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Establishment, maintenance, and exit from pluripotency require precise coordination of a cell’s molecular
machinery. Substantial headway has been made in deciphering many aspects of this elaborate system,
particularly with respect to epigenetics, transcription, and noncoding RNAs. Less attention has been paid
to posttranscriptional regulatory processes such as alternative splicing, RNA processing and modification,
nuclear export, regulation of transcript stability, and translation. Here, we introduce the RNA binding proteins
that enable the posttranscriptional regulation of gene expression, summarizing current and ongoing research
on their roles at different regulatory points and discussing how they help script the fate of pluripotent stem
cells.
Introduction
Embryonic stem cells (ESCs), which are derived from the inner

cell mass of the mammalian blastocyst, are remarkable because

they can propagate in vitro indefinitely while retaining both the

molecular identity and the pluripotent properties of the peri-im-

plantation epiblast. Consequently, ESCs provide a biologically

relevant and experimentally tractable model system for studying

regulators of cell fate and cell fate transitions in early devel-

opment. Understanding the molecular mechanisms of ESC

maintenance and differentiation is critically important not just

scientifically but also clinically, because an improved knowledge

of pluripotency and embryonic development will allow ESCs to

be more effectively utilized as an in vitro platform for disease

modeling, drug discovery, and tissue regeneration.

While the transcriptional, signaling, and epigenetic regulation

of these cells have been the primary focus of research efforts in

recent years (reviewed in Ng and Surani, 2011; Young, 2011;

Watanabe et al., 2013), posttranscriptional and translational

mechanisms of control remain relatively unexplored, despite

evidence that they play a dominant role in driving ESC fate de-

cisions. Indeed, posttranscriptional regulation has been re-

ported to account for nearly 75% of the changes in protein

levels after differentiation induced by knockdown of the tran-

scription factor Nanog (Lu et al., 2009), and it was recently

demonstrated that control over translational initiation by the

eIF4e binding proteins dramatically influences the efficiency of

reprogramming somatic cells to induced pluripotent stem cells

(iPSCs) (Tahmasebi et al., 2014). The cell controls protein levels

posttranscriptionally using a large collection of tools that in-

cludes noncoding RNAs and RNA binding proteins (RBPs).

Recent work elucidating the functions of microRNAs (miRNAs)

and long noncoding RNAs (lncRNAs) in ESCs has been

comprehensively reviewed elsewhere (Greve et al., 2013;

Ghosal et al., 2013; Wright and Ciosk, 2013; Flynn and Chang,

2014). Similarly, posttranslational regulation of protein levels

through the addition of covalent modifications also has been

discussed recently (Wang et al., 2014b). The purpose of this Re-

view is specifically to address the roles of RBPs in the mainte-

nance and differentiation of ESCs.
RBPs are responsible for every event in the life of an RNA

molecule, including its capping, splicing, cleavage, nontem-

plated nucleotide addition, nucleotide editing, nuclear export,

cellular localization, stability, and translation (Keene, 2007).

Overall, little is known about RBPs: most are classified based

on computationally predicted similarities to proteins with known

RNA binding domains, and until recently, few of these predic-

tions have been verified in a cellular context in vivo. The recent

introduction of a technique termed ‘‘mRNA interactome cap-

ture,’’ which enables the identification of proteins bound to poly-

adenylated RNAs in vivo, has been a significant development for

the field (Baltz et al., 2012; Castello et al., 2012). Using this

method, several groups were able to create a comprehensive

catalog of RBPs in different mammalian cells, including 555

RBPs inmouse ESCs (Kwon et al., 2013). However, the functions

of these RBPs in ESCs and their changes in ESC differentiation

have yet to be addressed. Indeed, the mechanism of action of

only a small number of RBPs has been examined in any great

detail in the context of pluripotency. Here, we summarize current

knowledge of RBP contribution to posttranscriptional and trans-

lational regulation in ESCs, following the approximate order that

each regulatory event would be encountered as a transcript born

in the nucleus migrates into the cytoplasm and is translated into

a polypeptide (diagrammed in Figure 1). Throughout, we also

discuss potential directions of future inquiry that will allow us

to more fully appreciate the scope of RBP-mediated posttran-

scriptional and translational regulation in pluripotency.

Alternative Splicing
Alternative splicing of mRNA transcripts is probably the best-

studied area of RBP-driven posttranscriptional control in ESCs,

both in terms of the maintenance of the pluripotent state as

well as in the artificial induction of pluripotency in somatic cells.

A number of key pluripotency factors have been shown to exist

as multiple isoforms that vary in stability, function, and intra-

cellular localization due to differences in either coding exons or

untranslated regulatory sequences. For example, Oct4 has two

isoforms: Oct4A is the canonical pluripotency transcription fac-

tor expressed in ESCs and embryonal carcinoma cells, while
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Figure 1. RBPs Involved in Pluripotency Act at Many Different Regulatory Steps
Summary of the RBPs and the events they regulate in the maintenance and exit from pluripotency as discussed in this Review. Starting in the nucleus, RBPs
regulate splicing (FOX2, SON, SFRS2, MBNL1, and MBNL2) and alternative polyadenylation (FIP1) simultaneously with transcription. RBPs then regulate export
of transcripts (THOC2 and THOC5). RBPs also can induce modifications to RNAs including nucleotide changes (ADAR, METTL3, and METTL14 in nucleus) and
nucleotidyl transfer (LIN28A in association with the TUTases ZCCHC6 and ZCCHC11 in the cytoplasm), which in turn influence mRNA stability and translation. In
the cytoplasm, the binding of RBPs to the 30UTRs of transcripts directly regulates mRNA stability and translation (TRIM71, PUM1, and BRF1). Translation is also
influenced by RBPs that bind the 50UTR of transcripts (NAT1, RBM35A, and PTBP1). Blue circles indicate RBPs. RBP genes in red are positive regulators of
pluripotency. RBP genes in green are negative regulators of pluripotency. Black circles indicate the protein products of the genes whose expression levels are
affected by RBPs.
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Oct4B is a cytoplasmic protein with unknown functions ex-

pressed in nonpluripotent cells (Atlasi et al., 2008). Intriguingly,

Oct4 was identified in the HeLa mRNA interactome (Castello

et al., 2012), raising the possibility that certain isoforms of Oct4

could be acting as RBPs in particular cell types. Other important

alternatively spliced genes affiliated with the ESC state include

Sall4, which has two isoforms that play collaborative roles in

maintaining pluripotency; Tcf3, whose two isoforms inhibit

Nanog and Oct4 transcription to different degrees (reviewed in

Cheong and Lufkin, 2011); Nanog, whose three isoforms main-

tain ESC pluripotency with varying efficacies (Das et al., 2011);

and DNMT3B, whose �40 isoforms are each differentially ex-

pressed in pluripotent cells and various distinct tissue types (Go-

palakrishnan et al., 2009). An especially well-developed story is

that of Foxp1, which possesses several isoforms, including

one that is uniquely expressed in ESCs. This particular transcript

contains an exon variant that encodes an altered forkhead

domain, yielding an ESC-specific Foxp1 with a DNA binding

motif different from the canonical Foxp1 consensus motif.

Demonstrating the dramatic impact of this change in sequence

specificity, only the ESC form of Foxp1 can stimulate the tran-

scription of pluripotency genes and repress ESC differentiation

genes (Gabut et al., 2011). Thus, this interesting example shows

how alternative splicing can be an integral part of the switch that

regulates the choice between self-renewal and differentiation.

Transcript splicing is mediated by a core set of proteins and

small nuclear RNAs that comprise the spliceosome, but addi-

tional RBPs are critical for dictating the spatial and temporal

specificity of splicing events needed to drive tissue-specific

expression of mRNA isoforms. Despite the obvious importance

of this posttranscriptional phenomenon, the RBPs that enable

the establishment and maintenance of the ESC splicing signa-

ture have only begun to be deciphered. Thus far, both positive
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(FOX2, SON, and SFRS2) and negative (MBNL1 and MBNL2)

regulators of the ESC-specific splicing signature have been iden-

tified; the list of RBPs involved is sure to increase as research in

this area expands.

In human ESCs (hESCs), FOX2 (RBM9 and FXH) promotes

exon exclusion when bound to the upstream flanking intron

and exon inclusion when bound to the downstream flanking

intron, as demonstrated by crosslinking immunoprecipitation

with high-throughput sequencing (CLIP-seq). Interestingly,

many FOX2 targets are splicing factors as well, which suggests

that FOX2 is an upstreammaster regulator of splicing regulators.

FOX2 activity is critical for pluripotency, because depletion of the

gene leads to hESC differentiation and death, thus highlighting

the functional importance of active maintenance of the ESC

splicing program (Yeo et al., 2009).

Another RBP critical for maintaining the hESC-specific com-

plement of transcript variants is the spliceosome-associated

factor SON. A genome-wide RNAi screen found that knockdown

of SON caused hESC differentiation. Sequencing of wild-type

and SON-depleted hESCs demonstrated that SON specifically

targets short introns with GC-rich weak splice sites, and in the

absence of SON, the transcripts of a number of key pluripotency

genes like OCT4 and PRDM14 have aberrant inclusion of introns,

leading to their degradation by nonsense-mediated decay (Lu

et al., 2013). Like FOX2, then, SON helps create a splicing signa-

ture important for specifying and maintaining the pluripotent

state.

A third splicing factor that positively regulates the self-renew-

ing state of hESCs was described in a recent report (Lu et al.,

2014). Sifting through transcriptome and proteome data

comparing hESCs and hiPSCs with fibroblasts, these authors

identified SFRS2 as the most enriched splicing factor in pluripo-

tent cells and MBD2 as the most differentially spliced transcript.
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This methyl-CpG binding protein exists as three isoforms

(MBD2a–MBD2c), withMBD2c enriched in pluripotent stem cells

andMBD2a in fibroblasts. Stable knockdown of SFRS2 in hESCs

reduces expression of pluripotency genes and is associated with

an isoform switch fromMBD2c to MBD2a due to SFRS2 binding

upstream of an exon unique to MBD2c. While overexpression

of MBD2a promotes hESC differentiation, overexpression of

MBD2c enhanced reprogramming of fibroblasts to hiPSCs.

Interestingly, MBD2 had previously been identified as one of

the miR-302 mRNA targets partially underlying the ability of

this family of miRNAs to promote somatic cell reprogramming

(Lee et al., 2013; Subramanyam et al., 2011). Here, the authors

show that miR-302 specifically targets MBD2a, but not

MBD2c, suggesting that the effect of MBD2 on pluripotency is

isoform dependent. In sum, SFRS2 provides an exciting

example of how multiple regulatory pathways can cooperate to

promote the pluripotent state.

In contrast to the positive regulators of ESC self-renewal

described above, MBNL1 andMBNL2 repress ESC splicing pat-

terns. Knockdown of either gene causes both human andmouse

somatic cell lines to shift toward an ESC-like splicing pattern,

including the acquisition of the ESC isoform of Foxp1. Moreover,

depletion of Mbnl1 and Mbnl2 improved the efficiency of mouse

somatic cell reprogramming of MEFs. Splicing code analysis in

human and mouse ESCs suggests that the presence of Mbnl

binding sites upstreamof an exon is associatedwith its inclusion,

while downstream binding is associated with exclusion—a

pattern of binding opposite to that of FOX2 (Han et al., 2013).

Together, the examples of FOX2, SON, SFRS2, and MBNL1/2

reveal a very active role for RBPs that regulate splicing in both

self-renewal and differentiation conditions. Determining how

RBPs regulate splicing programs in cell fate choices encoun-

tered during the development of the three embryonic germ layers

as well as the germline will be an important area of future pursuit.

Alternative 30UTR Cleavage and Polyadenylation
In addition to varying the combination of coding exons that are

included in an mRNA molecule, posttranscriptional regulatory

machineries influence the processing of the 30 ends of tran-

scripts. Many mammalian genes contain more than one polya-

denylation site that can be recognized for cleavage and addition

of the poly(A) tail, and current estimates suggest that upward of

50%–70% of mammalian RNAs are subject to alternative polya-

denylation (APA), leading to transcripts with varying 30UTR
lengths (Shepard et al., 2011; Derti et al., 2012). APA appears

to be closely linked with cell state: for example, ESC differentia-

tion and embryonic development is associated with 30UTR
lengthening (Ji et al., 2009; Shepard et al., 2011), while prolifera-

tion and somatic cell reprogramming are accompanied by 30UTR
shortening (Sandberg et al., 2008; Ji and Tian, 2009). This is

thought to occur because the length of the 30UTR can affect

the availability of RBP and miRNA binding sites that are critical

for determining transcript stability, localization, and translation.

Indeed, there have been a few notable examples of how

mRNA isoforms with shorter 30UTRs can be more stable (Mayr

and Bartel, 2009, Boutet et al., 2012) and more efficiently trans-

lated (Sandberg et al., 2008) than their longer counterparts due

to differential inclusion of repressive miRNA binding sites. How-

ever, the biological roles of APA remain unclear at the global
level, because sequencing studies, including one recently con-

ducted in NIH 3T3 fibroblasts, have shown that long and short

30UTR mRNA isoforms of the same genes have comparable sta-

bility and translation levels (Spies et al., 2013). These obser-

vations suggest, among other possibilities, that the effects of

APA on transcript stability and translation may be specific to

certain subsets of biologically important genes, while for the ma-

jority of transcripts, APA primarily serves some other regulatory

purpose, such as intracellular localization (Spies et al., 2013).

Transcript cleavage and polyadenylation occur through the

cooperation of several protein complexes: cleavage and polya-

denylation specificity factor (CPSF) recognizes the polyadenyla-

tion signal (PAS) upstream of the cleavage site, while cleavage

stimulating factor (CSTF) recognize downstream sequence ele-

ments (DSEs), and this leads to the recruitment of cleavage fac-

tor I and II, poly(A) binding proteins, and poly(A) polymerase

(reviewed in Elkon et al., 2013). Interestingly, one of the protein

subunits of CPSF, Fip1, was recently described to play a role

in creating the APA profile of ESCs (Lackford et al., 2014).

Consistent with its being important in pluripotency, Fip1 knock-

down in ESCs promoted differentiation. Deep sequencing re-

vealed that Fip1 depletion alters the APA profile of 374 genes,

with most displaying a lengthening of their 30UTR by shifting to

the more distal PAS (proximal-to-distal shift [PtoD]). The genes

showing PtoD were generally more highly expressed in self-re-

newing conditions than in differentiation conditions, and knock-

down of a representative set partially recapitulated the Fip1

knockdown phenotype. Individual nucleotide crosslinking and

immunoprecipitation followed by high-throughput sequencing

(iCLIP-seq) showed that Fip1 binds U-rich sequences upstream

of PAS sequences. Interestingly, when the PASswere located far

apart, Fip1 bound upstream of the proximal PAS and promoted

cleavage and polyadenylation at that site. However, when the

PASs were close together, Fip1 promoted usage of the distal

site. Given these data, the authors propose a model in which

Fip1 promotes cleavage and polyadenylation at all PASswith up-

stream U-rich regions. However, when Fip1 is highly expressed,

as it is in ESCs, it will bind and promote cleavage of the weaker

proximal PAS, if there is a sufficient delay in transcription be-

tween the two PAS sites. This interesting model demonstrates

how a general CPSF factor can regulate pluripotency by linking

30UTR length with production of critical self-renewal factors. It

will be important to investigate whether these results are unique

to Fip1 or whether there are additional factors in ESCs that are

critical for determining PAS usage in other sets of genes.

RNA Modification
Posttranscriptional RNA modification offers another exciting

means for improved control over transcript levels and even

increased proteomic diversity without the need tomake changes

to the genome. In regulatory regions, sequence alterations can

affect transcript stability and translation efficiency, while in tran-

script coding regions, nucleotide changes can increase protein

product diversity. RNA modifications can be separated into

two types: the nontemplated addition of nucleotides and the

chemical modification of templated bases. A well-established

example of the former is the addition of nucleotides to the 30

ends of RNAmolecules. For instance, addition of uridines (uridy-

lation) to pre-let-7 miRNA leads to its degradation in ESCs. In
Cell Stem Cell 15, September 4, 2014 ª2014 Elsevier Inc. 273
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particular, the 30 terminal uridylyl transferases (TUTases),

Zcchc11 and Zcchc6, are directed by the RBP Lin28a to add a

string of approximately 11 uridines to the pre-miRNA (Heo

et al., 2008; Hagan et al., 2009). Oligouridylated pre-let-7 is

then recognized by the DIS3L2 exoribonuclease, which cata-

lyzes transcript degradation (Ustianenko et al., 2013). Inter-

estingly, the addition of a single uridine has the opposite effect,

promoting the processing of let-7 to its mature form (Heo et al.,

2012). The remarkable number of pathways regulating let-7 ac-

tivity befits its important role in promoting ESC differentiation

and blocking reprogramming of somatic cells to iPSCs (Melton

et al., 2010).

Although the existence of base modifications has been known

for some time, their potential regulatory roles in mammalian cell

fate decisions are just beginning to be uncovered. For example,

the RNA editing enzymeAdar (Adar1) catalyzes the conversion of

adenosine to inosine, which is subsequently read as guanosine

by the translation machinery. Adar can target both mRNAs and

dsRNA precursors of endo-siRNAs and miRNAs. In hESCs,

ADAR was shown to drive A-to-I editing across the transcrip-

tome, particularly in Alu repetitive elements. Furthermore, tran-

sient ADAR knockdown with an siRNA decreased A-to-I editing

and led to an increase in the mRNA expression of genes associ-

ated with differentiation and development, although the ADAR-

depleted ESCs did not exhibit significant morphological changes

compared to wild-type (Osenberg et al., 2010). These results

were based on the effects of a single transiently transfected

siRNA, so it will be important to further examine the role of

Adar by multiple different siRNAs, stable shRNA knockdown,

and/or genetic deletion to rule out the possibility of off-target ef-

fects and to separate the effects of acute versus chronic loss of

Adar. Moreover, the direct downstream consequences of A-to-I

editing on targeted transcripts in ESCs remain to be elucidated.

It is important to note that Adar has been found to have a number

of different roles in other cellular systems. In a complex with

Elavl1 (HuR), for example, Adar modulates mRNA stability

(Wang et al., 2013a). Adar can also affect miRNA processing

both negatively and positively, editing pri-miRNA transcripts to

prevent Microprocessor cleavage (Wu et al., 2011) or dimerizing

with Dicer in an RNA-dependent way to promote pre-miRNA

cleavage (Ota et al., 2013). But because these studies were

conducted in non-ESC cell lines, it would bemeaningful to inves-

tigate whether these other diverse functions of Adar are also rele-

vant in ESCs.

While ADAR-driven A-to-I base conversion is clearly important,

methylation of adenosine to form N6-methyladenosine (m6A) is

the most prevalent chemical modification of eukaryotic mRNA.

Enriched at stop codons and 30UTRs, the presence ofm6Amarks

appears to influence many aspects of RNA metabolism. Indeed,

recent evidence suggests that methylation at internal positions

within transcripts is associated with transcript destabilization,

while methylation at the transcriptional start site enhances trans-

lation (Schwartz et al., 2014). Biochemical studies recently re-

vealed that these m6A marks are primarily deposited by the

methyltransferases Mettl14 and Mettl3, which function together

as a heterodimer (Liu et al., 2014). In mESCs, stable shRNA

knockdown of eitherMettl3 orMettl14 greatly reducesm6A levels

and impairs ESC self-renewal (Wang et al., 2014a). Interestingly,

m6A-immunoprecipitation and sequencing (meRIP-seq) re-
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vealed that mRNAs of epigenetically poised developmental reg-

ulators (marked by H3K4me3 and H3K27me3 bivalent chromatin

domains) are normally highly methylated, and these genes are

upregulated inMettl3- orMettl14-depleted cells due to increased

transcript half-life. These data suggest that m6A destabilizes

transcripts. Further examining the mechanistic connection be-

tween methylation and RNA stability, the authors found that

Mettl3/Mettl14 knockdown is associated with increased binding

of the RBP HuR near m6A sites and leads to increased transcript

stability, suggesting that HuR competes with Mettl3/Mettl14 and

that their differential expression dynamically regulates RNA half-

life. While it will be important to confirm these results in a genetic

knockout systemand further investigate themechanism ofmeth-

ylated RNA destabilization, this study is intriguing for raising the

idea that, like DNA methylation and chromatin modifications,

‘‘epigenetic’’ modification of RNA can be critical for determining

cell identity.

Finally, the connections to HuR seen with both Adar- and

Mettl3/Mettl14-mediated RNA editing are tantalizing, because

HuR is also known to regulate transcript stability by either coop-

erating with or antagonizing miRNAs through a variety of

different, context-dependent mechanisms. Additionally, HuR

expression is itself modulated by miRNAs (reviewed in Simone

and Keene, 2013). Together these studies exemplify how RNA

modifications, RBPs, and miRNAs can function together to con-

trol steady-state mRNA expression levels.

Nuclear Export
In addition to directly altering the transcript sequences through

alternative splicing, alternative polyadenylation, and nucleotide

modifications, RNA fate can be influenced by the regulation of

transport between the nucleus and cytoplasm, which controls

protein levels bymodulating access to the translationmachinery.

An exciting recent study has shown that such regulation can play

a significant role in ESCs (Wang et al., 2013b). In an RNAi screen

for factors that are required for ESC self-renewal, Hu and col-

leagues identified Thoc2 and Thoc5, two members of the THO

complex, which provide an interface between nuclear transcrip-

tion and RNA export. The authors show that knockdown of

Thoc2 and Thoc5 does not alter overall transcript levels but

rather leads to a nuclear accumulation of a subset of pluripo-

tency mRNAs, including Nanog, Sox2, Klf4, and Esrrb. Immuno-

precipitation followed by deep sequencing further showed that

Thoc2 binds a subset of mRNAs in a Thoc5-dependent manner.

Interestingly, Thoc5 is believed to be an adaptor protein, and its

expression is downregulated with ESC differentiation. Overex-

pression of Thoc5 delays ESC differentiation, while knockdown

promotes ESC differentiation and blocks somatic cell reprog-

ramming. Therefore, the downregulation of Thoc5 that occurs

during normal development appears to be critical for silencing

parts of the pluripotency program and thus promoting differenti-

ation. These findings uncover a new aspect of posttranscrip-

tional control in pluripotency and may be just the first of many

more examples to come of transcript-specific nuclear export

influencing early embryonic cell fate decisions.

Regulation of mRNA Stability
Whether amolecule of RNA is stable or is quickly degraded in the

cytoplasm governs, to a large extent, its ultimate protein
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expression levels. Transcript stability, which varies among cell

types (Neff et al., 2012), is strongly influenced by RBP and

miRNA binding, particularly at the 30UTR. Three RBPs that

have been implicated in this mode of regulation are Trim71

(mLin41), Pum1, and Brf1 (zfp36l1).

The role of Trim71 is noteworthy because it demonstrates an

interconnection among multiple protein complexes. miRNAs,

which typically regulate transcript stability and translation by

binding to 30UTRs, are critical for enabling the rapid proliferation

of ESCs by shortening theG1 phase of the cell cycle (Wang et al.,

2008, 2013c), and Gregory and colleagues found that Trim71 is

important for facilitating this activity (Chang et al., 2012). Using

immunoprecipitation followed bymass spectrometry, they found

that Trim71 binds to miRNA-containing Ago2 complexes.

Through this molecular interaction, Trim71 cooperates with

ESC-specific miR-290 and miR-302 to bind to the 30UTR of

Cdkn1a and inhibit its translation. Because Cdkn1a is a negative

regulator of the G1-S transition, the miRNA-dependent 30UTR
activity of Trim71 promotes the cell cycle structure necessary

for ESC self-renewal. Importantly, Trim71 function is tightly

incorporated into a larger intracellular network because it is a

target of the prodifferentiation miRNA let-7, whose biogenesis

is inhibited by the RBP Lin28a (see the subsection ‘‘Multifunc-

tional RBPs,’’ below). Adding to the complexity of this regulatory

circuit, another study found that Trim71 is also an E3 ubiquitin

ligase for Ago2 and showed through luciferase assays that

Trim71 cooperates with Lin28a to inhibit let-7 activity (Rybak

et al., 2009). AlthoughChang et al. (2012) did not detect a change

in Ago2 levels upon perturbation of Trim71 expression, the work

from these two groups clearly establishes Trim71 as a key player

in several dimensions of miRNA-mediated ESC regulation.

Intriguingly, more recent studies suggest that Trim71 also asso-

ciates directly with somemRNAs at their 30UTRs, independent of
miRNA involvement, and that this interaction drives transcript

degradation and inhibits translation (Loedige et al., 2013, Wor-

ringer et al., 2014). Filipowicz and colleagues used luciferase as-

says to demonstrate Trim71 binding to the 30UTRs of a subset of

prodifferentiation genes, which led to a decrease in mRNA and

protein levels in an Ago2-independent fashion (Loedige et al.,

2013). Yamanaka and colleagues showed that upregulation of

Trim71 enhanced human somatic cell reprogramming in part

by directly binding to the mRNA of the fibroblast-enriched

transcription factor EGR1 and decreasing its protein levels (Wor-

ringer et al., 2014). Using deletion mutants, both of these groups

showed that these direct effects on transcript repression do not

involve the E3 ubiquitin ligase domain of Trim71. From all of

these studies, it is clear that the story of Trim71 is highly com-

plex, and further investigations will likely expand the scope of

this RBP’s involvement in the regulation of pluripotency.

In contrast to Trim71, Pum1 appears to be a negative regu-

lator of the ESC state. Pum1 is a member of the evolutionarily

conserved PUF family of RBPs first characterized in Drosophila

and C. elegans as inhibitors of translation and mRNA stability

at the 30UTR. A transposon-mediated mutagenesis screen

in haploid ESCs found that Pum1 disruption promoted self-

renewal in an ESC-like state when the cells were cultured in

conditions permissive to differentiation (Leeb et al., 2014).

This phenotype appeared to be mediated by Pum1 binding to

its canonical eight-nucleotide motif in the 30UTRs of multiple
pluripotency genes, such as Tfcp21l, Esrrb, Klf2, and Sox2,

which was associated with a decrease in their transcript levels,

presumably through increased degradation of the mRNA. In

addition to establishing a new role for Pum1 in ESCs, this study

exemplifies the importance of RBP-30UTR interactions in the

maintenance of a unique cell state. Lastly, Pum1 has a closely

related PUF family member, Pum2, which is a translational

repressor in germ cell development (Moore et al., 2003).

Because Pum2 is highly expressed in ESCs (Moore et al.,

2003), it will be important to determine how these two PUF pro-

teins genetically interact in the context of ESC self-renewal and

differentiation.

Another RBP that destabilizes pluripotency transcripts is the

AU-rich element mRNA-binding protein (AUBP) Brf1. AUBPs

are known to be developmentally important regulators of

splicing, stability, translation, and localization, and Brf1 is crit-

ical in embryogenesis: knockout mice die by E10.5 (Stumpo

et al., 2004). A recent study found that activation of the FGF-

Erk signaling pathway, which stimulates mouse ESC differenti-

ation, leads to upregulation of Brf1 (Tan and Elowitz, 2014).

Brf1 overexpression under pluripotency conditions impaired

ESC proliferation, and under differentiation conditions it pro-

moted the acquisition of mesendoderm fate. RNA immunopre-

cipitation and sequencing (RIP-seq) showed that Brf1 binds to

AU-rich elements (AREs) in a number of pluripotency mRNAs,

including Nanog, Klf2, Kdm4c, and Zfp143. Moreover, FGF

stimulation led to degradation of Nanog transcripts in an ARE-

dependent fashion, implicating Brf1 in mRNA destabilization

and ESC differentiation. Future work will likely reveal more roles

for AREs and other AUBPs in pluripotency and early embryonic

development.

With all of these RBPs involved in determining the stability of

different mRNA transcripts, it will be interesting to explore to

what extent their targets overlap and whether they cooperate

to coregulate a particular subset of transcripts. For thosemRNAs

with binding sites for several RBPs, it would furthermore be

worthwhile to examine how the relative RBP concentrations

and motif binding affinities affect transcript levels.

Regulation of Translation
RBPs can also directly modulate protein translation, often

through binding at the 50UTR of RNA transcripts. In so doing,

RBPs recruit translation initiation factors, adjust the accessibility

of the RNA to ribosomes, create ribonucleoprotein structures

conducive for cap-independent and internal ribosome entry

site (IRES)-mediated translation, and regulate the movement of

the ribosomes along the transcript. Given these many roles, it

is no surprise that RBPs involved in these 50UTR-related pro-

cesses have also been linked to the control of ESC pluripotency.

In particular, RBP-50UTR interactions involving the proteins

Nat1, Rbm35a (Esrp1), and Ptbp1 have been shown to regulate

ESC differentiation and proliferation.

Nat1 was first identified in liver carcinomas as a general

repressor of translation. In mouse ESCs, depletion of Nat1

does not affect proliferation and self-renewal in ESC growth con-

ditions, but Nat1�/� ESCs exhibit a defect in retinoic acid (RA)-

induced differentiation (Yamanaka et al., 2000). Previous studies

in other cell lines have shown that Nat1 is homologous to the

translation initiation factor eIF4G, is located in the cytoplasm
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and can autoregulate its own translation from an IRES in its

mRNA; thus, the authors speculated that Nat1 binds to highly

structured 50UTRs and associates with translational initiation

factors. However, their study did not detect a difference in

cap-dependent or cap-independent translation in wild-type

and Nat1�/� ESCs as measured by [35S]methionine incorpora-

tion and bicistronic luciferase assays, respectively. Despite the

negative results, it is important to note that these experiments

were conducted under steady-state pluripotency conditions,

not under the differentiation conditions in which they observed

the phenotype. Therefore, it remains plausible that Nat1 influ-

ences ESC differentiation through translational mechanisms,

and further studies should address the role of Nat1 in transitions

into and out of pluripotency.

Like Nat1, Rbm35a is a negative regulator of pluripotency.

Knockdown of Rbm35a inhibits ESC differentiation and pro-

motes somatic cell reprogramming by increasing expression of

Oct4, Nanog, and Sox2. Indeed, Rbm35a immunoprecipitation

and polysome profiling show that Rbm35a normally binds to

the 50UTR of Oct4 and Sox2 mRNAs, thus preventing them

from being loaded into polysomes (Fagoonee et al., 2013). In

addition, Rbm35a activity is not restricted to ESCs, because

the RBP is a regulator of alternative splicing in epithelial cell lines

(Warzecha et al., 2009) and has also been shown be expressed in

tumor cells where it binds to highly structured GC-rich 50UTRs of
oncogenes and prevents their translation (Leontieva and Ionov,

2009). ESCs themselves form teratomas when injected into

mice and share many properties with somatic tumors, including

limitless replicative potential. Therefore, Rbm35a suppression

may be an important component of maintaining ESC and tumor

cell immortality through both shared and unique molecular tar-

gets present in these different cellular contexts.

Ptbp1, another RBP that binds the 50UTR of gene transcripts,

also appears to control ESC growth through its regulation of the

cell cycle. Ptbp1 knockout ESCs have a proliferation defect with

a prolonged G2/M phase. This phenotype appears to be at least

in part secondary to problems with chromosomal segregation.

Bicistronic luciferase assays show that Ptbp1 binds to the

IRES of CDK11p58 and represses translation of this gene, high

levels of which are associated with a prolonged telophase

caused by chromosomal lagging. Overexpression of CDK11p58

in wild-type ESCs led to chromosome missegregation (Ohno

et al., 2011). Nevertheless, it is unclear whether or not overex-

pression of CDK11p58 is the sole contributor to the Ptbp1

knockout phenotype—a question that could be addressed

through global comparisons of mRNA and protein abundance

in wild-type and knockout cells. Notably, Ptbp1 has also been

extensively studied in other cell lines, where it has been impli-

cated in alternative splicing, alternative polyadenylation, mRNA

stability at the 30UTR, and IRES-driven translation (Boutz et al.,

2007; Castelo-Branco et al., 2004; Kosinski et al., 2003; Bushell

et al., 2006). It would be useful and informative for future studies

to examine whether these other well-known functions of Ptbp1

are also involved in pluripotency.

Multifunctional RBPs
In addition to Adar, Pum1, Rbm35a, and Ptbp1, other RBPs have

been proposed to play pleiotropic roles. For example, while

Lin28a clearly regulates let-7 biogenesis through directing uridy-
276 Cell Stem Cell 15, September 4, 2014 ª2014 Elsevier Inc.
lation of pre-let-7, it appears to have additional functions inde-

pendent of its relationship with let-7 (reviewed in Shyh-Chang

and Daley, 2013). Through binding to an AG-rich motif similar

to its pre-let-7 binding motif (Wilbert et al., 2012; Cho et al.,

2012), Lin28a both positively and negatively modulates the

translation of hundreds of mRNAs in human and mouse ESCs

(Wilbert et al., 2012; Cho et al., 2012; Peng et al., 2011; Xu

et al., 2009). How Lin28a achieves this incredibly complex

orchestration of its many targets remains to be determined.

Lin28a is an unusual example of an RBP attributed with multi-

ple functions in a single cellular context. To date, most studies

done on multifunctional RBPs, like Ptbp1 and Adar, only investi-

gate a single function of that RBP in ESCs, which does not

exclude the possibility that the RBP’s other proposed functions

are also important in supporting the pluripotency network. In

general, a number of RBPs, such Ilf2, Unr, and others, have

been genetically deleted in ESCs and shown to have an effect

on the ESC phenotype, but currently, the functions of these

RBPs can only be inferred from work done in other cell types.

As every study ascribes a different role to each of these RBPs,

it is unclear which, if any, are actually involved specifically in

the context of pluripotency.

A notable example providing evidence that RBPs can bemulti-

functional within a single context comes from a recent study of

the RNA helicases DDX5 and DDX17 not in pluripotent cells

but in the differentiation of myoblast and epithelial cell lines

(Dardenne et al., 2014). The authors showed that DDX5 and

DDX17 cooperate with the hnRNP H/F splicing factors to pro-

mote a differentiation-specific splice profile. At the same time,

DDX5 and DDX17 serve as transcriptional coregulators of key

differentiation transcription factors as well as miRNAs that, in

turn, negatively feed back on the expression of the RBPs them-

selves. It is unclear whether these two roles for DDX5 and DDX17

are physically linked; nevertheless, this story provides evidence

that an RBP can simultaneously function at the level of DNA

(transcription) and RNA (splicing).

Conclusions and Perspectives
It is without a doubt that posttranscriptional regulation by RBPs

contributes extensively to the establishment and maintenance

of, as well as exit from, the ESC state. The field remains relatively

young and largely uncharted, however, and there are many op-

portunities for further inquiry and discovery.

As described above and summarized in Table 1, a number of

studies have documented the significance of individual RBPs

in pluripotency based on knockdown and knockout models

demonstrating that perturbation of the RBP disrupts the wild-

type ESC phenotype. However, few probe the actual mecha-

nism by which the RBPs produce their effect in ESCs. Instead,

RBP function has been examined mostly in cancer cell lines and

cell-free biochemical assays, the in vivo relevance of which

needs to be more clearly characterized. The studies that do

delve into the molecular mechanisms in ESCs generally

examine only a limited number of targets. While the RBPs dis-

cussed here are not unique to ESCs, cell context likely in-

fluences their downstream effects on cell fate and cell fate

transitions significantly by providing a specific combination of

intracellular pathways with which these RBPs interface. Thus,

to reach a deep and unified understanding of the role of RBPs



Table 1. Summary of RBPs Associated with the Pluripotency Network

Category of

Posttranscriptional

Regulation RBP

Positive or Negative

Regulator of Pluripotency? Mechanism of Action in ESCs

Other Functions

(Not Validated in ESCs)

Alternative splicing FOX2 (RBM9, FXH) positive (Yeo et al., 2009) binds upstream of splice site

for exon exclusion; binds

downstream of splice site

for exon inclusion

SON positive (Lu et al., 2013) binds short introns with weak

splice sites

MBNL1, MBNL2 negative (Han et al., 2013) binds upstream of splice site

for exon inclusion; binds

downstream of splice site

for exon exclusion

SFRS2 (SC35) positive (Lu et al., 2014) regulates splicing of MBD2

Alternative

Polyadenylation

Fip1 positive (Lackford et al., 2014) promotes ESC-specific patterns

of alternative polyadenylation

RNA modification Zcchc11, Zcchc6

(TUTases)

positive (Hagan et al., 2009) inhibits let-7 biogenesis by

uridylating the pre-miRNA

ADAR (ADAR1) positive (Osenberg et al., 2010) drives A-to-I editing mRNA stability with Elavl1

(HuR); A-to-I editing of

pri-miRNAs to prevent their

processing; promote

pre-miRNA cleavage in

complex with Dicer

Mettl3, Mettl14 positive (Wang et al., 2014a) methylates adenosines in

mRNA, reducing transcript

stability

Nuclear export Thoc2, Thoc5

(members of THO

complex)

positive (Wang et al., 2013b) exports pluripotency gene

transcripts to the cytoplasm

for translation

RNA stability Trim71 (mLin41) positive (Chang et al., 2012;

Rybak et al., 2009; Loedige

et al., 2013; Worringer et al.,

2014)

binds Ago2 complexes,

enhancing ESC miRNAs’

inhibition of Cdkn1a expression,

which thus promotes ESC cell

cycle structure; antagonizes

Ago2 by ubiquitination;

degrades prodifferentiation

gene transcripts

Pum1 negative (Leeb et al., 2014) degrades pluripotency gene

transcripts

translation repressor

Brf1 negative (Tan and Elowitz, 2014) degrades pluripotency gene

transcripts

Translation Nat1 negative (Yamanaka et al., 2000) unclear translation repressor

Rbm35a negative (Fagoonee et al., 2013) prevents polysome loading of

pluripotency gene transcripts

alternative splicing

Ptbp1 positive (Ohno et al., 2011) binds to IRES and represses

translation of CDK11p58
alternative splicing;

alternative polyadenylation;

mRNA stability at 30UTR

Multifunctional Lin28a positive (reviewed in Shyh-

Chang and Daley, 2013)

inhibits let-7 biogenesis by

recruiting TUTases to uridylate

pre-let-7; translational

activation; mRNA degradation

with Drosha
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in pluripotency, we will need to make use of global approaches

like those that have already been successfully applied to

the field of epigenetics. In particular, we must dissect all
RBP-RNA interactions systematically in ESC self-renewal and

differentiation conditions so as to examine not only how RNA

transcript levels change but also how the components of
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Figure 2. TheMultifunctional RBP: The RNA
Regulon Revisited
(A and B) Alternative models for RBP regulation of
RNA metabolism. (A) In the classical view of the
RNA regulon, an RBP (blue object) binds multiple
transcripts to execute a single action on many
RNAs (purple, blue, and green). This in turn can
affect an array of cellular processes depending
on the nature of the mRNAs targeted. (B) In an
expanded version of the RNA regulon model, an
RBP not only has multiple targets but also acts on
those targets at multiple levels of intracellular
RNA metabolism. An example RBP shown here
regulates transcription, splicing, RNA stability,
and mRNA translation of a common set of tran-
scripts. While it is unlikely that such an RBP exists,
we propose that many RBPs will have a subset
of these functions on overlapping sets of targets.
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ribonucleoprotein (RNP) complexes are rearranged during tran-

sitions from one cell fate to another.

Intriguingly, as mentioned above under the subsection ‘‘Multi-

functional RBPs,’’ a number of RBPs appear to be involved in

multiple aspects of RNA metabolism in both the nucleus and

the cytoplasm. This observation may result from an RBP having

different roles in different cell types, multiple roles in a single cell

type, or somemix of the two. Regardless, it is almost certain that

the particular combination of targets and cofactors that an RBP

encounters influences its functions in context-specific ways—a

notion that expands upon the ‘‘RNA regulon’’ model originally

proposed by Jack Keene, in which an RBP bindsmultiple targets

to effect changes in various cellular processes (Keene, 2007). In

other words, it is possible that instead of regulating multiple

targets through just a single mechanism, one RBP could simul-

taneously participate in several layers of RNA metabolism

(Figure 2). In so doing, the RBP becomes part of increasingly

complex regulatory modules, with many opportunities for feed-

back and crosstalk, where one aspect of metabolism such as

translation can be linked to another such as splicing. Conse-

quently, perturbation of the RBP could have a cascading effect

on the molecular landscape of a cell and precipitate drastic

switches in cellular identity. Also, it follows that disrupting sub-

sets of the mRNA targets or cofactors of any one RBP could

affect parallel pathways by shifting the RBP’s dominant activities

to different genes or even different regulatory modules alto-

gether. For example, a decrease in the levels of a cofactor that

enables an RBP to regulate splicing could drive that RBP to shift

its main activity to transcription.

Moving forward, it will be critical to investigate RBPs at the ge-

nomics level in biologically relevant cell types, focusing on those

states in which the RBPs are demonstrated to play significant

roles. Studying RBPs in ESCs provides an excellent starting
278 Cell Stem Cell 15, September 4, 2014 ª2014 Elsevier Inc.
context to achieve such a goal, because

not only can ESCs provide unlimited

untransformed material for large-scale

genomic studies, they can also be differ-

entiated down any cellular lineage to

determine how context changes protein

function. Thus, experimental tools and

platforms developed in the ESC system
can be used to study a multitude of cell types that comprise

the mammalian body plan.
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