several ligands and receptors, fitting for a
cell population involved in signaling. Interestingly, the highest
numbers of signature ligands and receptors was found in DP,
characteristic of a signaling center. We then constructed an
unbiased signaling network of 53 unique ligand/receptor interac-
tions (Figure 7C; Table S7). Some signal/receptor pairs were
between distant cells, such as Figf and Pdgfc from Epi to DP,
but numerous interactions were revealed between neighboring
cells. For example TAC progenitors appeared to signal to Mc
(Kitl), ORS (Efnb2), and DP cells (Shh and Tnf). Interestingly,
DP cells seemed to interact with all populations by secreting

3012 Cell Reports 74, 3001-3018, March 29, 2016 ©2016 The Authors



OPEN

ACCESS
CellPress

A ] — | ——

234
Signaling Hepl1 11x Transcription Adhesion/  Other Mapre3 5x
TAC Bambi 31x Hmger  3x Egr3 3x Structure Aim1 2x Mreg 7X
Bmp2 36x Nim1 9x Foxp1 3x Cdhr5 9x Atg9b 17x Mt4 23x
Bmp8a 25x Odc1 12x Foxq1 55x Cldn4  14x Bean1 111x Nxpe2 4x
Bmper  27x Padi3 12x Gli3 5x Cldn8 3x Calmi3 6x Nxpe4d 6x
Efnb2 2x Plk3 6x Hoxc13  6x Cldn10 17x Ccdc68 12x Prr5l 30x
Kitl 31x Ptpd4al 5x Id1 7x Dsg4 22x Coro6 1000x Psors1c2 6x
Nsmaf 5x Ptpre 5x Lef1 15x Fndc9 45x Crhr1 1000x S100a3 15x
Tiam2 13x Rnf34  4x Msx2 9x Krt31 8x Dapl1 4x Slc16a10 12x
Wnt10b 63x Soat1  6x Nfe2l3 5x Krt35 4x Dock8  14x Slc40a1l 14x
Enzymes Spint1  6x Ovol1 19x Krt36 116x Fndc9  45x Stra6 31x
Aldh1a3 147x Tgm6 93x Sp6 27x Krt81 9x Hspa2 10x Tmem64 2x
Alox8 17x Them4 14x Tob1 5x Krtap8-1 10x Jakmip2 340x Vat1l 39x
c Dclk3 24x Uox 28x Zfhx3 25x Uncbb  46x Kcnh1 19x Whrn 12x
®[Hoxc13 2Kt 0 Tgm6 ®(Mreg
20 300
40 15 40
20 10 20 20
5 100
0 0 = W 0 . ™ 0 i
:j Lef1 "*[Egr3 YSpint1 3[Prr5l
; 6 12 o
1 4 6 % 15
4 5 . 12
° 0'_U)><0 Q-_(_)U) O_U);‘ULEQ._OU)
S b I )
”"%EEDDfEZ ”"%EEDDTEZ
D P28 TAC E14.5 Pc
Lien et al. 2011 TAC Sennettetal 2015
N o2 10 224 7
299 62 172 - __ g {Haif cycle process
y N /’ g " O E'pithelial cell
o [ p-value: 4. 28E-7 B4l d'ﬁere"t'??tg’g"mat,on of
prvaluesicSe4r Ascl4  Pm20d1 2 3 BMP S'gnﬁlém canonical Wnt
Signaling Transcription Adhesion Bmp2 Rasgefib §’ Positive “eg@ signaling
Bambi E2f2 Cldn4 Hoxc13 Shh 2 fregulation of cell C’C'
Ptch2  Foxqf Cldn10 Msx2  Syt7 Smoothened S8H8hg
Shh Lef1 Unc5b Nckap5 Wnt10b

Figure 6. Molecular Characterization of a TAC Progenitor Subpopulation in Developing HFs

(A) Overlapping expanded signatures of Mx and TAC. 61 genes were found commonly enriched in both populations and are listed in Table S6.

(B) TAC-specific molecular signature. Signature genes are organized according to functional categories. FPKM fold changes are between TAC versus ORS. FDR
of g < 0.05; p value < 0.05. Gene lists are provided in Table S3.

(C) gRT-PCR validation of selected signature genes, relative expression is to dermis. Data are mean + SD from two measurements.

(D) Comparison of P5 TAC signature with previously published adult TAC and embryonic Pc progenitor signatures. Some common factors are listed here; all are in
Table S6. Statistically significant overlap was calculated with Fisher’s exact test. GO analysis of the TAC signature. Notable terms are highlighted; all terms are
listed in Table S5.

(E) Gene ontology analysis of the TAC signature. Notable terms are highlighted; all terms are listed in Table S5.
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(A) A ligand and receptor database containing 878 unique interaction pairs. See Table S7.
(B) Ligands and receptors present in the gene signatures identified in this study. Gene lists are in Table S7.

(legend continued on next page)
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ligands, such as Bdnfand Edn3 to Mc; Efnb3, Rspo1, and Spp to
ORS; Eda to Mx; and Fgf7 to DF. It is also interesting to note that
the only populations exhibiting autocrine regulations were Mc
(Npy), TAC progenitors (Shh), and the DP niche (Mdk, S100b,
Spp1, and Vegfa).

Next we searched for potentially activated pathways by iden-
tifying intracellular effectors in target populations. For this, we
performed a KEGG pathway analysis of signature receptors,
and we systematically identified intracellular KEGG pathway
members expressed in the signatures of corresponding cell
types (Figure 7D; Table S7). Several activated major pathways
and their intracellular effectors were identified (Figure 7D) for
numerous ligand/receptor pairs (Figures 7C and 7D, blue ar-
rows). Fgfr1 and Pdgfra in DP may bind different ligands from
other specialized cells, such as Vegfc from Mc and Fgf5 from
ORS, resulting in the potential activation of Pi3K-Akt, Ras,
Rap1, and Mapk pathways, considering the presence of intra-
cellular effectors Gng8, Mras, Magi2, and Map2k6 of these path-
ways in the DP signature (Figure 7D; Table S7). Similarly, Edn3
from DP could activate receptor Ednrb on Mc to potentially acti-
vate the Calcium-signaling pathway with intracellular effectors
Adcy2, Adcy9, and Slc25a4 present in the Mc signature.
Interestingly, some of these receptors/pathways were already
described as important regulators in the corresponding popula-
tion, such as Ednrb, Met, or Kit (Yaar and Park, 2012) in
Mc, but the precise source of their ligands has been unclear
until now.

Finally, as this network was exclusively built with signature li-
gands and receptors, it likely does not include important signal
exchange where the ligand and/or receptor is not uniquely
enriched as a signature gene in only one population. To uncover
such interactions in the subsequent analysis, we included
ligand/receptors from all expressed genes (FPKM > 5) in neigh-
boring Mc, TAC progenitors, and DP niche (Figure 7E; Table S7).
This analysis revealed a total of 137 interactions, of which 14
connected signature ligands and signature receptors (included
in Figure 7C), 50 pairs involved a single signature ligand or
receptor (Figure 7E, left), and 73 interactions associated non-
signature ligand and receptor gene pairs (Figure 7E, right).
Although most of these interactions are identified here and
need further corroboration of ligand/receptor expression by
immunofluorescence and functional studies to uncover their
biological significance, known crosstalk was identified, such
as Bmp receptor activation in TAC keratinocytes (Kobielak
et al., 2003), DP (Rendl et al., 2008), and Mc (Kawakami et al.,
2008). Regardless, this comprehensive signaling interaction
network provides numerous insights into the complexity of the
signal exchange during skin and HF development.

DISCUSSION

Several studies have focused on identifying ligands, their recep-
tors, and transcriptional/other regulators to gain insights into the
signaling interactions and molecular controls of HFSCs and their
dermal niche during HF formation, growth, and regeneration
(Driskell et al., 2009; Greco et al., 2009; Rendl et al., 2005; Sen-
nett et al., 2015). More than 6 years ago, two studies molecularly
characterized HF cell populations of the neonatal growth phase
through a global transcriptome-wide approach. The earlier study
isolated and characterized five major HF/skin populations, but
did not include epidermis and at the time could not distinguish
Shh* TAC progenitors from Mx, HFSC precursors from remain-
ing ORS, or hair type-specific DP subpopulations (Rendl et al.,
2005). Similarly, Driskell et al. (2009) molecularly defined for the
first time the DP niche of ZZ HFs (ZZ-DP), but did not apply a
stringent fold change threshold when defining signatures, as
many blood vessel and blood-related genes (FIt1, Kdr, Lyvel,
and Bmx) can be found in their ZZ-DP gene list. This study
also lacked characterization of other DP subpopulations and
any epithelial populations (Driskell et al., 2009). Moreover, Dris-
kell et al. (2009) isolated DP using CD133 that on its own may
not be specific to DP and may have labeled other skin cells as
well (Figure S3C). Of note, both previous studies used microar-
rays for transcriptome analyses, which could contribute to the
difference of signature gene numbers observed between these
reports and our findings.

In this study, we built on our previous molecular definition of
nascent HFs during embryonic skin development (Sennett
etal., 2015), and we characterized for the first time bulge SC pre-
cursors (HFSC), Shh-expressing transit-amplifying Mx progeni-
tors (TAC), and all three hair type-specific DPs from early
growing HFs, in addition to eight main skin/HF populations. To
accomplish this, we used four paired combinations of six fluores-
cent transgenic mouse lines and three specific antibody stain-
ings to isolate a total of 14 cell populations from P5 back skins,
characterized gene expression transcriptome-wide by RNA-seq,
and defined cell-type-specific molecular signatures of more than
3,000 signature genes combined.

Overlapping these signatures with previously published gene
lists during HF formation, growth, or regeneration demonstrated
that all populations shared a significant but varying number
of genes, providing fresh insights into their molecular evolution
as they mature during development. DP shared 12.3% (71/578)
of genes with DC precursors at E14.5 (Sennett et al., 2015),
16.3% (94/578) with the previously published P5 signature
(Rendl et al., 2005), and 35.8% (207/578) with adult DP during
the second cycle (Greco et al., 2009), suggesting these cells

(C) Cell-cell communication network constructed from signature ligands and receptors of each cell population. Signature ligands are color coded for the source
population. Color-coded signature receptors in target cells are listed below. Blue arrows denote interactions also found in KEGG pathway analysis (Figure 7D). All

interactions are listed in Table S7.

(D) KEGG pathway analysis of signatures. Color-coded signature receptors of enriched KEGG pathways are next to the arrows. The major pathways and color-
coded intracellular signature effectors in the target cell population are listed below. Note that numerous other KEGG pathway members were found in the

signatures (Table S7). All interactions are listed in Table S7.

(E) DP/TAC/Mc interaction network with all expressed ligands and receptors, independent of signature status. (Left) 50 ligand/receptor interaction pairs with
either ligand or receptor signature gene are shown. Signature genes are in bold. (Right) 73 non-signature ligand/receptor interactions are shown. Arrows connect

source with target populations. All interactions are listed in Table S7.
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express a constant subset of genes that defines their cellular
uniqueness independently of their developmental stage.
Regarding our unprecedented characterization of SC precursors
from developing HFs, signature comparisons revealed that they
are already molecularly closer to adult bulge SCs (Greco et al.,
2009) than to embryonic placode progenitors (Sennett et al.,
2015), yet they express a distinct gene expression signature
related to their developmental stage. Similarly, our molecular
definition of TAC progenitors during morphogenetic HF growth
identified a significant number of signature genes shared with
previously described P28 TAC (Lien et al., 2011) and with E14.5
placode progenitors, but also a uniquely enriched set of genes
that could play an important role in the signaling exchange
with the DP niche during early HF growth after birth. Of note,
E14.5 placode cells share several signature genes with both P5
HFSC precursors and TAC progenitors, indicative of the broader
developmental potential of these embryonic progenitors.

A notable strength of this study is the molecular characteriza-
tion of all three DP subpopulations, G-DP, AA-DP, and ZZ-DP.
Our integrated comparative analysis uncovered highly similar
molecular profiles for all DP subpopulations at the mRNA level,
while identifying only few hair type-specific DP genes. This
finding is in agreement with the previously proposed hypothesis
that the total number of DP cells and their overall signaling output
in differently sized niche compartments dictates hair type fate
(Chietal., 2013), rather than intrinsic molecular specificity in indi-
vidual DP subpopulations (Driskell et al., 2009). On the other
hand, some of the signature genes with the highest differential
expression in DP subpopulations were microRNAs (miRNAs),
suggesting that hair type determination could be regulated at
the posttranscriptional level. Also, it is interesting to note that
AA genes were enriched in the total DP signature, most likely
because the total sorted DP population contained a majority of
DPs from AA HFs (80%), based on the HF enrichment and cell
preparation method. This suggests that other studies using a
similar dermal preparation method for DP isolation might show
a bias toward AA DP cells as well. With this analysis, we also
defined an original overarching core signature of 202 genes
that are co-expressed and enriched by all DP subpopulations.
This commonly expressed set of DP-enriched genes shares
several signature genes with E14.5 DC and adult DP, suggesting
that a subset of the core signature is developmentally conserved.

Finally, our intercellular signaling network analysis using tran-
scriptome-wide gene expression information allowed compre-
hensive spatial mapping of ligands and receptors, downstream
signaling pathways, and corresponding intracellular effectors
throughout HFs and the skin. It revealed a complex web of cell-
cell communication through paracrine signals involving all popu-
lations included in our analysis. Notably, the DP appears to be a
major signaling center as it exhibited the highest number of inter-
acting ligands and receptors in its signature. Overall, only few sig-
nals identified in our study have been described previously, such
as Shh secretion from TAC (Hsu et al., 2014b) or Ednrb activation
in Mc (Pla and Larue, 2003); but, for most of these identified sig-
nals, the respective source or target cell had not been previously
identified. Of note, Epi seemed heavily involved in signaling cross-
talk, primarily with DF and Neg (endothelial and immune cells).
Our analysis identified interleukin 6 receptor alpha (//6ra) as a po-

tential activating receptor of Pi3k-Akt signaling in Epi, with ligand
116 secreted from Neg cells. As 116 recently was implicated in the
regulation of keratinocyte terminal differentiation (Son et al.,
2014) and wound-induced hair neogenesis (Nelson et al., 2015),
it will be interesting to confirm the precise source of I16 and the
involvement of Pi3k-Akt pathway in these processes.

Within the HF itself, ORS and Mc expressed many more recep-
tors in their signatures compared to ligands. Interestingly, Mc ap-
pears to activate the cAMP-signaling pathway through its recep-
tor Npyr in an autocrine fashion. As Npyr ligand Npy has been
associated with vitiligo in patients (Tu et al., 2001), our analysis
provides a possible molecular insight into Mc dysfunction in the
pathogenesis of vitiligo. Our focused signaling interaction analysis
identified additional signals of particular interest. Nrg2 signaling
from DP may activate Erbb3 in Mc, which is involved in Mc matu-
ration and melanoma development (Buac et al., 2009). Similarly,
DP-secreted Inhba could bind Acvr2a in Mc to modulate hair
pigmentation, as Acvr2a and Bmpr2 ablation in Mc induces gray-
ing (Han etal., 2012). Also, Edar is known to activate Shh signaling
through the NF-kB pathway (Schmidt-Ullrich et al., 2006), and it
could be the missing link between Eda secretion from DP and
Shh production from TAC. Finally, as Fgfr2lllb-null skins display
HF growth retardation and impairment of hair type specification
and hair shaft formation (Petiot et al., 2003), Fgfr2 activation in
TAC through binding of FGF ligands produced by DPs could be
an important regulator of progenitor differentiation.

Overall, by isolating and characterizing transcriptome-wide all
specialized key populations of developing HFs at an unprece-
dented level of refinement and sensitivity, we built a global
glossary of specific signature genes and intercellular signaling
interactions in the neonatal HF and skin. We share this set of sig-
natures with the scientific community in our open access online
database (http://hair-gel.net), enabling rapid interrogation of
gene expression in all major skin/HF cell populations. It is our
hope that promoting broad exchange of gene expression infor-
mation in this resource will spark development of reporter sys-
tems, launch functional genetic studies, and provide a deeper un-
derstanding of these SC, progenitor, and niche cell populations
and their complex signaling network controlling hair growth.

EXPERIMENTAL PROCEDURES

Mice

K14-H2BGFP, Lef1-RFP, Sox2%", K14-RFP, and Sox9-GFP mice were
described previously (Rendl et al., 2005; Sennett et al., 2015; Wang et al.,
2013). The Crabp1-GFP was originally generated by the GENSAT program
at the Rockefeller University (Gong et al., 20083). All animals were housed in fa-
cilities operated by the Center for Comparative Medicine and Surgery (CCMS)
at Icahn School of Medicine. All animal experiments were conducted in accor-
dance with the guidelines and approval of the Institutional Animal Care and
Use Committee at Icahn School of Medicine at Mount Sinai.

Immunofluorescence Staining

Back skins sections were fixed with 4% paraformaldehyde (PFA), washed with
PBS, and then incubated with primary and secondary antibodies as described
in more detail in the Supplemental Experimental Procedures.

Cell Isolation by FACS
To isolate cells, K14-H2BGFP;Lef1-RFP, Sox2%";Lef1-RFP, Crabp1-
GFP;Lef1-RFP, and K14-RFP;Sox9-GFP P5 back skins were processed as
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previously described (Clavel et al., 2012; Rendl et al., 2005). Details are pro-
vided in the Supplemental Experimental Procedures.

cDNA Generation, Library Manufacture, and RNA-Seq

RNA extraction, amplification, and library production were performed as pre-
viously described (Sennett et al., 2015). Sequencing libraries were generated
with 36 unique bar-coded adapters (biological duplicates for eight samples
from K14-H2BGFP;Lef1-RFP, three samples from Sox2%;Lef1-RFP,
three samples from Crabp1-GFP;Lef1-RFP, and four samples from K714-
RFP;Sox9-GFP) and subsequently sequenced on the llluminaHiSeq 2000 plat-
form using a 100-nt single-read setting. Reads were mapped, aligned, and
quantified to determine the FPKMs. This approach resulted in a high-quality
output, with a >30 mean quality score (Q score), >90% perfect index reads
for all samples, and a total of >1.3 billion reads representing on average 46.8
million reads with 31.1 million aligned reads and 8.2 million cDNA fragments
per sample (Table S1). Details of library production and RNA-seq analysis
are provided in the Supplemental Experimental Procedures.

Real-Time qRT-PCR

qRT-PCR was performed as previously described (Sennett et al., 2015).
Differences between samples and controls were calculated based on the
2745Ct method and normalized to Gapdh. Measurements were recorded
in duplicate. Details and primers used are provided in the Supplemental Exper-
imental Procedures.
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