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ABSTRACT

Many attempts have been made to evaluate the safety and potency of human 
induced pluripotent stem cells (iPSCs) for clinical applications using transcriptome data, 
but results so far have been ambiguous or even contradictory. Here, we characterized 
stem cells at the pathway level, rather than at the gene level as has been the focus of 
previous work. We meta-analyzed publically-available gene expression data sets and 
evaluated signaling and metabolic pathway activation profiles for 20 human embryonic 
stem cell (ESC) lines, 12 human iPSC lines, five embryonic body lines, and six fibroblast 
cell lines. We demonstrated the close resemblance of iPSCs with ESCs at the pathway 
level, and provided examples of how pathway activity can be applied to identify iPSC 
line abnormalities or to predict in vitro differentiation potential. Our results indicate 
that pathway activation profiling is a promising strategy for evaluating the safety and 
potency of iPSC lines in translational medicine applications.

INTRODUCTION

The discovery of human induced pluripotent stem 
cells (iPSCs) in 2006 completely revolutionized the field 
of stem cell biology, and these cells are expected to play a 
key role in the development of many regenerative medicine 
therapies. IPSC lines can be obtained by reprogramming 
somatic cells using ectopic expression of transcription 
factors, such as OCT4, SOX2, KLF4, and C-MYC or 
alternative reprogramming cocktails [1, 2]. Similar to ESCs 
they can be cultured and expanded for many passages in 
vitro and are able to differentiate into all three embryonic 
germ layers. IPSC lines are powerful tools which can be 
used to study human embryonic development [3], as model 
systems for human diseases, and as a renewable source for 
regenerative medicine [4]. Promising applications for human 

disease modeling include generation of iPSCs derived from 
methyl CpG binding protein 2 (MeCP2)-deficient patients 
with RETT syndrome, an autism spectrum disorder, and 
from a single Parkinson’s disease patient harboring a 
mutation in the leucine-rich repeat kinase 2 gene (LRRK2) 
[5, 6]. The first human clinical trial of iPSCs was started 
by Takahashi and colleagues at the RIKEN Center for 
Developmental Biology in Kobe in 2013 for treating age-
related macular degeneration using human iPSC-derived 
retinal pigment epithelium cell sheets [6, 7].

These applications require the selection and 
characterization of iPSC lines that reliably, efficiently, 
and stably differentiate into disease-relevant cell types. 
However, despite the fact that iPSCs theoretically have 
the full potential of embryonic stem (ES) cells, there are 
several studies showing evidence that induction of iPSCs 
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can generate cell lines with genetic or epigenetic variability 
and abnormalities that could affect iPSC differentiation 
potential and clinical safety [9–15]. Lister et al. [14] 
demonstrated significant epigenetic reprogramming 
variability, such as aberrant reprogramming of DNA 
methylation, in iPSCs. Hu et al. [15] showed that human 
iPSCs generate neural epithelium at a significantly reduced 
efficiency and increased variability compared to hESCs, 
and suggested that additional differentiation assays will 
enable to select more uniform iPSC lines [15].

These findings raised the question of the variability 
of iPSC lines and whether iPSCs and ESCs are fully 
equivalent. To address these concerns, many recent 
attempts have been made to evaluate the safety and 
potency of iPSCs using genome-wide readouts of cell 
function, such as transcriptomes and methylomes, 
however, the results are often ambiguous and sometimes 
contradictory [16, 17]. For instance, Mallon et al. [16] 
found no significant differences between several isogenic 
hiPSCs lines derived from the (WA01) hESC line and the 
original ESC line at the gene expression and methylation 
level. In contrast, Bock et al. [17] demonstrated that 
epigenetic and transcriptional variations are common 
among ESCs and iPSCs and that this variation can have 
significant impact on the usability of iPSC lines. Thus, 
potential differences between individual ESC and iPSC 
lines must be better controlled before these lines are used 
for translational research and regenerative medicine.

To address the issue of variability and safety in iPSCs, 
Bock et al. previously established a reference set of DNA 
methylation maps and gene expression profiles for 20 
human ESC lines, 12 human iPSC lines, five embryonic 
body lines, and six fibroblast cell lines, and further provided 
data on the in vitro differentiation capacity of these ESC 
and iPSC lines [17]. While this and other previous studies 
have used transcriptome data to characterize stem cells at 
the level of individual genes, we used these data (available 
from GSE25970) to apply a new bioinformatics approach, 
Regeneration Intelligence, to address the quality issues at 
the pathway level. We implemented pathway activation 
scoring (PAS) algorithms [18], which can quantitatively 
measure the activation of intracellular signaling pathways 
based on transcriptomic data in cells and tissues in different 
physiological or pathological conditions, including cancer 
[19, 20]. Pathway activation scoring was first successfully 
used to analyze gene expression datasets for nine different 
human cancer types [19]. In that study, PAS values for 82 
signaling pathways were shown to yield superior cancer-
specific biomarkers, with better area under the curve 
(AUC) values and higher predictive power compared to 
individual genes. Pathway activation scoring analysis has 
also been applied to study ageing and age-related macular 
degeneration [21, 22], and to predict cetuximab sensitivity in 
human colorectal cancers [23]. Using a set of bioinformatics 
algorithms and tools, termed OncoFinder, allowed the 
characterization of the functional states of transcriptomes 
and interactomes accurately, and has the advantage to 

significantly reduce the errors introduced by transcriptome-
wide experimental techniques [24].

Here, we defined the typical pathway profiles of 
iPSCs vs. ESCs from the GSE25970 data set and the 
resemblance of iPSC with ESC lines at the PAS level in 
comparison with EB and fibroblast lines. Additionally, 
we provided examples of how iPSC line abnormalities 
can be identified using our bioinformatics algorithm, 
and how pathway activation correlated with the known 
iPSC differentiation potential. We showed that the PAS 
algorithm can provide a powerful bioinformatics tool for 
quality control of iPSC lines prior to clinical application.

RESULTS

Pathway Activation Score (PAS) distribution in 
ESC and iPSC lines

NCBI Gene Expression Omnibus (GEO) 
(http://www.ncbi.nlm.nih.gov/geo/) and EBI ArrayExpress 
(http://www.ebi.ac.uk/arrayexpress/) databases were 
searched for the most representative data set to include 
10 or more microarray profiled ESC and iPSC lines and 
any iPSC differentiation assay linked to the profiled iPSC 
lines. One dataset, which met these requirements, was 
GSE25970 (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE25970) which consists of 20 human ESC 
lines, 12 human iPSC lines, six fibroblast cell lines, and 
five embryoid body (EB) cell lines, and includes in vitro 
differentiation data for each iPSC line. Next, we used these 
data to calculate PAS scores for 271 pathways, including 
more than 3500 genes, in iPSC and ESC lines. The raw 
PAS data, including p- and q-values, for all 271 pathways 
in 20 ESC and 12 iPSC lines derived from the GSE25970 
dataset are presented (Supplemental Excel data file 1). 
In all our post-analyses, we restricted our attention to 
significantly dysregulated pathways with false discovery 
rate q < 0.05, which narrow our results to 215 dysregulated 
pathways in ESC lines and 205 dysregulated pathways in 
iPSC lines. The individual PAS distribution values with 
false discovery rate q < 0.05 for all ESC and iPSC lines 
are shown in Supplemental Figure 1A and 1B, respectively. 
To restrict attention to the most significant findings we 
applied an additional criterion of p < 0.001 and found that 
from a total of 271 pathways 97 distinct pathways were 
significantly dysregulated simultaneously in ESC and iPSC 
lines compared to fibroblast control. The corresponding 
PAS values (p < 0.001) for ESC and iPSC lines shown on 
Figure 1 as determined using the Regeneration Intelligence 
software suite. Thus, iPSC and ESC lines displayed very 
similar PAS profiles with a highly significant value overlap 
in all 97 pathways.

PAS variation in ESC and iPSC lines

We identified the top 20 most and least variable 
pathways in ESC and in iPSC lines (Figure 2). We found that 
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Figure 1: Distribution of statistically significant PAS in ESC and iPSC lines. PAS values were calculated with the Regeneration 
Intelligence software suite for ESC (orange) and iPSC (green) cell lines from GSE25970. Mean PAS values ± SD for 97 pathways with 
p-value < 0.001 are shown.
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many of these pathways, including the mitogen-activated 
protein kinase (MAPK), protein kinase B (Akt/PKB), 
and cyclic adenosine monophosphate (cAMP) signaling 
pathways, were shared in common between iPSC and ESC 
lines. In the top 20 most variable pathways, iPSCs and ESC 
lines had 19 pathways in common (Figure 2A), and in the 
top 20 least variable pathways the lines shared 15 pathways 
(Figure 2B). These findings confirm the significant similarity 
of PAS profiles between groups of iPSCs and ESCs.

ESC and iPSC lines show similar patterns of 
pathway activation

Next, we clustered the PAS values for all ESC and iPSC 
lines for the top 50 most variable pathways. This analysis 
revealed that ES and iPSC lines share a broadly similar pattern 
of PAS, i.e. ES and iPSC lines do not form separate clusters 
(Figure 3A). Furthermore, pathways showing the most PAS 
variability within ES lines also tended to show the most 
variability within iPSC lines. We calculated the correlation 
between ESC and iPSC PAS deviation to be R2 = 0.9478 
(Figure 3B). These results further indicated that the tested 
iPSCs are very similar to the ESCs at the pathway level.

A PAS quality score can identify 
impaired iPSC lines

In order to develop a quality control tool to identify 
outlier iPSCs, we defined a “healthy range” of PAS scores 

built from ESC PAS for each pathway. Specifically, for each 
pathway we set the upper and lower limit of the ESC PAS 
quality range to be the average of PAS values ± SD across 
all ESC lines for each pathway. For each of the twelve 
iPSC lines we calculated a PAS quality score, defined as 
the number of PAS values falling within corresponding 
ESC PAS quality range (Figure 4). This analysis revealed 
that some iPSC lines have lower quality scores, which may 
indicate that they have impaired or increased differentiation 
capabilities. For instance, three lines, hiPS11b, hiPS17a, and 
hiPS27e displayed lower than average PAS quality scores. 
The quality score values of these lines were below 50% 
of the maximum iPSC quality score as calculated using 190 
pathways (Figure 4). Consistent with our findings, hiPS27e 
lacked, hiPS11b showed reduced, whereas hiPS17a showed 
increased differentiation capacity as compared to ES cells 
[17]. Since the increased differentiation capacities of 
hiPS17a cell line could be related to additional pathway 
dysregulation in hiPS17a cell line that in turn decreases 
hiPS17a PAS quality score below average. Thus, an iPSC 
quality score calculated from PAS values derived from 
transcriptional profiling data can provide a powerful tool for 
simple and effective iPSC line validation.

A pathway activation signature that 
discriminates between iPSCs and fibroblasts

Finally, we applied the Least Absolute Shrinkage and 
Selection Operator (LASSO) algorithm [25, 26], which 

Figure 2: Pathways showing high and low variability within ESC or iPSC lines. A. The top 20 most variable pathways in 
ESC and iPSC lines. B. The top 20 least variable pathways in iPSC and ESC lines. The most and least variable pathways common to both 
ESC and iPSC lines are listed.
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can be used to select predictors of a target variable from a 
larger set of candidate predictors, to identify individual PAS 
pathways able to distinguish between iPSCs and fibroblasts, 
using data from 18 cell lines (12 iPSC and 6 fibroblast cell 
lines). To estimate model accuracy, we used a leave-one-out 
cross-validation design where each sample was held out one 
at a time. For each held out sample, the LASSO model was 

trained on the 17 remaining samples, and then the trained 
model was applied to predict the class label of the held out 
sample. The accuracy over all samples was 100%, indicating 
that there were clear and strong differences at the pathway 
level between iPSCs and fibroblasts that are apparent even 
from a small number of samples. The optimal LASSO 
model trained on all samples selected nine pathways that 

Figure 3: ESC and iPSC lines exhibit a common profile of pathway activation. A. Hierarchically clustered heat map of the 
top-50 most variable pathways for all iPSC and ESC lines (using fibroblast cell lines as reference). Blue indicates down-regulation, and 
red indicates up-regulation. B. Scatterplot comparing the deviation of each pathway in ESC vs. iPSC lines (measured relative to the ESC 
references; to calculate deviations for ESC, each ESC line was excluded one at a time from the averaged ES PAS reference to prevent 
comparing cell lines to themselves).

Figure 4: PAS-based quality scores for 12 iPSC lines. Shown for each iPSC line is the number of PAS that fall within the ES PAS 
quality score that are indistinguishable from ES PAS. The upper and lower limits for each ES PAS quality score were calculated as the 
average of the PAS values across all ESC lines for each pathway, plus or minus SD. The red line corresponds to 50% (95 pathways falling 
within corresponding ESC PAS quality range) (190) of the maximum iPSC quality score calculated using 190 pathways. Note that, the iPSC 
lines hiPS11b, hiPS17a, and hiPS27e lines received the lowest PAS-based quality scores; this is consistent with the observation in Bock 
et al. [17] that hiPS11b and hiPS27e show impaired, whereas hiPS17a showed enhanced differentiation capacity.
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together discriminate iPSCs from fibroblasts. The model 
coefficients for the nine pathways which were selected by 
LASSO are strong predictors of iPSCs characteristics versus 
fibroblast characteristics (Figure 5). Pathways with negative 
coefficients, such as the cAMP pathway (cell survival), had 
lower PAS scores in fibroblasts, and pathways with positive 
coefficients, such as the cAMP pathway (degradation of 
cell cycle regulators), the FAS signaling pathway, and the 
cytokine main pathway, had higher PAS scores in fibroblasts. 
In summary, the LASSO model identified a small number 
of pathways that can reliably distinguish iPSC lines from 
fibroblasts by examining the PAS values.

DISCUSSION

We analyzed existing stem cell transcriptome data 
(GSE25970) to compare iPSCs, ESCs, and fibroblasts at 
the pathway level. We found that iPSCs and ESCs show 
a similar pattern of pathway activity that is distinct from 
the pathway activity of fibroblast and EB cell lines. We 
defined a new quality score for iPSCs based on PAS, 
and demonstrated how it can be applied to identify iPSC 
abnormalities using in vitro data. Our results demonstrate 
that pathway activation, as measured with Regeneration 
Intelligence, is a promising strategy for iPSC quality control.

Hu et al. [15] demonstrated in human iPSCs in 
comparison with hESCs that although iPSCs use the same 
transcriptional network to generate neural epithelium and 
functionally appropriate neuronal types over the same 
developmental time course in response to the same set 
of morphogens, a significantly reduced efficiency and 
increased variability occurred compared to as hESCs. 

These results were consistent across various iPSC lines 
and independent of the use and the set of reprogramming 
transgenes used to derive iPSCs. Moreover, neural 
differentiation efficiency of several lines was improved 
after using additional neural inducers, suggesting that the 
observed variability in differentiation efficiency depended 
on different mechanisms, and therefore iPSC lines likely 
show a distinct variability in their differentiation capability. 
The authors concluded that in addition to the standard 
pluripotency assays additional assays, such as differentiation 
assays to target cell types, may help to select more uniform 
iPSC lines [15]. Our search criteria for a selecting a useful 
data set for the development of a bioinformatics algorithm 
usable for iPSC quality control based on transcriptional 
data, was to include 10 or more microarray profiled ESC 
and iPSC lines and iPSC differentiation data linked to the 
profiled iPSC lines. Out of 101 initial datasets comprising 
ESC and iPSC data, only the GSE25970 dataset [17] 
fitted these criteria, and we chose not to combine different 
available data sets because cross platform normalization 
methods are not sufficiently reliable for the purpose of iPSC 
line quality control. In this data set genomic assays and in 
vitro differentiation data were combined into a valuable 
data set consisting of genome-wide reference maps of 
gene expression and DNA methylation in a collection of 
pluripotent cell lines, including 20 human ESC lines, 12 
human iPSC lines, six fibroblast, and five EB cell lines, 
which can be used to analyze the transcriptional properties 
of these ESC and iPSC lines in comparison with founder 
lines. By using the genome-wide reference maps of gene 
expression and DNA methylation in ESC, iPSC, EB, and 
fibroblast of the GSE25970 data set combined with our 

Figure 5: LASSO model using PAS scores can discriminate between iPSCs and fibroblasts. Lasso model coefficients for 
the nine pathways selected by LASSO as strong predictors of iPSC lines vs. fibroblasts. Pathways with negative coefficients have lower 
PAS scores in fibroblasts, and pathways with positive coefficients have higher PAS scores in fibroblasts. Classifier accuracy estimated with 
cross-validation is 100%.
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algorithm, we were able to demonstrate close resemblance 
of iPSCs with ESCs at the PAS level in comparison with 
fibroblast and EB cell lines, which formed separate clusters 
in a PAS heat map. Furthermore, we built a new PAS-based 
quality score that was able to identify impaired iPSC lines. 
Several iPSC lines that we predicted as having aberrant 
pathway signaling also showed a poor in vitro neural 
differentiation pattern. However, it is worth pointing out that 
one iPSC line displaying a lower than average PAS quality 
score, had an increased differentiation capacity, indicating 
that above as well as below average differentiation  
capacity may be detected by PAS quality score evaluation. 
Thus, these results clearly demonstrated that our algorithm 
shows promise for assessing iPSC differentiation capacity 
in silico.

LASSO model coefficients identified nine signaling 
pathways as strong predictors of iPSC versus fibroblast 
characteristics. Interestingly, whole genome analysis 
of gene expression during dopaminergic differentiation 
of human ESC and iPSC lines revealed that among the 
distinct pathways which are activated during neuronal 
differentiation, the cAMP signaling pathway was 
found to play a significant role in the differentiation of 
dopaminergic neurons. The role of cAMP signaling was 
confirmed by small molecule perturbation experiments 
[27], indicating that cAMP and associated signaling 
molecules promote dopaminergic differentiation of human 
ESC and iPSC lines. These findings are in line with our 
LASSO experiments showing that different components 
of the cAMP signaling pathway, implicated in cell survival 
and degradation of cell cycle regulators, were strong 
predictors of iPSC vs. fibroblast characteristics, and that 
the cAMP pathway was also among the top 20 least 
variable pathways in ESC and iPSC lines, thus, defining 
a key role of this pathway in stem cell differentiation. 
One of the major advantages of the signaling pathway 
analysis bioinformatics algorithms (Regeneration 
Intelligence, OncoFinder), are their unique ability to 
quantify perturbations for signaling pathways relative to 
control samples on a mathematical basis [18, 24]. It was 
previously shown that when comparing different gene 
expression datasets generated for the same biological 
samples using two different experimental techniques, 
such as next generation sequencing (NGS) and microarray 
hybridization, only a very weak correlation existed while 
application of the PAS profiles comparison revealed a 
high correlation between the NGS and microarray datasets 
[24] and can significantly reduce errors introduced 
by transcriptome-wide experimental techniques [24]. 
Moreover, employing the LASSO algorithm [25, 26] we 
were able to identify a small number of pathways that can 
reliably distinguish iPSC lines from fibroblasts. Selecting 
these pathways will enable to perform quality control of 
iPSC lines from a very limited amount of transcriptional 
data, which will speed up future selection and quality 
control assays significantly. Thus, we propose the novel 
signal pathway-centric bioinformatics application as a 

powerful tool to improve quality control of iPSC lines 
prior to clinical applications.

MATERIALS AND METHODS

Gene expression data

The most representative data set available that 
included 10 or more microarray profiled ESC and iPSC 
lines and any iPSC differentiation assay linked to the 
profiled iPSC lines, was chosen from the NCBI GEO and 
ArrayExpress databases (GSE25970, http://www.ncbi 
.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25970).Data 
set GSE25970 contains the information on 43 cell lines 
profiled using Affymetrix HT Human Genome U133A 
arrays: 20 human ESC lines, 12 human iPSC lines, six 
fibroblast cell lines, and five EB cell lines [17]. This data 
set was utilized to examine PAS scores in ESC and iPSC 
lines, and fibroblast cell lines served as reference.

Bioinformatics analysis and transcriptomic 
expression data pre-processing

All microarray data preprocessing steps were 
performed in R version 3.1.0 using packages from 
Bioconductor. Microarray raw data files were background 
adjusted and normalized with the GCRMA algorithm using 
the corresponding R packages and quantile normalized. 
Obtained gene expression values were averaged across all 
replicates. Heat map generation and hierarchical clustering 
were performed using R package gplots. LASSO 
regression was performed with the R package glmnet [26]. 
Statistical tests and correlation analysis were done with the 
MS Excel software.

Pathway Activation Score (PAS) calculation

Preprocessed gene expression data were loaded 
into Regeneration Intelligence a proprietary software 
suite developed by Atlas Regeneration, Inc. It enables 
calculation of the Pathway Activation Score (PAS) 
for each of the 271 pathways analyzed, a value which 
serves as a quantitative measure of differential pathway 
activation between the two states. This software suite 
is a cloud based implementation of topological gene 
expression aggregation algorithm [18], optimized for the 
needs of stem cells research and regenerative medicine. 
Briefly, Regeneration Intelligence is a topology based gene 
expression aggregation method. The algorithm utilizes the 
following formula to evaluate pathway activation:

Here, CNRn is the ratio of the expression level of a 
gene n in the case sample and in the control; BTIFn is a 
value of beyond tolerance interval flag, which equals 0 or 
1; and ARR (activator/repressor role) serves as a discrete 
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value which equals to the following numbers: −1, −0.5, 0, 
0.5 or 1 depending on the topological role of the particular 
gene/protein in the signaling pathway p, respectively. 
Results for the 271 pathways PAS that were obtained 
for each sample of ES and iPS cell lines can be found in 
supplement materials (Supplemental Excel file 1).

PAS score calculation in iPSC lines

In order to obtain an iPSC line differentiation 
assessment we established a reference PAS value corridor 
using ESC line PAS as a gold standard. The ESC PAS 
quality score was set as average of PAS values across all 
ESC lines ± SD of the same PAS across all ESC lines for 
each pathway. For each of the 12 iPSC lines we calculated 
the number of signaling pathways with PAS values inside 
of the previously described ESC reference corridor. We 
used the PAS-based quality score as a metric to identify 
iPSC outliers that may be functionally impaired.
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