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Pluripotency is the remarkable capacity of a single cell to engender all the specialized cell types of an adult
organism. This property can be captured indefinitely through derivation of self-renewing embryonic stem
cells (ESCs), which represent an invaluable platform to investigate cell fate decisions and disease. Recent
advances have revealed that manipulation of distinct signaling cues can render ESCs in a uniform ‘‘ground
state’’ of pluripotency, which more closely recapitulates the pluripotent naive epiblast. Here we discuss
the extrinsic and intrinsic regulatory principles that underpin the nature of pluripotency and consider the
emerging spectrum of pluripotent states.
Introduction
The pluripotent state is the fundamental building block at the root

of embryonic development. Cells that acquire pluripotency harbor

the functional capacity to give rise to all the somatic lineages of

the embryo and to the germline. In vivo, the pluripotent state

emerges during development of a totipotent zygote toward a

blastocyst. This process delineates two lineages: the inner cell

mass (ICM), which is the pluripotent founder population, and the

trophectoderm (TE), which forms an extraembryonic epithelial

layer that envelopes and supports the ICM. At the late blastocyst

stage (embryonic day 4.0 [E4.0]) the ICMconsolidates to establish

the pluripotent Nanog-expressing epiblast lineage and an over-

lying extraembryonic layer of Gata6-expressing primitive endo-

derm (also known as hypoblast) (Silva et al., 2009). At this point

the partitioned epiblast cells enter the developmental ‘‘ground

state,’’ the origin of all future embryonic lineages (Figure 1).

Acquisition of the ground state in the epiblast is characterized

by uniform expression of key pluripotency factors and reactiva-

tion of the paternal X chromosome in female embryos. This is

paralleled by the establishment of a derestricted epigenome,

including global DNA hypomethylation. The ground state can

therefore be considered a cellular condition that is liberated

from epigenetic and developmental constraints, a so-called

blank slate (Silva and Smith, 2008). Functionally, ground state

epiblast cells are described as being in a ‘‘naive’’ state of plurip-

otency, which reflects their unbiased developmental potential.

As postimplantation development proceeds however (from

E5.0), powerful inductive stimuli trigger naive epiblast cells to

transit to a ‘‘primed’’ phase of pluripotency that is poised to

initiate lineage-specification programs and is epigenetically

restricted (Nichols and Smith, 2009). Naive pluripotency in the

embryo is, consequently, an inherently transient condition.

Nevertheless, the ephemeral nature of naive pluripotency can

be captured indefinitely in vitro, through derivation of embryonic

stem cells (ESCs) from the ICM or through experimental reprog-

ramming strategies (Evans and Kaufman, 1981; Martin, 1981;

Yamanaka andBlau, 2010). Under permissive culture conditions,
416 Cell Stem Cell 15, October 2, 2014 ª2014 Elsevier Inc.
ESCs retain naive pluripotent capacity while undergoing self-

renewal—cell division without loss of cellular identity—and

thus represent a surrogate model of the naive epiblast that is

effectively kept in stasis.

Remarkably, when reintroduced back into the early embryo,

ESCs that have undergone extensive in vitro expansion are

induced to exit self-renewal and can efficiently contribute to all as-

pects of embryonic development (Bradley et al., 1984). If intro-

duced into a tetraploid donor blastocyst, which cannot complete

fetal development, healthy adult mice can be derived that are

exclusively composedofhitherto invitroculturedESCs, stringently

underscoring their unrestricted potency (Nagy et al., 1993). Impor-

tantly, thisoccurswithout tumorigenesis, demonstrating that in the

appropriate context, ESCs retain full control over the develop-

mental program. Because ESCs can efficiently colonize the germ-

line, they represent a highly tractable system for constructing

genetically engineered lines of mice such as gene knockouts.

Additionally, the unique properties of ESCs make them an in-

valuable tool for modeling developmental processes and disease.

More recently, a model of the primed pluripotent state termed

epiblast stemcells (EpiSCs)havealsobeenderived,whichprovide

a complementary system to investigate pluripotency and cell fate

decisions (Brons et al., 2007; Tesar et al., 2007).

In this Review, we discuss the fundamental principles that

underpin the self-renewing pluripotent state(s). We consider

the emerging spectrum of pluripotency that ranges from the

naive ‘‘ground state’’ to the developmentally ‘‘primed’’ state.

In particular, we focus on the accumulating knowledge of the

functional, epigenetic, and signaling properties that contribute

to propagating ground state pluripotency in murine ESCs.

The progress in this field has paved the way for defining and

establishing naive human ESCs (hESCs) and we consider these

recent advances.

Propagating Naive Pluripotency
Classically, mouse ESCs are derived through explanting an

intact blastocyst or an isolated ICM onto a layer of mitotically
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Figure 1. Establishment of the Pluripotent
Ground State In Vivo
Development of the zygote proceeds through
cleavage divisions to form a morula, which elabo-
rates the extraembryonic trophectoderm (TE)
lineage and the pluripotent inner cell mass (ICM) of
the blastocyst at E3.5. The ICM expresses both
Gata6 (green) and Nanog (blue) but subsequently
segregates into the extraembryonic primitive
endoderm (PrE) and pluripotent naive epiblast
(EPI), which exhibit mutually exclusive expression
of these genes, respectively. The EPI is the source
of all embryonic lineages, including the germline,
and is therefore the developmental ‘‘ground state.’’
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inactivated fibroblasts. These fibroblasts, known as ‘‘feeders,’’

endow trophic factors that together with fetal calf serum

engender a complex culture medium that supports self-renewal.

ESC culture media is typically supplemented with the signaling

molecule leukemia inhibitory factor (LIF), which can substitute

for feeders in the presence of an appropriate extracellular matrix

such as gelatin (Smith et al., 1988; Williams et al., 1988). Under

serum/LIF conditions (+/� feeders) ESCs are denoted as ‘‘con-

ventional’’ or ‘‘serum’’ ESCs. These cells have a high nuclear/

cytoplasmic ratio, form domed colonies of tightly packed but

heterogeneous cells, and are competent to be passaged as col-

ony forming single cells, a property referred to as clonogenicity.

A hallmark of such ESCs is the expression of Oct4, Sox2, and to

some extent Nanog, which together with a suite of intercon-

nected regulators, underpin pluripotency (Young, 2011; Dunn

et al., 2014). Historically it has only been possible to efficiently

derive ESCs from the 129 strain of mice using serum/LIF condi-

tions, implying that competence for self-renewal is significantly

influenced by genetic background (Gardner and Brook, 1997).

The derivation of ESCs from the ICM in serum is linked with

ongoing transcriptional changes and it has been suggested

that such derivation may occur via a primordial germ cell

(PGC)-like program (Chu et al., 2011; Tang et al., 2010). How-

ever, loss of the obligatory PGC factor Blimp1 does not impede

ESC derivation, confirming that ESCs represent direct capture

of the naive epiblast state (Bao et al., 2012). Nevertheless, one

consequence of the derivation and maintenance of ESCs in

serum is that undefined and often conflicting signaling pathways

are activated. While such conditions sustain naive pluripotency

at the level of the cellular population, they also promote a signif-

icant degree of morphological, transcriptional, and ultimately

functional heterogeneity among cells (Chambers et al., 2007;

Hayashi et al., 2008; Toyooka et al., 2008). As a result conven-

tional ESCs exist in at least two distinct populations that broadly

correspond to a naive state, which is functionally comparable

to the preimplantation epiblast, or the more developmentally

advanced ‘‘primed’’ state linked with expression of lineage-

associated genes and poor performance in pluripotency assays.

These subpopulations do however interchange their identity in

culture (Abranches et al., 2013), suggesting that the transcrip-

tional and functional differences between states are in dynamic

equilibrium, at least to some extent, and thus that ESCs in serum

can be considered ‘‘metastable,’’ cycling in and out of naive sta-

tus. Further subpopulations may also persist in serum that, for

example, are primed toward extraembryonic primitive endoderm

fate or have irretrievably exited a pluripotent state, highlighting

overall population heterogeneity (Canham et al., 2010).
The accumulated knowledge of the molecular circuitry that

underpins pluripotency has recently led to the development of

novel conditions that preferentially stabilize the naive state in cul-

ture. Principally, the use of two small-molecule kinase inhibitors,

termed ‘‘2i,’’ harnesses ESCs in a distinct transcriptional and

epigenetic state that includes uniform expression of key pluripo-

tency factors, such as Nanog and Prdm14, and global DNA

hypomethylation (Leitch et al., 2013; Yamaji et al., 2013; Ying

et al., 2008). This is paralleled by a consistent relatively spherical

colonymorphology, with defined borders that lack differentiating

cells, and enhanced clonogenicity. The 2i components comprise

a specific inhibitor of the FGF/ERK signal transduction pathway,

known as PD03 (PD0325901) and a specific inhibitor of GSK3,

referred to as CHIRON (CHIR99021), that collectively shield

ESCs from inductive differentiation stimuli (discussed below)

and select against differentiating cells (Ying et al., 2008). Impor-

tantly, ESCs maintained in 2i are consistently competent to

form high-contribution mouse chimeras with germline transmis-

sion—often with notably greater efficiency than ESCs from

serum conditions—and thus robustly satisfy the defining test of

naive pluripotency.

Culture using the 2i system is typically carried out in both a

feeder- and serum-free growth medium, such as N2B27, with

optional addition of LIF. Standard 2i conditions are therefore

highly chemically defined and thus theoretically more reproduc-

ible than serum-based culture. The use of the 2i culture system

also bears the significant advantage that it facilitates derivation

of pluripotent ESCs from all tested strains of mice, including bio-

logically important but previously recalcitrant strains, such as

nonobese diabetic (NOD) and FVB (Kanda et al., 2012; Nichols

et al., 2009; ten Berge et al., 2011). Indeed, pluripotent stem cells

can also be established from other developmental sources using

2i, such as rat preimplantation epiblast or PGCs, that adopt

almost identical properties to mouse ESCs, suggesting that

2i promotes a generic naive state, at least in rodents (Buehr

et al., 2008; Leitch et al., 2010). It remains to be determined how-

ever whether ESCs maintained in 2i over an extended culture

period are karyotypically and epigenetically stable (at genomic

imprints for example), an important feature of ESCs propagated

in serum/LIF.

Defining the Ground State In Vitro
The ‘‘ground state’’ is considered here as the unrestricted naive

pluripotent state established in vivo in the epiblast cells of the

mature blastocyst (Figure 1). This differs subtly from ‘‘naive

pluripotency’’ per se, which is strictly a functional property attrib-

uted to any cell that exhibits the unbiased capacity to give rise
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to all embryonic lineages following blastocyst injection, irrespec-

tive of how closely or not it mirrors the developmental ground

state established in vivo. Both serum/LIF and 2i/LIF culture con-

ditions are conducive for maintenance of naive pluripotency, as

judged by chimera contribution. However, most ESCs in serum/

LIF exhibit an altered transcriptional and epigenetic profile rela-

tive to preimplantation epiblast cells and thus, at the population

level, are considered to be functionally naive but not ground

state.

In contrast, the molecular and functional properties of ESCs in

2i/LIF are consistent with most of these cells being in an opti-

mized state of naive pluripotency that is closely comparable

to the developmental ground state in vivo. For example,

ESCs in 2i exhibit significantly reduced/absent expression of

lineage-associated genes, a permissive epigenetic landscape,

and cluster closely with E4.5 epiblast cells at the single-cell

transcriptome level (Boroviak et al., 2014; Marks et al., 2012).

For this reason ESCs in 2i (+/�LIF) are referred to as being

‘‘ground state,’’ since they are both functionally naive and a

close molecular approximation of the epiblast cells of the blas-

tocyst. It is important to consider however that while the 2i

system represents the best available approach to model the

developmental ground state, it remains an inherently imperfect

recreation, at least because self-renewal is not part of the in vivo

program. Thus, in the context of pluripotent cells in vitro, the

ground state can be considered to be the most pristine or opti-

mized state of naive pluripotency on a spectrum of multiple

naive states.

Extrinsic Signaling Pathways for Naive Pluripotency
The capacity for ESCs to indefinitely retain naive pluripotency in

culture requires a continuous input from extrinsic signals. Such

exogenous cues are requisite owing to ESC-derived autocrine

factors that promote exit from the self-renewal program and in

particular fibroblast growth factor (FGF). Secretion of FGF4 in

culture feeds back through the MEK/ERK signaling cascade to

sensitize ESCs to instructive differentiation signals, which in

turn direct commitment to specific lineages (Kunath et al.,

2007; Stavridis et al., 2007). Because Fgf4 expression in ESCs

is activated by OCT4 and SOX2, its prodifferentiation influence

is directly wired into the core pluripotency circuitry (Yuan et al.,

1995). Other influences intrinsic to ESCs, such as the NuRD

corepressor complex, also antagonize maintenance of naive

status (Reynolds et al., 2012). Thus, without culture conditions

that counterbalance or inhibit inductive differentiation signals

emanating from ESCs themselves, self-renewal is inherently de-

stabilized. As such, modulation of key extrinsic pathways such

as JAK/STAT3 activation, WNT signaling, BMP4 activity, or

FGF is important to maintain ESC identity and is considered

here in the context of the principal culture conditions serum/

LIF and 2i.

Serum/LIF Culture

The conventional regime of serum-supplemented culture influ-

ences multiple signaling pathways. However, an essential factor

is LIF, which acts via binding the gp130/LIF-R cell-surface re-

ceptor complex (Yoshida et al., 1994). Downstream, JAK kinases

phosphorylate and activate the transcription factor STAT3,

which is the critical effector of LIF. Consistently, the absence

of Stat3 is incompatible with ESC self-renewal in serum/LIF,
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whereas its overexpression is sufficient to drive LIF-independent

self-renewal (Niwa, 2007). The key role of STAT3 is further re-

vealed by its requirement to sustain the pluripotent ICM in vivo

(Do et al., 2013).

Mechanistically, phosphorylated STAT3 translocates to the

nucleus in ESCs, where it regulates several pluripotency-pro-

moting targets including Klf4, Gbx2, and possibly c-Myc (Cart-

wright et al., 2005; Hall et al., 2009; Niwa et al., 2009; Tai and

Ying, 2013). Because forced expression of these targets does

not fully recapitulate STAT3 activity however, LIF is expected

to modulate further genes. Indeed, elegant recent studies have

demonstrated that the transcription factor Tfcp2l1 is likely the

primary target promoting pluripotency downstream of LIF/

STAT3 (Martello et al., 2013; Ye et al., 2013). As such, Tfcp2l1

is necessary for ESC responsiveness to LIF in conventional con-

ditions and, conversely, forced Tfcp2l1 expression is sufficient to

support self-renewal in the absence of LIF. However, LIF does

additionally activate the PI3K/AKT and MEK/ERK signal cas-

cades, as well as bona fide STAT3 target Klf4, implying that while

Tfcp2l1 is the critical mediator, the full activity of LIF may be

realized through integrating multiple direct targets (Figure 2)

(Niwa et al., 2009). Paradoxically, this includes weak stimulation

of the differentiation-inducing MEK/ERK pathway.

In conjunction with LIF, fetal calf serum sustains self-renewal

in conventional conditions. The crucial component of serum is

BMP4, which acts via downstream SMAD signaling pathways

to activate Inhibitor of Differentiation (Id) genes. Forced expres-

sion of Id genes or addition of exogenous BMP4 to culture sub-

stitutes for serum to maintain self-renewal. This regulation may

function in part by promoting expression of E-Cadherin, which

restrains cell fate commitment (Malaguti et al., 2013). In the

absence of BMP4, ESCs progressively differentiate toward neu-

roectoderm derivatives, whereas absence of LIF from culture re-

sults in extensive nonneural differentiation (Ying et al., 2003). The

prevalence of reciprocal differentiation pathways when either

component is removed has fostered the assumption that LIF

and BMP4 together support self-renewal by each suppressing

differentiation toward specific fates, collectively restricting ac-

cess to all lineages.

2i Culture

Culture in serum/LIF sustains self-renewal by overriding or coun-

teracting differentiation stimuli downstream of their effects and,

thus, ESCs in conventional conditions exist in a battleground

of competing signals that precipitates in metastability. It is desir-

able therefore to identify conditions that insulate from, rather

than counteract, differentiation-inducing signals, thereby stabi-

lizing the upstream naive state. The key candidate formodulation

is the FGF-ERK pathway. Fgf4�/� ESCs are severely compro-

mised in differentiation toward both neural and mesendoderm

lineages, implying FGF4 is upstream of cell fate commitment.

A comparable phenotype is observed in Erk2�/� ESCs, high-

lighting ERK1/2 as the downstream effector of FGF4 (Kunath

et al., 2007; Stavridis et al., 2007). The FGF/ERK pathway thus

appears to drive transition out of naive status to a primed state

that is susceptible to further lineage-specifying cues. Mechanis-

tically, activated ERK2 phosphorylates the pluripotency protein

KLF2 leading to its proteosomal degradation and, consequently,

acts to destabilize the naive network (Yeo et al., 2014). In parallel,

ERK1/2 directly promotes competence for the primed state by
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Figure 2. Extrinsic Signaling Pathways that Feed into Reinforcing or Antagonizing Naive Pluripotency
Simplified schematic of various signaling cascades that affect self-renewal. Filled arrows indicate activation, whereas bars show inhibition or blockade of
target activity. A solid line implies a direct or known downstream target and a dashed line indicates an indirect or inferred effect. Clockwise: BMP4 is
present in serum and functions via SMADs to activate Id genes. LIF signaling affects many pathways but primarily acts via JAK-mediated phosphorylation
of STAT3, which activates Tcfp2l1 and Klf4. Canonical WNT signaling blocks GSK3 activity leading to stabilization of b-catenin, which in turn abrogates
TCF3-mediated repression of pluripotency genes including Esrrb. CHIRON closely mimics WNT signaling by inhibiting GSK3. FGF signaling activates the
MAPK pathway leading to phosphorylation of MEK, which in turn phosphorylates and activates ERK. Activated ERK promotes transition to ‘‘a primed’’
state, which is therefore blocked by the MEK inhibitor PD03.
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targeting poised chromatin to developmental genes (Tee et al.,

2014).

It was therefore hypothesized that blockade of ERK activity

would robustly capture the upstream naive state (Silva and

Smith, 2008). Indeed, the potent MEK inhibitor PD03, which

blocks phosphorylation and hence activation of ERK1/2, pro-

motes long-term self-renewal and colony formation in defined

media (Figure 2) (Ying et al., 2008). However, while inhibition of

ERK suppresses differentiation, PD03 is insufficient to support

ESC viability in the absence of LIF. Based on knowledge that

inhibition of another kinase, GSK3, enhanced ESC self-renewal

(Ogawa et al., 2006; Sato et al., 2004), it was found that addi-

tion of the GSK3 inhibitor CHIRON to PD03 culture stabilizes

ESC propagation, even without LIF or BMP4/serum. This rescue

of ESCs is closely phenocopied in Gsk3a/Gsk3b-null ESCs,

demonstrating that GSK3 is the specific target of CHIRON

(Ying et al., 2008). Collectively PD03 and CHIRON comprise

the ‘‘2i’’ culture system.

The effects of GSK3 inhibition on self-renewal are principally

mediated through stabilizing b-catenin. Indeed, ESCs lacking B-

catenin do not respond to CHIRON, confirming a direct effect

(Lyashenko et al., 2011; Wray et al., 2011). Such stabilization

of b-catenin effectively mimics stimulation of canonical WNT

signaling, which is thought to restrict progression from naive to

primed status (ten Berge et al., 2011; Yi et al., 2011). Mechanisti-

cally, stabilized b-catenin translocates to the nucleus, where it

may enhance expression of pluripotency factors through interac-

tions with OCT4 or via weakly expressed TCF1 (Kelly et al., 2011;

Yi et al., 2011). However, it appears that the primary role of nuclear
b-catenin in self-renewal arises through interactionswith its defin-

itive partner and transcriptional repressor TCF3. In ESCs, TCF3 is

colocalized with OCT4 and SOX2 at core pluripotency genes,

where the repressor activity of TCF3 competes to antagonize

OCT4/SOX2 activity. However, the interaction between TCF3

and b-catenin disrupts TCF3-mediated repression of these tar-

gets, thus stabilizing the naive self-renewal program (Faunes

et al., 2013; Wray et al., 2011). Inhibition of GSK3 with CHIRON

therefore relieves suppression of pluripotency genes by TCF3

and, consistently, genetic studies reveal Tcf3 null ESCs exhibit

enhanced self-renewal (Guo et al., 2011; Yi et al., 2011).

The critical target antagonized by TCF3 is Esrrb, since forced

expression of Esrrb substitutes for GSK3 inhibition to restore

viability, whereas ablation of Esrrb largely eliminates the self-

renewal response to 2i conditions (Martello et al., 2012). GSK3

inhibition with CHIRON therefore effectively represents an

extrinsic stimulus that operates through WNT signaling to rein-

force the pluripotency gene network (Loh and Lim, 2011). This

suggests that the ground state is not an inherently stable condi-

tion that can only be perturbed by differentiation cues but instead

requires continuous extrinsic input. Thus, 2i conditions elicit the

in vitro ground state through both shielding ESCs from differen-

tiation stimuli and also via engaging with the core pluripotency

circuit to reinforce its expression. The 2i system additionally ap-

pears to be inherently selective against cells that have exited

naive status (most cell types, including primed cells, differentiate

or die in 2i), and indeed this property can be exploited to select

for transition from partially reprogrammed pre-iPS to naive

induced pluripotent stem cells (iPSCs) (Silva et al., 2008).
Cell Stem Cell 15, October 2, 2014 ª2014 Elsevier Inc. 419
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Parallel Pathways Support Naive Pluripotency
An emerging theme is that naive pluripotency can be maintained

by modulating several independent extrinsic signaling pathways

(Figure 2). Moreover, because these various pathways signal

through parallel routes, they act additively to reinforce pluripo-

tency. Indeed, the optimal culture condition for robust self-

renewal of ground state ESCs comprises the three additive 2i/

LIF supplements (CHIRON, PD03, LIF), which primarily affect ca-

nonical WNT, FGF/ERK, and JAK/STAT signals. Notably, how-

ever, any combination of two of these tripartite supplements is

sufficient tomaintain naive self-renewal, at least in tested genetic

backgrounds (Wray et al., 2010; Dunn et al., 2014). The extrinsic

pathways impinged on by PD03, CHIRON, and LIF are therefore

to some extent redundant and can compensate for the absence

of one another to engender a naive state. Indeed the combina-

tion of FGF/ERK inhibition and BMP4 pathway augmentation

also elicits an apparent self-renewing ground state (Hassani

et al., 2014).While each extrinsic regulator has unique critical tar-

gets, there is also a degree of crosstalk and overlap as CHIRON,

LIF, and even PD03 all converge on activation of Tfcp2l1 (Ye

et al., 2013).

The redundancy between extrinsic inputs for self-renewal is

evidenced by deletion of the critical LIF effector Stat3 or its key

target Tfcp2l1. This loss renders ESCs nonviable in serum/LIF

conditions, yet is inconsequential for self-renewal in 2i because

essential LIF/STAT3 functions are compensated for by activation

of canonical WNT signaling and blockade of FGF/ERK (Martello

et al., 2013; Ying et al., 2008). Conversely, the CHIRON effector

b-catenin and downstream target Esrrb are absolutely required

for efficient self-renewal in 2i but are dispensable in serum con-

ditions, where LIF/STAT3 and BMP4 activity can bypass their

function to sustain ESC identity (Martello et al., 2012; Wray

et al., 2011). The same is true for Klf2, which appears to be an

essential component of the pluripotency circuit in 2i but not

serum (Yeo et al., 2014). Notably, however, the tripartite 2i/LIF

condition robustly maintains a naive state when any of these

genes is absent, underscoring the redundancy generated by

multiple pro-self-renewal pathways.

Thus, naive pluripotency, and indeed an unrestricted ‘‘ground

state,’’ can apparently be elicited through independent inputs

that operate through both unique and convergent targets, with

ESCs able to well-tolerate removal of one (or more) input as

long as others are in play. Above a threshold level of extrinsic

influences that either block differentiation or activate naive

genes, pluripotency is robustly stabilized. Notably, the theoret-

ical threshold level to stabilize naive status may vary in different

genetic backgrounds, where the sensitivity to specific pathways

is altered. For example, non-129 ESCs may exhibit enhanced

susceptibility to prodifferentiation FGF/ERK signaling, as may

XY as opposed to XX ESCs, implying a heightened dependence

on blockade of this stimulus to maintain naive status (Hanna

et al., 2009; Schulz et al., 2014). Moreover, other influences

intrinsic to ESCs can encourage exit from self-renewal, such

as the translational regulator PUM1, the zinc-finger protein

ZFP706, the subcellular localization of the transcription factor

TFE1, and the NURD corepressor complex, and may need to

be overcome to differing extents in different genetic contexts

(Betschinger et al., 2013; Leeb et al., 2014; Reynolds et al.,

2012). It will be of interest to elucidate the context-dependent
420 Cell Stem Cell 15, October 2, 2014 ª2014 Elsevier Inc.
molecular signatures generated by combinations of culture sup-

plements to dissect precisely how various extrinsic pathways

impinge on the ‘‘state’’ of pluripotency.

Intrinsic Networks for Naive Pluripotency
Downstream of extrinsic signals, regulatory networks of tran-

scription factors (TFs) and cofactors propagate the gene expres-

sion programs that underpin naive pluripotency (Young, 2011).

Such intrinsic genetic networks have been extensively interro-

gated and two TFs, Oct4 and Sox2, emerge as the fundamental

lynchpins. These factors are required for both the acquisition and

maintenance of pluripotency, and Oct4 and Sox2 are therefore

defined here as ‘‘core’’ pluripotency factors, albeit the critical

role of Sox2 may be to activate Oct4 (Avilion et al., 2003; Masui

et al., 2007; Nichols et al., 1998). Both Oct4 and Sox2 are ex-

pressed continually and relatively uniformly in ESCs under all

standard conditions. In the acute absence of Oct4 or Sox2,

ESCs progressively differentiate toward trophectoderm deriva-

tives, while overexpression also elicits lineage specification,

implying that precisely regulated OCT4 and SOX2 levels are

crucial for the balance between self-renewal and differentiation

(Masui et al., 2007; Niwa et al., 2000; Thomson et al., 2011).

Indeed, limiting the range of Oct4 expression to only intermedi-

ate levels by using heterozygous ESCs actually stabilizes a uni-

form naive state (Karwacki-Neisius et al., 2013).

In addition toOct4 andSox2,Nanog is historically included asa

key TF as it is crucial for the acquisition, but not maintenance, of

naive pluripotency (Chambers et al., 2007; Silva et al., 2009). The

requirement for Nanog to acquire naive pluripotency in vitro can

however be bypassed, implying thatNanog plays a distinct func-

tional role fromOct4 andSox2 (Carter et al., 2014; Schwarz et al.,

2014). Nonetheless, the Oct4/Sox2/Nanog (OSN) triumvirate

acts cooperatively in ESCs to bind overlapping genomic targets,

including their own promoters, and thus forms a robust auto-

regulatory network that self-maintains pluripotency. Prominent

among OSN targets are cis-acting regulatory elements, where

OSN acts both directly and as a platform to recruit diverse

coactivators and TFs that collectively execute the pluripotency

expression program. Importantly, OSN occupancy correlates

with cobinding by STAT3, b-catenin, and SMAD1, which are the

effectors of the propluripotency signaling cascades activated

by LIF, WNT, and BMP4, respectively, thus directly coupling

these signaling pathways to the genes regulated by the core plu-

ripotency circuitry (Chen et al., 2008; Loh et al., 2006; Young,

2011). The repressor TCF3 also engages with OSN to antagonize

activation of its targets (Cole et al., 2008), and thus CHIRON-

mediated abrogation of TCF3 activity via stabilized b-catenin

enhances self-renewal. Notably, when signaling cues are

switched to primed FGF/Activin conditions, OCT4 redistributes

away from naive genes to occupy enhancers associated with

early development through interactions with OTX2, underscoring

howcoreTFscan integrate extrinsic cues in acontext-dependent

manner (Buecker et al., 2014; Factor et al., 2014).

ESCs also express a repertoire of ‘‘ancillary’’ pluripotency

regulators such as Klf2, Esrrb, Klf4, Prdm14, Sall4, Tfcp2l1,

and Tbx3 that reinforce and buffer the pluripotency network

against prodifferentiation influences but are typically individually

dispensable for pluripotent identity. Indeed, the expendable role

ofNanog for pluripotencymeans it is also included as an ancillary



Figure 3. Genetic Networks for
Maintenance of Naive Pluripotency
The pluripotency network includes essential core
components (Oct4/Sox2) and multiple ancillary
factors (shown in green) that collectively form a
self-organizing circuitry. Ancillary factors generally
act to buffer the network against fluctuations and
perturbations that promote exit from self-renewal
(shown in red). In serum (left), ancillary factors are
heterogeneous among the population and thus
render individual ESCs in varying states of sus-
ceptibility to inherent influences that promote exit
from self-renewal such as the FGF/ERK pathway
or NuRD corepressor complex activity (shown as
canals in the ancillary bubble). When the pluripo-

tency network is stabilized through blocking key differentiation influences and/or by directly reinforcing expression of ancillary factors (e.g., 2i/LIF, right), the
influences that drive exit from self-renewal are mitigated and robust naive pluripotency emerges.
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factor. In general, ancillary factors stabilize each other’s expres-

sion through feedback loops, at least indirectly, and thus form a

redundant self-organizing circuit (Dunn et al., 2014). In conven-

tional conditions, many ancillary factors exhibit heterogeneous

expression, fluctuating between on and off states at the single-

cell level and thus render individual ESCs in varying degrees of

susceptibility to distinct lineage-specifying cues (Figure 3)

(Chambers et al., 2007; Martello et al., 2012; Toyooka et al.,

2008; Yamaji et al., 2013). In 2i however these factors appear

to be homogenously expressed among the population, which

may both reflect and contribute to stabilized naive pluripotency

(Wray et al., 2010).

When active, ancillary factors can act through both over-

lapping and distinct mechanisms to affect pluripotency. For

example, SALL4 associates with OCT4 to promote repression

of trophectoderm genes and stabilizes expression of Oct4 itself

(Zhang et al., 2006). ESSRB on the other hand directly integrates

into the pluripotency TF circuitry by fine-tuning the expression

level of key targets cooperatively with NANOG, while PRDM14

represses FGF signaling and DNA methylation (Festuccia et al.,

2012; Grabole et al., 2013; Yamaji et al., 2013). In serum condi-

tions, other groups of collaborative TFs or ‘‘modules’’ are also

considered important. The ‘‘Myc’’ module, for example,

promotes rapid transition through G1 cell cycle and suppresses

differentiation, in part by activating Dusp2 and Dusp7 phospha-

tases that repress FGF/ERK (Cartwright et al., 2005; Chappell

et al., 2013). These modules and the extended genetic networks

that underpin pluripotency in serum have been extensively re-

viewed (Chambers and Tomlinson, 2009; Jaenisch and Young,

2008; Loh et al., 2011; Ng and Surani, 2011; Young, 2011).

The current knowledge of the molecular determinants of plu-

ripotency is largely inferred from conventional ESC conditions.

This is an important consideration because such serum condi-

tions sustain self-renewal through distinct pathways, and hence

through at least subtly altered networks, to ground state ESCs.

Thus, while the genetic networks in serum conditions represent

one route to engender functional pluripotency, they by nomeans

represent the only or defining molecular signature of self-renew-

ing naive pluripotency per se. For example, the Myc module,

which is critical in serum, is almost entirely silenced in 2i.

Indeed, approximately 25% of active ESC genes are differen-

tially expressed between 2i/LIF and serum/LIF conditions

(�3,500 genes, >2-fold) (Marks et al., 2012). Functional pluripo-

tency is therefore apparently maintained across a surprisingly
wide bandwidth of transcriptional (and epigenetic) variation.

Consequently, while important work has elucidated a persuasive

model to describe pluripotency in the context of conventional

ESCs, the extent to which existing paradigms are absolute

requirements or context-dependent nodes for eliciting naive plu-

ripotency is unclear.

This ambiguity is exemplified by Prdm14, which has been

shown to be a critical component of the genetic framework

that supports ESC self-renewal in serum, thus implying an

essential function in pluripotent identity in general. However,

Prdm14 is dispensable for both the self-renewal of ESCs in 2i

and for executing all differentiation pathways, highlighting a

strictly context-dependent role (Grabole et al., 2013; Yamaji

et al., 2013). Such ambiguities are also probably relevant, at least

to some extent, for the precise roles of other TFs, small RNAs,

epigenetic mechanisms, and cis-regulatory elements that input

into pluripotency. Understanding how various regulatory com-

ponents integrate into pluripotency in distinct contexts and their

interplay will be an important aspect of future studies.

Insights into the transcriptional foundations of conventional

and ground state ESCs have however recently been established,

with several conclusions deducible (Dunn et al., 2014; Marks

et al., 2012). For example, cell-cycle genes are downregulated

in 2i/LIF, whereasmetabolic genes are highly upregulated, which

may be related to parallels between ground state ESCs and early

development where shifts in metabolic pathways occur (Zhou

et al., 2012). Alternatively, the high metabolic activity in 2i

conditions could be indicative of increased cellular stress. We

consider here significant distinctions and overlaps between con-

ventional serum/LIF ESCs and ground state ESCs in 2i/LIF.

Pluripotency Gene Networks

First, Oct4 and Sox2 are expressed at comparable levels be-

tween serum and 2i/LIF, suggesting that at the population level,

there is no inherent difference in the core circuitry between

states. Most ancillary pluripotency genes, including Tbx3, Esrrb,

Nanog, Klf4, and Klf2, are however expressed moderately higher

in 2i/LIF conditions (typically <2-fold up). This primarily reflects a

switch from mosaic expression in serum to expression by all

cells in 2i/LIF, since differences are mitigated by comparing

the naive Rex1-positive population from serum to ground state

ESCs (Marks et al., 2012). Some pluripotency factors/markers,

including Prdm14, Stella, Tcl1, and Tfcp2l1, are nevertheless

directly upregulated in 2i/LIF (typically 2- to 5-fold up), which

may be a consequence of stabilizing the naive circuitry or
Cell Stem Cell 15, October 2, 2014 ª2014 Elsevier Inc. 421
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alternatively indicate that these genes are themselves important

for reinforcing the ground state downstream of 2i signaling.

Consistent with the latter, forced expression ofPrdm14 can drive

a homogenous Rex1-positive state, even in conventional condi-

tions, while Tcfp2l1 overexpression efficiently reprograms

primed EpiSCs to naive pluripotency (Grabole et al., 2013; Mar-

tello et al., 2013).

Despite the general trend of higher expression of ancillary

factors in 2i/LIF, several previously pluripotency-associated

genes, such as Utf1, Lin28b, and Id genes, are downregulated

in ground state ESCs. This highlights both that these targets

are invoked through distinct pathways and also that their high

expression is not an absolute requirement for pluripotency. A

further question is the degree to which allelic regulation im-

pinges on the stability and state of pluripotency. Indeed, it

was observed that Nanog may be predominantly monoalleically

expressed specifically in serum-cultured ESCs, thereby predis-

posing them to differentiation cues (Miyanari and Torres-Padilla,

2012). Nevertheless, recent reports have suggested Nanog

transcription is biallelic in both 2i/LIF and serum, implying this

mode of regulation is unlikely to underlie significant differences

between pluripotent states/conditions (Faddah et al., 2013; Fil-

ipczyk et al., 2013).

Lineage-Associated Genes

A prominent distinction between ground state ESCs and con-

ventional ESCs is the significant expression of lineage-associ-

ated transcripts in the latter. In particular, genes related to

mesoderm and ectoderm are active in serum conditions but

are near undetectable in 2i/LIF (Marks et al., 2012). To some

extent, this is related to heterogeneity in serum. Nevertheless

the Rex1-positive naive population in serum still exhibits consid-

erable expression of lineage-associated genes. Indeed, the

global transcriptomes between Rex1-positive ESCs in serum

and ESCs in 2i/LIF are clearly distinct (Marks et al., 2012).

Thus, as of yet there is no subpopulation in serum that is tran-

scriptionally equivalent to ground state ESCs. This collectively

suggests that serum ESCs may represent capture of a more

developmentally advanced state linked with onset of some early

differentiation programs, relative to ESCs in 2i/LIF where devel-

opmental gene expression is diminished.

Nonetheless, transcription of certain lineage-associated

genes is detectable in 2i/LIF conditions, particularly germline

and endoderm transcripts. Enhanced germline gene expression

is primarily a consequence of global DNA hypomethylation.

Expression of endoderm genes on the other hand may be

related to the capacity of some ESCs in 2i/LIF to generate

extraembryonic primitive endoderm and/or trophectoderm, in

addition to maintaining naive potential (Morgani et al., 2013).

This is consistent with 2i/LIF conditions supporting capture of

at least some cells in an earlier developmental stage, perhaps

comparable to nascent ICM cells (E3.5) or earlier, rather than

the naive epiblast (E4.5). Significantly, however, expression of

a reporter for the primitive endoderm gene Hex is heteroge-

neous across the population and delineates the subpopulation

most primed toward extraembryonic fate. Thus, while 2i/LIF

conditions establish a relatively homogenous population with

respect to naive pluripotency, there may still be significant

functional and transcriptional heterogeneity related to extraem-

bryonic potential.
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In contrast, heterogeneity in serum involves dynamic cycling

in and out of various embryonic ‘‘lineage-primed’’ states, and

it has been posited that such metastability is an essential

component of pluripotent identity per se. It is also suggested

that the concomitant expression of multiple lineage specifiers

in serum establishes a balance whereby distinct differentiation

pathways mutually counteract the dominance of each other,

with the upshot being all fates remain accessible and thus

an unrestricted pluripotent state is engendered (Loh and

Lim, 2011). Indeed, forced expression of lineage specifiers

can reprogram somatic cells to pluripotency, supporting the

concept that pluripotency can be established through the equi-

librium of counteracting differentiation forces (Montserrat et al.,

2013; Shu et al., 2013). Nevertheless, the absence of multiline-

age gene expression in 2i/LIF coupled with an apparently uni-

form naive capacity, argues that metastability is not an inherent

property of naive pluripotency but rather may represent a cul-

ture epiphenomenon due to the conflicting stimuli in serum

(Smith, 2013). Importantly, however, the onset of mosaic

expression profiles and heterogeneity may be crucial aspects

that underlie competence for unbiased cell fate commitment

during exit from pluripotency.

Epigenetic Landscapes in Pluripotent States
DNA Modification

DNAmethylation at CpG dinucleotides is a repressive epigenetic

modification typically associated with transcriptional silencing

but also has diverse roles in regulating transposable elements,

splicing, and genome integrity (Smith and Meissner, 2013).

Once established, DNA methylation (5mC) is faithfully propa-

gated through cell divisions and stabilizes restriction of cellular

identity (Bröske et al., 2009; Hemberger et al., 2009; Ng et al.,

2008; Oda et al., 2013). However, during early development,

5mC is dynamically remodeled, leading to a globally hypomethy-

lated state in the ICM (Smallwood et al., 2011; Smith et al., 2012).

The global erasure of 5mC is considered important to remove

epigenetic barriers against the acquisition of pluripotency (Hack-

ett and Surani, 2013). Nevertheless, despite being derived from

the hypomethylated ICM, ESCs in serum accumulate high levels

of global DNA methylation usually associated with primed or

lineage-restricted cells (Meissner et al., 2008).

In contrast, recent studies have shown that ground state ESCs

exhibit a globally hypomethylated DNA methylome, with 5mC

�3-fold lower in 2i/LIF-derived ESCs relative to ESCs in serum

(Ficz et al., 2013; Habibi et al., 2013; Leitch et al., 2013). The

levels and distribution of 5mC in 2i/LIF ESCs thus appear

comparable with the derestricted ICM or naive epiblast cells

(E3.5–E4.5), whereas 5mC in serum ESCs is closer to the

hypermethylated state of primed postimplantation epiblast

(E6.5). Moreover, the apparently naive subpopulations in serum

(Rex1/Nanog-positive) still retain elevated global 5mC, under-

scoring that they are not directly equivalent to ground state

ESCs (Ficz et al., 2013; Habibi et al., 2013), albeit the quintile

of ESCs expressing the highest level ofRex1 do appear relatively

hypomethylated (Singer et al., 2014). This may imply that ESCs in

serum dynamically transition into a hypomethylated state at low

frequency. Such dynamic DNAmethylation variation, particularly

at cis-regulatory enhancers, may play a key role in modulating

the functional heterogeneity of serum ESCs, since ablation of
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DNA methyltransferases promotes uniform self-renewal (Jasnos

et al., 2013; Lee et al., 2014). Conversely, stable hypomethylation

in 2i/LIF is probably directly linked with competence for uniform

ground state pluripotency by minimizing epigenetic restrictions

and intercellular variation.

The epigeneticmemory imposed by 5mC is surprisingly plastic

in ESCs as switch from serum to 2i/LIF induces comparatively

rapid hypomethylation, while the reciprocal switch results in

appropriate acquisition of DNA methylation (Leitch et al., 2013;

Shipony et al., 2014). Some loci are resistant to demethylation,

however, such as genomic imprints and IAP elements, which is

consistent with their escape from reprogramming during preim-

plantation development. Mechanistically, resistant loci are en-

riched with H3K9me3, which may act as a platform that blocks

demethylation or that preferentially attracts residual DNAmethyl-

ation activity, perhaps viaUHRF1, which directly bindsH3K9me3

(Bostick et al., 2007; Habibi et al., 2013; Rothbart et al., 2012). On

the other hand, the mechanism that mediates global 5mC

erasure in 2i/LIF may include oxidation of 5mC to 5-hydroxyme-

thylcytosine (5hmC) by TET enzymes since 5hmC is transiently,

but weakly, enriched at some genomic loci during ESC transition

to ground state pluripotency. Indeed, in the absence of Tet1 and

Tet2, both the rate and extent of 5mC erasure is compromised

(Ficz et al., 2013; Hackett et al., 2013). Nevertheless, Tet1/

Tet2�/� ESCs can still undergo significant demethylation,

whereas, strikingly, Prdm14�/� ESCs fail to become hypomethy-

lated in 2i/LIF. This seems to reflect a key role for PRDM14 in re-

pressing the de novomethylasesDnmt3a andDnmt3b, which are

required for maintenance of 5mC in ESCs (Chen et al., 2003; Gra-

bole et al., 2013; Leitch et al., 2013; Yamaji et al., 2013). Further-

more, PRDM14 also directly targets TET activity (Okashita et al.,

2014), highlighting Prdm14 as a key hub that integrates multiple

synergistic DNA demethylation mechanisms. Thus, DNA hypo-

methylation in ground state ESCs appears to be mediated via

decommissioning the de novo DNA methylation machinery

and, in parallel, through targeted 5hmC conversion.

Interestingly, in contrast to male XY ESCs, which are predom-

inantly studied owing to their higher derivation efficiency, female

XXESCs in serumdo exhibit global DNA hypomethylation. This is

a direct consequence of two active X chromosomes promoting

repression of de novo methyltransferases and pERK activity

(Ooi et al., 2010; Schulz et al., 2014; Zvetkova et al., 2005). The

magnitude of hypomethylation in XX ESCs relative to XY coun-

terparts can vary from 10% to 3-fold depending on the genetic

background and precise culture conditions, such as the pres-

ence of feeders (Hackett et al., 2013; Schulz et al., 2014). Never-

theless, the observation that XX ESCs exhibit significantly

depleted 5mC coupled with blockade of pERK activity suggests

that female ESCs in serum conditions may occupy a pluripotent

state closer to the in vitro ground state. Indeed, DNA hypomethy-

lation per se may serve as a useful marker for benchmarking

pluripotent states and, in particular, for denoting ESCs that

have entered ground state pluripotency.

Histone Modification

The copresence of the activating modification H3K4me3 and

repressive polycomb mark H3K27me3 on chromatin is termed

bivalent. Bivalency is observed in multiple cell types but is a

particularly prominent feature of developmental promoters in

conventional ESCs. The bivalent signature is thought to dampen
transcription but maintain a flexible poised state that can be

rapidly reactivated in response to lineage-specifying cues,

albeit evidence is accumulating that bivalency may be function-

ally dispensable (Denissov et al., 2014; Voigt et al., 2013).

Significantly, epigenetic profiling revealed that H3K27me3 is

depleted in ground state ESCs, and consequently the number

of bivalent domains is dramatically reduced. The reduction of

H3K27me3 in 2i/LIF may be a direct effect of ERK inhibition,

since ERK is necessary for EED activity at target promoters

(Tee et al., 2014). Nevertheless, the developmental genes that

lose H3K27me3 in 2i/LIF are generally not derepressed, implying

that alternative mechanisms constrain their expression (Marks

et al., 2012). Notably, polycomb is dispensable for ESC self-

renewal, as is DNA methylation (Leeb et al., 2010; Tsumura

et al., 2006), but their absence abrogates differentiation, indi-

cating that these repressive epigenetic systems primarily func-

tion in the initiation andmaintenance of cell fate restriction rather

than pluripotent identity per se.

We await detailed reports on the relative abundance and distri-

butions of other chromatinmodifications between various plurip-

otent states. One observation however is that pluripotent cells

in 2i/LIF may exhibit a global reduction of the repressive marks

H3K9me2 and H3K9me3 (Leitch et al., 2013). There is also a

reported concomitant increase in H3K4me3, while PADI4,

which citrulinates linker histone H1 to decompact chromatin, is

also upregulated in ground state conditions (Christophorou

et al., 2014). Thus, multiple repressive modifications (5mC,

H3K27me3, H3K9me2, H3K9me3) are apparently depleted, or

at least redistributed, in 2i/LIF conditions, while several epige-

netic mechanisms linked with decondensed chromatin are

active. This observation is consistent with ground state cells

acquiring a derestricted epigenetic state that is conducive to

the onset of all developmental programs, upon appropriate cues.

Transcriptional Pausing

One potential consequence of a general reduction of repressive

epigenetic modifications is precocious transcription. Neverthe-

less despite previous suggestions (Efroni et al., 2008), neither

ESCs cultured in 2i/LIF nor in serum appear to exhibit global

transcriptional hyperactivity, suggesting that alternative mecha-

nisms may be in place to regulate transcription (Marks et al.,

2012). One possibility is that RNA polymerase II (Pol II) pausing

at promoter proximal sites has a prominent role. Such a regula-

tory mechanism may be important at lineage-specific genes in

early embryonic cells and, indeed, promoter proximal Pol II

pausing is prevalent in ESCs in serum. This may be mediated

in part by ERK1/2 activity, which directly phosphorylates the

CTD at developmental genes thereby promoting Pol II pausing

(Tee et al., 2014). Strikingly, however, ESCs grown in 2i/LIF

exhibit a significantly greater extent of promoter proximal

pausing relative to ESCs in serum, and this effect is particularly

evident at developmental genes, among others (Marks et al.,

2012). Pol II pausing may therefore be a crucial regulatory mech-

anism associated with ground state pluripotency. However, as

ERK activity is blocked in 2i/LIF conditions, it is unclear what

mechanisms direct such elevated transcriptional pausing.

The Extended Spectrum of Pluripotent States
The emerging theme from multiple studies is that pluripotency,

as a functional property, is not restricted to a specific underlying
Cell Stem Cell 15, October 2, 2014 ª2014 Elsevier Inc. 423



Figure 4. Embryonic Origin and Spectrum of Pluripotent Stem Cell
States
The pluripotent cells of a blastocyst between E3.5 and E4.5 can give rise to
functionally naive ESCs (blue). Between E5.5 and E8.0 postimplantation
epiblast can establish EpiSCs (orange), which occupy a primed pluripotent
state. Additionally, primordial germ cells (PGCs), which are the founders of the
germline lineage, can give rise to naive EGCs (green), which are highly com-
parable to ESCs. Depending on the culture/derivation conditions these
pluripotent stem cells occupy discrete molecular states that can be broadly
classed as naive or primed. The most optimized state of naive pluripotency,
which closely recapitulates the naive epiblast cells of the blastocyst, is termed
ground state. An interchangeable spectrumof pluripotent statesmay arise that
ranges from ground state to primed pluripotency. The state of pluripotency
adopted in vitro is primarily dictated by the combination extrinsic signals in the
culture environment rather than the developmental source of the pluripotent
cells. CH, Chiron; PD, PD03.
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molecular signature or specific culture parameters. Indeed, there

appears to be a surprisingly broad bandwidth ofmolecular states

that can confer pluripotent properties. This plasticity/flexibility

effectively results in a spectrum of pluripotency, upon which

pluripotent states are progressively more restricted, or at least

altered, but nonetheless still exhibit some defining features of

pluripotency (Figure 4). At one end of the continuum is the

ground state, which perhaps represents the state of broadest

and most unrestricted developmental potential. Indeed, a frac-

tion of ground state ESCs in 2i/LIFmay be functionally totipotent,

capable of contribution to embryonic and extraembryonic line-

ages (Morgani et al., 2013). At the other end of the spectrum is

the so-called ‘‘primed’’ pluripotent state, as exemplified by

EpiSCs.
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EpiSCs are established frommouse postimplantation epiblast

and beyond (E5.5–E8.0) and require bFGF and Activin A sig-

naling to maintain self-renewal (Brons et al., 2007; Tesar et al.,

2007). EpiSCs exhibit pluripotent features such as the capacity

to undergo multilineage differentiation in vitro and efficiently

form teratomas in vivo, while they also express the core pluripo-

tency factors Oct4 and Sox2. However, Oct4 expression in

EpiSCs is primarily driven by its proximal enhancer, as opposed

to the distal enhancer that is active in naive ESCs, and this

distinction is often used as a proxy to distinguish between

primed and naive pluripotent states. Transcriptionally, EpiSCs

exhibit reduced/absent expression of many ancillary pluripo-

tency factors, including Klf4, Klf5, Prdm14, Rex1, and Esrrb,

which is in part due to attenuated Nanog expression (Festuccia

et al., 2012). Moreover, EpiSCs accumulate epigenetic barriers

incompatible with a naive state such as female X chromosome

inactivation and promoter DNA methylation at pluripotency

genes. Consequently, primed EpiSCs contribute poorly or not

at all to blastocyst chimeras and are thus functionally distinct

from naive ESCs. Instead, EpiSCs appear to functionally

resemble the anterior primitive streak (Kojima et al., 2014), albeit

there is considerable heterogeneity at the population level and

forced expression of E-Cadherin can restore naive potential

(Ohtsuka et al., 2012). Notably, an alternative model of the

primed state known as epiblast-like cells (EpiLCs) has recently

been developed, and although EpiLCs more closely parallel the

postimplantation epiblast (E5.5–E6.5) than do EpiSCs, they do

not self-renew (Hayashi et al., 2011). Nonetheless, the transient

EpiLC population is a highly useful system to model pluripotent

state transitions.

Between the states characterized by ground state ESCs and

lineage-primed EpiSCs, theremay be a continuumof self-renew-

ing pluripotent states with distinct functional and transcriptional

signatures and biases. These appear to be primarily a conse-

quence of extrinsic influences modulated by culture conditions,

with serum conditions, for example, perhaps being intermediate

on the spectrum. Like 2i/LIF culture, such conventional serum

conditions promote cells with naive potential (germline compe-

tent), which are at least Rex1 positive. However, as judged by

several criteria, the Rex1-positive ESCs in serum appear more

developmentally advanced than ground state ESCs in 2i/LIF

and thus occupy a discretemolecular state of naive pluripotency.

Serum conditions additionally support cells with apparent

‘‘primed’’ properties (Oct4 positive/Rex1 negative). This subpop-

ulation is however functionally distinct from primed EpiSCs as

inferred from the observation that EpiSCs, but not ESCs, can

readily contribute to all germ layerswhen engrafted onto cultured

postimplantation embryos (Huang et al., 2012). Collectively, this

suggests that the pluripotent state(s) that arise in serum condi-

tions occupy positions along the spectrumbetween ground state

and primed cells. Another so-called ‘‘2C’’ state is also reported to

exist in serum, which apparently closely parallels two-cell em-

bryos at the transcriptional level (Macfarlan et al., 2012). Further

pluripotent ‘‘states’’ may be generated according to precise cul-

ture conditions that intercalate between ground state, serum,

and primed states. For example, various combinations and/or

concentrations of PD03, CHIRON, BMP4, and LIF could

engender distinct pluripotent cells, with different properties to

bona fide ground state ESCs in 2i/LIF (or 2i) (Figure 4) (Chen
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et al., 2013). More subtle alterations to conditions may also have

profound effects. The addition of vitamin C or knockout serum

replacement (KSR) to conventional culture conditions, for

example, promotes TET catalytic activity, leading to global

DNA hypomethylation and an altered transcriptional profile

(Blaschke et al., 2013). The presence or absence of feeders

also impinges on the precise molecular signature of ESCs.

Thus, a range of pluripotent states exist that are, in general, a

direct response to culture conditions. It remains to be deter-

mined precisely what the functional differences are between

such states and whether they might correspond to successive

pluripotent phases during ontogeny. Notably, however, most no-

des along the pluripotent spectrum in vitro are reversible just by

interchanging culture parameters, albeit EpiSCs are somewhat

restricted (Bao et al., 2009). Indeed, pluripotent stem cells from

distinct developmental origins also assume the state dictated

by conditions rather than the embryonic source. Embryonic

germ cells (EGCs) derived from PGCs, for example, are almost

indistinguishable from ICM-derived ESCs, when both are in the

same media (2i/LIF or serum) (Leitch et al., 2013). Moreover,

the ICM forms self-renewing EpiSCs, rather than ESCs, when

derived in appropriate media, while postimplantation epiblast

can form ESCs rather than EpiSCs in serum/LIF (Bao et al.,

2009; Najm et al., 2011). This collectively implies that up to a

threshold level of progressive restriction, pluripotency is plastic

and can revert throughmultiple molecular states through altering

culture parameters, which are therefore the dominant influence

over which pluripotent state emerges (McEwen et al., 2013). It

is therefore crucially important to consider the precise culture

environment when inferring absolute conclusions related to

pluripotent identity.

Toward Naive Human ESCs
The matter of pluripotent ‘‘state’’ is particularly relevant when

considering human ESCs (hESCs), which have been considered

to occupy a phase of pluripotency with more similarity to themu-

rine primed rather than naive state and thus a relatively advanced

position on the spectrum (De Los Angeles et al., 2012). This

classification of hESCs as ‘‘primed’’ is based on several lines

of evidence including expression of Oct4 driven by its proximal

enhancer, relatively high primed/lineage-associated gene

expression (such as Fgf5 and Lefty1), global DNA hypermethyla-

tion, morphological similarity to EpiSCs, and reliance on FGF/

Activin for self-renewal. Moreover, hESCs are not LIF respon-

sive, while conventional 2i conditions elicit neural differentiation,

implying that unlike mouse ESCs, 2i does not select against the

expansion of differentiated cell types in hESC cultures (Hirano

et al., 2012; Theunissen et al., 2014). As such, it has become a

question of great interest whether hESCs, and by extension

human iPSCs, can be coaxed into the naive state. This may

enhance their developmental potential, facilitate genetic/experi-

mental manipulation, and potentially enable purer populations of

differentiated cells to be generated, all of which would have im-

plications for development of disease models and regenerative

therapies.

Several studies have reported that after transgenic interven-

tions, hESCs/iPSCs with naive properties can be derived and

maintained (Buecker et al., 2010; Hanna et al., 2010; Wang

et al., 2011). However, the requirement for continued genetic
manipulation limits their clinical utility and it is desirable to

identify culture conditions that directly support human naive plu-

ripotency independently of transgenes. A precedent for this

possibility is that primed EpiSCs revert to a naive state at low

frequency when switched to mouse naive culture conditions

(Bao et al., 2009; Gillich et al., 2012), albeit primed hESCs do

not respond equivalently.

To address this, human-specific conditions for putative naive

states have recently been developed. For example, hESCs

cultured in basal media containing FGF and TGF supplemented

with 2i, LIF, and Dorsomorphin (AMP kinase and BMP inhibitor)

upregulate multiple naive markers including NANOG, KLF4,

and TBX3 (Chan et al., 2013). Alternative culture parameters

include 2i, FGF, and KSR either supplemented with LIF and

ROCK inhibitor (Valamehr et al., 2014) or without (Ware et al.,

2014). Indeed, monkey iPSCs are also reported to acquire

several naive traits using variations of the 2i/LIF/FGF condition

(Fang et al., 2014). Another study using a panel of six inhibitors

including 2i/LIF reported hESCs with many apparent naive

features and contribution to interspecies chimeras, albeit it is un-

clear whether this can be used as a robust test for naive plurip-

otency (Gafni et al., 2013). Finally, using a targeted reporter for

OCT4 expression from its naive-specific distal enhancer, a

comprehensive screen identified an alternative combination of

six inhibitors (2i, ROCKi, BRAFi, SRCi, and JNKi) supplemented

with LIF and Activin. Under these conditions, hESCs appear to

exhibit a more compelling upregulation of naive markers, as

judged by equivalence with mouse ESCs, but lack other naive

features such as two active X chromosomes in female cells

(Theunissen et al., 2014).

A significant issue toward establishment of naive hESCs is

that, at present, there is no universal defining test for naive plu-

ripotency in a human system, unlikemurine ESCswhere chimera

contribution to blastocysts is the benchmark. Assigning naive

status to hESCs is therefore generally based on a molecular

rather than a functional basis. One key parameter to consider

is similarity to the global gene expression profile of human preim-

planation epiblast cells (Yan et al., 2013), which represent the

human ground state. Additionally, global DNA hypomethylation

(<40%) appears to be a fundamental feature of naive pluripo-

tency both in vitro and during preimplantation development in

human and mouse (Guo et al., 2014; Smith et al., 2014; Wang

et al., 2014) and should be used as a critical benchmark for

bona fide ground state status in hESCs. Given this, the recent

report that hESCs exhibit significant global DNA hypomethyla-

tion and clustermore closely with in vivo epiblast at the transcrip-

tional level is of great interest (Takashima et al., 2014). Here,

transient expression of NANOG and KLF2 followed by switch

to 2i/LIF (with titrated CHIRON) in conjunction of PKC inhibitor

enabled expansion of ‘‘reset’’ hESCs that show all tested molec-

ular features of ground state pluripotency, including two active X

chromosomes and diminished lineage-associated expression.

Functionally, these cells rely on TCFP2l1 analogous to mouse

ESCs in 2i and can contribute to the ICM in early mouse em-

bryos, unlike conventional hESCs. While there is an initial

requirement for forced transgene expression, this can also be

achieved without genetic intervention implying that human

pluripotent stem cells have the intrinsic capacity to occupy a

state closely comparable to mouse ground state ESCs.
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The conditions reported to date considerably narrow the gap

between hESCs and ground state epiblast cells in vivo. As

such, important steps have been taken toward generating

bona fide naive human stem cells and have led to multiple novel

pluripotent ‘‘states’’ being established. Similarly, to the pluripo-

tent spectrum in mice, these distinct states of human pluripo-

tency probably have discrete features and functional benefits

for future research and may potentially reflect successive plurip-

otent phases in vivo.

Perspective
The capture of naive pluripotency has enabled unparalleled in-

vestigations into development and disease. Studies are also un-

covering the extrinsic and intrinsic regulators of pluripotency per

se, revealing a broad bandwidth of influences that feed into the

balance between maintenance or exit from self-renewal. One

consequence of this is that a spectrum of self-renewing pluripo-

tent ‘‘states’’ emerges depending on extrinsic cues in the culture

environment. Ongoing refinements to such parameters will help

to shed more light on the underlying mechanisms of pluripo-

tency, and importantly, how this property can be further ex-

ploited for research and biomedical purposes. The insights

gained from murine models are now being applied to human

ESCs and iPSCs, which hold great promise for therapeutic appli-

cations.
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