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REVIEW

Osteoarthritis, an Inflammatory Disease

Potential Implication for the Selection of New Therapeutic Targets

Jean-Pierre Pelletier,1 Johanne Martel-Pelletier,1 and Steven B. Abramson2

Osteoarthritis (OA) is a well-known disease that
is part of the aging process and also one of the most
common diseases among mammals. Although this mus-
culoskeletal disorder has been described in mammals of
many ages, having been reported in Egyptian mummies
and in dinosaurs, its exact etiology is far from being fully
understood. With the graying of the world population, it
is of the utmost importance to find out more about the
pathogenesis of the disease and thus allow the discovery
of new treatments to stop or prevent its progression.

A number of risk factors have lately been identi-
fied (1). Mechanical factors, among others, are likely to
play a very important role in the initiation of the disease
process. Endogenous factors such as type II collagen
mutation or dysplastic conditions are also known to be
involved in initiating the OA process (2).

There is now strong evidence that the structural
changes globally observed in OA are due to a combina-
tion of factors, ranging from the mechanical to the
biochemical (3,4). The disease process affects not only
the cartilage, but also the entire joint structure, including
the synovial membrane, subchondral bone, ligaments,
and periarticular muscles. In OA synovium, the inflam-
matory changes that take place include synovial hyper-
trophy and hyperplasia with an increased number of
lining cells, and also an infiltration of the sublining tissue
with a mixed population of inflammatory cells. In pa-
tients with severe disease, the extent of inflammation
can sometimes reach that observed in rheumatoid arthri-

tis (RA) patients at the clinical stage (5,6). Some degree
of synovitis has also been reported in even the early
stages of the disease (7). Synovial inflammation is clearly
reflected in many of the signs and symptoms of OA,
including joint swelling and effusion, stiffness, and some-
times redness, particularly at the level of the proximal
interphalangeal (PIP) and distal interphalangeal (DIP)
joints.

Role of inflammation in disease progression: what is
the evidence?

The question is whether synovitis in OA is an
“innocent bystander” or truly participates in the struc-
tural changes of the disease. Moreover, is synovial
inflammation only relevant during the “flare” of the
disease or is it an ongoing process that permanently
contributes to the progression of the disease after it is
established? From all observations, there are at least 2
major questions that could be raised regarding synovial
inflammation and OA. First, what evidence do we have
that inflammation is associated with disease progres-
sion? Second, what are the inflammatory factors that
could possibly be involved in the genesis of OA struc-
tural changes?

The association between OA progression, the
signs and symptoms of inflammation, and disease activ-
ity has been the subject of a number of interesting
studies. One must first recognize that there is still some
ambiguity in the definition of disease activity with regard
to OA. Some of the criteria used address the function-
ality of the patient, whereas others, such as stiffness,
joint effusion, and other related criteria, probably reflect
more accurately the state of joint inflammation. Cur-
rently, there are no validated measures of disease activ-
ity for OA. The disease progression is commonly mea-
sured by change in disease status over a period of time.
There are a number of methods available for monitoring
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l’Université de Montréal, Hôpital Notre-Dame, 1560 rue Sherbrooke
Est, Montreal, Quebec H2L 4M1, Canada.

Submitted for publication September 22, 2000; accepted in
revised form February 19, 2001.

1237



disease progression, such as radiography, magnetic res-
onance imaging (MRI), and arthroscopy, but radio-
graphs are still considered the gold standard. However,
radiographs have been proven to have limited sensitivity
in the measurement of disease progression. This makes
MRI, which provides a more timely and precise struc-
tural measurement, a more attractive solution for the
future (8).

The main observations that suggest an associa-
tion between inflammation and the progression of struc-
tural changes in OA are derived from clinical studies
(9–14). A number of those studies have lately demon-
strated an interesting possible association between syno-
vitis, OA inflammation, and progression of structural
changes. There are a number of biologic markers that
are believed to be associated with OA synovial inflam-
mation, such as cartilage oligomeric protein (COMP),
the serum level of C-reactive protein (CRP), and hyal-
uronic acid (HA) (15–19) (Table 1). It is generally
believed that high disease activity suggests a rapid
progression of the disease.

COMP is a component of the articular cartilage
extracellular matrix and is found in high concentrations
in articular cartilage (;0.1% wet weight). Because this
protein is formed by activated synovial cells, it is specu-
lated that elevated COMP levels may reflect synovitis
(9–11,20). Other studies (12,13) have shown that ele-
vated CRP levels are predictive of radiographic progres-
sion of long-term knee OA. Moreover, it was reported
that in women with mild-to-moderately severe knee OA
whose disease either progressed or showed no progres-
sion, a small elevation in CRP levels was of predictive
value (13). The level of another biologic marker, HA,
rises in concentration during inflammation (14). HA has
been reported to be elevated in OA, and plasma HA
levels were found to correlate with an objective func-

tional capacity score and with an articular index based
on the total amount of cartilage in the involved joints.

A study by Verbruggen and Veys (21) demon-
strated that patients with hand OA, involving the distal
joints (DIP, PIP), are generally asymptomatic when the
disease is “nonerosive” and become symptomatic during
inflammatory episodes. The latter are associated with
the onset of erosive OA changes, as seen by sequential
roentgenograms.

These data strongly suggest, from both the bio-
logic and clinical sides, an association between joint
inflammation and the progression of structural changes
in OA.

Role of inflammatory mediators in OA: what is the
proof?

Although the roles of inflammation and of in-
flammatory mediators in the pathophysiology of OA
have been under extensive scrutiny in the last decade
and a great deal of progress has been made, we do not
yet understand all of the ramifications of the systems.
Many of the etiologic factors responsible for the initia-
tion of the disease, which happens at the cartilage level
and is related to the breakdown of the extracellular
macromolecules, remain, however, largely unknown. It
is largely agreed that the presence of the synovial
inflammation that is often associated with the OA
process is believed to be a secondary phenomenon
related to the destruction of cartilage and the release of
cartilage breakdown products in the synovial fluid. In
fact, a number of cartilage macromolecules have been
demonstrated to have significant immunogenic proper-
ties. For instance, evidence has been provided that OA
patients express cellular immunity to the cartilage pro-
teoglycan link protein and C1 domain. Moreover, im-

Table 1. Examples of reports on the correlation between biologic markers of inflammation and the
appearance, progression, and risk factors of osteoarthritis (OA)

Marker, disease characteristic, measure First author Ref. no.

Cartilage oligomeric protein
Synovitis, cartilage degradation

Disease progression Clark AG 10
Sharif M 9
Sharif M 12

Risk factor Petersson IF 11
Hyaluronic acid

Synovitis
Joint score (OA) Goldberg RL 14

C-reactive protein
Inflammation

Disease progression Spector TD 13
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mune complexes containing antibodies to type II colla-
gen have been detected in the superficial layer of OA
cartilage (22). The morphologic changes observed in OA
synovium are usually a mild or moderate synovitis that,
on occasion, is almost indistinguishable from that in
patients with an inflammatory arthritis such as RA
(5,6,23,24). This is characterized by an increase in the
number of inflammatory mononuclear cells in the sub-
lining tissue, including activated B cells and T lympho-
cytes (25,26).

Chondrocytes as a source of matrix metallopro-
tease (MMP) and inflammatory mediator production.
There is now strong evidence for major involvement of
the MMP family in early cartilage structural changes
(3,27). Other enzymes from the serine- and cysteine-
dependent protease families, such as the plasminogen
activator/plasmin system and cathepsin B, respectively,
as well as membrane type MMPs also play a role, but
primarily as activators of MMPs (Figure 1). Another
protease, aggrecanase (a member of the adamalysin
family), appears responsible for proteoglycan cleavage
as found in human OA synovial fluid.

It is increasingly appreciated that chondrocytes
have the capacity to produce a variety of cytokines and
mediators associated with inflammation. Chondrocytes
obtained from patients with OA actively produce nitric
oxide (NO), prostaglandins, interleukin-1b (IL-1b), tu-
mor necrosis factor a (TNFa), IL-6, and IL-8. Since
these cells are sequestered within the lacunae of articu-
lar cartilage (a tissue that is avascular and aneural), the
production of such mediators by chondrocytes may not
be associated with the classic signs of inflammation.
However, as will be discussed, there is evidence that
these molecules act within cartilage in an autocrine or

paracrine manner to promote a catabolic state, which
leads to progressive cartilage damage in OA (28).

Proinflammatory cytokines. It is likely that the
excessive production of cytokines and growth factors by
the inflamed synovium and activated chondrocytes play
an important role in the pathophysiology of OA (3,29).
These factors are closely associated with functional
alterations not only in the synovium, but also in the
cartilage and subchondral bone. They appear to be first
produced by the synovial membrane, and diffused into
the cartilage through the synovial fluid. They activate the
chondrocytes, which, in turn, could produce proteases
and other catabolic factors such as NO, and are respon-
sible for inducing cartilage catabolism, chondrocyte
apoptosis, and other structural changes associated with
the disease process.

A large number of cytokines (pro- and anti-
inflammatory), antagonists, and growth factors are likely
to be involved in OA pathophysiology. Proinflammatory
cytokines have been demonstrated to play a pivotal role
in the development of this disease process. In particular,
IL-1b and TNFa seem prominent and of major impor-
tance to cartilage destruction (30,31). IL-1b and TNFa
can stimulate their own production and induce chondro-
cytes and synovial cells to produce other cytokines, such
as IL-8, IL-6, and leukocyte inhibitory factor (LIF), as
well as stimulate proteases and prostaglandin E2 (PGE2)
production. Moreover, TNFa has also been shown to
induce osteoclastic bone resorption in vitro (32), a
phenomenon that may be involved in the remodeling of
OA subchondral bone.

IL-1b is primarily synthesized as a precursor, and
released in the extracellular milieu in an active form. A
protease named IL-1b–converting enzyme (ICE), or
caspase 1, which is located in the plasma membrane, is
responsible for generating the mature form of this
cytokine (33). The level of this enzyme has been shown
to be up-regulated in both OA synovium and cartilage
(34). The biologic activation of cells by IL-1 is mediated
through an association with specific cell-surface recep-
tors (IL-1R). Two receptors have been identified, type I
and type II IL-1R (35). The type I receptor, which has a
slightly higher affinity for IL-1b than for IL-1a, is
responsible for signal transduction. The number of type
I IL-1R has been demonstrated to be significantly in-
creased in OA chondrocytes and synovial fibroblasts
(36,37), giving these cells a higher sensitivity to stimula-
tion by IL-1b (36). This phenomenon is responsible for
potentiating the effect of this cytokine and up-regulating
the gene expression of a number of catabolic factors,
which, in turn, enhances cartilage destruction. Both
types of IL-1R can also be shed from the cell surface,

Figure 1. Schematic diagram of activators (1) and inhibitors (2) of
matrix metalloprotease (MMP) synthesis and activity. PA 5 plasmin-
ogen activator; TIMPs 5 tissue inhibitors of matrix metalloproteases;
PKC 5 protein kinase C; NF-kB 5 nuclear factor kB; MT-MMPs 5
membrane type matrix metalloproteases.
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and these are named soluble IL-1 receptors (sIL-1R).
The shed receptor may function as a cytokine antagonist
because the ligand-binding region is preserved. They are
believed to act as physiologic inhibitors that regulate the
activation of IL-1R. Recent observations indicate that
the type II receptor may be several-fold more potent
than the type I receptor in antagonizing the catabolic
effects of IL-1b on cartilage (38). However, the biologic
functions of endogenous IL-1 antagonists in OA tissues
and their capacity to neutralize the increased level of
active IL-1b in situ remain unknown.

In OA, TNFa also appears to be an important
mediator of matrix degradation and a pivotal cytokine in
inducing synovial membrane inflammation. The proteo-
lytic cleavage of the proform of this cytokine takes place
at the cellular surface via a TNFa-converting enzyme
named TACE, which belongs to a subfamily of proteases
named adamalysin (39). An up-regulation of TACE
gene expression in human OA cartilage has recently
been reported (40). Once secreted, the cytokine protein
oligomerizes to form trimers, which bind to 2 specific
receptors (TNFR) on the cell membrane. These 2 TNFR
(41,42) are named according to their molecular weight,
TNFR55 and TNFR75. TNFR55 seems to be the dom-
inant receptor responsible for mediating TNFa activity
in OA chondrocytes and synovial cells. An enhanced
expression of TNFR55 has been reported in these cells
(43,44).

Adding to the complexity of this cytokine is the
recent finding that proteolytic cleavage of the extracel-
lular domain of each TNFR produces sTNFR. The 2
soluble receptors sTNFR55 and sTNFR75 are produced
spontaneously by OA synovial fibroblasts and chondro-
cytes (43,45). These cells have been found to release an
increased amount of sTNFR75 (43,45), and an increased
level of sTNFR has been found in the synovial fluid of
patients with different forms of arthritis (46,47). It is
believed that the biologic role of sTNFR varies depend-
ing on its concentration in the joint tissues. At low
concentrations, sTNFR could stabilize the trimeric
structure of TNFa, thereby increasing the half-life of
bioactive TNFa. At high concentrations, sTNFR re-
duces the bioactivity of TNFa by competing for TNF
binding with cell-associated receptors. Therefore, the
low level of sTNFR found in OA tissues would be
another factor favoring the catabolic effects of TNFa.

Other proinflammatory cytokines, including IL-8,
LIF, IL-6, IL-11, and IL-17, have been shown to be
overexpressed in OA tissue, and should therefore be
considered potential contributing factors in the patho-
genesis of this disease. Two of them, IL-11 and IL-6,
have also shown antiinflammatory properties.

Antiinflammatory cytokines and cytokine antag-
onists. A number of antiinflammatory cytokines, such as
IL-4, IL-10, and IL-13, have been shown to be sponta-
neously elaborated by synovial membrane and cartilage,
and are found in increased levels in the synovial fluid of
OA patients (48). These cytokines exert their antiinflam-
matory properties through a number of mechanisms,
resulting in a decrease in the production of IL-1b,
TNFa, and MMPs, up-regulation of IL-1 receptor an-
tagonist (IL-1Ra) and tissue inhibitor of matrix metal-
loproteases 1 (TIMP-1), as well as inhibition of PGE2
release (49–54).

IL-1Ra is a competitive inhibitor of IL-1R and
can block a number of catabolic pathways related to OA,
including PGE2 synthesis, collagenase and NO produc-
tion by chondrocytes, and cartilage matrix degradation.
Even though a higher level of IL-1Ra is found in OA
articular tissues, the ratio of IL-1Ra to IL-1b is insuffi-
cient to deal with the increased level of IL-1b found in
those tissues (29,48).

Nitric oxide: a true catabolic factor. NO is a
factor that is very likely involved in the promotion of
cartilage catabolism in OA through a number of mech-
anisms (55) (Figure 2). OA cartilage produces a large
amount of NO (56,57), and a high level of nitrites/
nitrates have been found in the synovial fluid and serum
of arthritis patients (58), which is caused by an increased
level of the inducible form of NO synthase (iNOS)
(59,60). NO can inhibit the synthesis of cartilage matrix
macromolecules such as aggrecans, can enhance MMP
activity (61,62), and can reduce the synthesis of IL-1Ra
by chondrocytes (57). The selective inhibition of iNOS
has proven to exert positive effects on the progression of
lesions in an experimental canine OA model (63).

Eicosanoids: prostaglandins and leukotrienes
(Figure 3). The expression of the inducible cyclooxygen-
ase, COX-2, is increased in OA chondrocytes that

Figure 2. Role of nitric oxide (NO) synthase in osteoarthritis. The
up-regulation of the inducible form of nitric oxide synthase (iNOS) causes
an excessive production of NO, which is responsible for inducing an
inflammatory reaction, tissue destruction, as well as cell death.
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spontaneously produce PGE2 ex vivo (64). Findings in
the literature on the effects of eicosanoid overproduc-
tion reveal a variety of both catabolic and anabolic
activities. In part, this is due to the fact that different
eicosanoid end-products (e.g., PGE1, PGE2), acting via
different PGE receptors and signaling pathways, have
been shown to exert divergent effects on chondrocyte
metabolism. Thus, the in vivo consequence of COX-2
overexpression in OA may lead to the production of a
variety of prostanoids, of which the net effect on the
disease process may be difficult to assess in vitro.
However, because of the widespread, prolonged use of
COX inhibitors in clinical practice, this is an area that

merits further investigation, including the assessment of
structural outcomes in the clinic (65).

Moreover, the role of products of the lipoxygen-
ase pathway in OA is unclear at present. Leukotriene B4

(LTB4) activity was found to be elevated in the synovial
fluid from patients with OA, and both LTB4 and leuko-
triene C4 production have been reported in OA synovial
tissue, but not in chondrocytes (66–68). Although the
leukotriene mechanism of action is not fully established,
LTB4 was reported to induce IL-1b production in syno-
vial cells (69,70). Since many of these products are
produced in only minute amounts and are detected with
difficulty by radioimmunoassay or enzyme-linked immu-
nosorbent assay, this is a field that merits further inves-
tigation.

Chondrocyte apoptosis: an integral part of the disease
process

Morphologic alterations in cartilage involve both
extracellular matrix components and chondrocytes.
Among the chondrocyte changes is cell cloning. More-
over, there is often an increased number of intracyto-
plasmic organelles reflecting the hypersynthetic state of
these cells (71). There is also an increase in the number
of cells exhibiting signs of degeneration or death, a
phenomenon that has been shown to be related to both
cell necrosis and apoptosis (programmed cell death).
The latter involves a complex process related to the
activation of several intracellular signaling pathways
(72,73). Excess production of NO in OA tissues has been
linked with cartilage chondrocyte apoptosis both in vitro
and in vivo (74,75). The exact mechanism by which NO
mediates apoptosis in OA chondrocytes is not yet com-
pletely understood. However, the activation of the
caspase cascade seems to play an essential role.

Another possible mechanism that could also con-
tribute to OA chondrocyte apoptosis has recently been
identified. A subpopulation of OA chondrocytes (in
superficial zones of the cartilage) expresses the Fas
antigen, which upon ligand binding, could induce cell
apoptosis (76). Interestingly, it is in that zone that most
of the apoptotic cells are located. It is presently not
known under which condition chondrocytes express Fas
ligand, since its only possible source in the OA joint is
inflammatory cells in the synovial tissue and fluid.

Inflammation: a therapeutic target

The main objectives in the management of OA
are to reduce symptoms, minimize functional disability,
and limit progression of the structural changes (77). Our

Figure 3. Possible role of eicosanoid in osteoarthritis symptoms and
pathophysiology. 5-LO 5 5-lipoxygenase; COX-2 5 cyclooxygenase 2;
LTB4 5 leukotriene B4; PGI2 5 prostaglandin I2; PGE2 5 prostaglan-
din E2; TXA2 5 thromboxane A2.
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understanding of the role of catabolic factors in cartilage
degradation and the implication of synovial inflamma-
tion and cytokines in disease progression has improved
substantially in the last 2 decades (3,29). These findings
have made possible more precise identification of path-
ways that have the potential to become therapeutic
targets. These pathways can be modified to effectively
retard the progression of the disease.

A number of such new agents, referred to as
disease-modifying osteoarthritic drugs (DMOADs) (dis-
cussed below), are now the subject of preclinical and
clinical trials. However, given these new insights, what
are the implications for treatment with respect to cur-
rently available agents such as nonsteroidal antiinflam-
matory drugs (NSAIDs), acetaminophen, or intraartic-
ular corticosteroids, or even the use of drugs such as
methotrexate? Clinical studies to date have focused on
the alleviation of signs and symptoms, for which compa-
rable efficacy has generally been demonstrated for
NSAIDs and acetaminophen in stable cohorts of pa-
tients with mild-to-moderate OA (78,79). Published data
on intraarticular corticosteroids in OA have demon-
strated short-term (up to 4 weeks) improvement of signs
and symptoms compared with placebo (78,80). The
comparative efficacy of these agents in the treatment of
episodic crystal-induced inflammatory exacerbations su-
perimposed on chronic OA in selected patients (81), in
which one might predict superior efficacy for NSAIDs or
corticosteroids over acetaminophen, has not been studied.

However, the current paradigm of inflammatory
mediator production in OA focuses less on the induction
of signs and symptoms (which has been studied exten-
sively as noted above) than on the potential autocrine/
paracrine catabolic actions of these products on cartilage
metabolism. Since there are in vitro data to indicate that
corticosteroids inhibit synoviocyte and chondrocyte pro-
duction of IL-1, COX-2, and TNFa (80), there has been
speculation that intraarticular corticosteroid administra-
tion could exert a disease-modifying role in OA. How-
ever, a recent structural outcome study in humans has
not been able to validate such a hypothesis (82). Simi-
larly, despite speculation that NSAIDs exert beneficial
or harmful effects on the integrity of articular cartilage,
there are no validated imaging studies that shed light on
this controversy. Predicting the net effects of COX
inhibitors on cartilage structure is particularly difficult
given the observed pleiotropic effects of individual eico-
sanoids in vitro on chondrocyte functions, as discussed
above. Finally, studies of methotrexate on chondrocyte
function, in vitro and in vivo, have failed to show
significant effects on cartilage metabolism at clinically
relevant concentrations (83).

Thus, although the long-term effects of available
antiinflammatory agents on cartilage merit further in-
vestigation, there is also significant interest in new
agents that have the potential to reduce or stop the
progression of the structural changes observed in OA.
Such agents offer great promise and are likely to lead to
very significant changes in therapeutic approaches in the
near future.

The different DMOAD agents presently in devel-
opment or those targeting pathophysiologic processes
and having therapeutic potential can be briefly summa-
rized as follows.

Inhibitors of MMPs (Figure 1). As previously
mentioned, some members of the MMP family are
intimately involved in articular joint matrix degradation.
These enzymes are synthesized as proenzymes and must
be activated by proteolytic cleavage. A number of agents
that bind the active site of the enzyme can inhibit its
catalytic activity. Among these agents are natural MMP
inhibitors such as TIMP. Increasing the local synthesis of
TIMP would be an effective way to prevent connective
tissue turnover and OA progression. However, this
natural protein showed limitations with regard to its
administration. Nonetheless, therapy with TIMP using
recombinant protein and gene therapy has been shown
to be effective in antimetastatic treatment (84). These
findings, in turn, have generated a regain of interest in
the use of TIMP as a therapeutic strategy for OA.

Strategies for the control of MMP synthesis/
activity, particularly using synthetic compounds, have
been the focus of intensive research over the last decade
(27). Although prospects for the prevention of cartilage
macromolecule breakdown using synthetic MMP inhib-
itors look promising, opinions differ as to the best
MMPs to target. Stopping the degradation of the colla-
gen network is certainly logical, since it has been shown
that its loss leads to irreversible damage. Therefore,
collagenases are among the main candidates for inhibi-
tion. Collagenase 3 (MMP-13) seems to be a very
attractive candidate, because it is the most potent pro-
teolytic enzyme of the 3 collagenases for type II collagen
and it is selectively expressed in pathologic conditions
such as arthritis (85).

Antibiotics such as tetracycline and its semisyn-
thetic forms (doxycycline and minocycline) have very
significant inhibitory properties that impact MMP activ-
ity, even in vivo (86). Their main action is mediated by
chelating the zinc present in the active site of MMPs. A
potential additional therapeutic effect of the tetracy-
clines may be gained as a result of their capacity to
inhibit the expression of iNOS and thereby block NO
production (87). A clinical trial is presently underway to
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evaluate the therapeutic efficacy of doxycycline in pa-
tients with knee OA.

Inhibition of cytokine activity. As mentioned
earlier, proinflammatory cytokines are predominant fac-
tors involved in the progression of OA. Among these,
IL-1b and TNFa play a pivotal role (30,31). Control of
cytokine action can be modulated at different levels;
therapeutic intervention could target the synthesis, the
maturation, or the activity of those cytokines.

Antiinflammatory cytokines. Cytokines such as
IL-4, IL-10, and IL-13 were demonstrated to effectively
reduce the production of IL-1b and TNFa in vitro while
increasing the IL-1Ra production in OA synovium ex-
plants. These data suggest that these antiinflammatory
cytokines could potentially be useful for the treatment of
OA. So far, clinical trials have only evaluated the effects
of IL-10 in RA patients and, as yet, no study is underway
in OA patients.

IL-1b and TNFa activity inhibition. As men-
tioned, both IL-1b and TNFa are synthesized as inactive
precursors and must be activated by an enzyme before
being released extracellularly in their active forms, ICE
and TACE, respectively. Therefore, the inhibition of
IL-1b and TNFa maturation by specific convertase
inhibitors appears to be an attractive therapeutic target.
In fact, it was recently shown that an ICE inhibitor can
completely abrogate ex vivo the formation of active
IL-1b in OA tissue (34). In vivo, in an animal model,
data showed that an ICE inhibitor effectively reduced
the progression of murine type II collagen–induced
arthritis (CIA) (88). The evaluation of the potential of
ICE inhibition for the treatment of RA is presently
underway.

Receptor blockade or molecular quenching. The
IL-1 system is regulated by a natural antagonist of the
receptor, namely IL-1Ra. In vivo experiments using
intraarticular injections of IL-1Ra or IL-1Ra gene trans-
fection were found to retard the progression of experi-
mental OA (30,89,90). Based on these findings and
results from clinical trials in RA patients, it is believed
that the use of IL-1Ra for the treatment of OA holds
promise. However, to our knowledge, no clinical trial is
yet underway for the latter disease.

Another mechanism available to inhibit proin-
flammatory cytokines is the use of soluble receptors to
neutralize the cytokine. Types I or II sIL-1R are poten-
tial therapeutic candidates. In human RA, the adminis-
tration of sTNFR has been shown to be a very effective
treatment (91). The role for TNFa in OA cartilage
degradation is less clear than that of IL-1, although the
production of both TNFa and its converting enzyme,
TACE, are increased in OA (40). However, it is possible

that both IL-1 and TNFa contribute independently to
articular degeneration. Depending on the availability of
therapeutic agents with an acceptable risk:benefit ratio,
trials that examine TNFa antagonism in OA could be
considered.

Specific neutralizing antibodies against IL-1 or
TNFa have been tested in different systems. The IL-1
antibody has been successfully tested in a CIA murine
model of inflammatory arthritis (92). Treatment with an
anti-TNFa antibody has also been shown to improve
arthritis in an experimental model as well as RA in humans
(93). No such treatment has yet been tested in OA.

Inhibition of intracellular signaling pathways. Sev-
eral postreceptor signaling pathways are involved in the
synthesis of cytokines. Two of these pathways, p38
mitogen-activated protein (MAP) kinase and nuclear
factor kB (NF-kB), appear to be the major ones involved
in mediating the synthesis of several inflammatory cyto-
kines and MMPs and are likely to play a role in these
pathways that are activated during the OA process (29).

Pyridinyl imidazole compounds that have the
ability to inhibit p38 MAP kinase and block proinflam-
matory cytokine production have been named cytokine-
suppressive antiinflammatory drugs, or CSAIDs. These
compounds inhibit synthesis of proinflammatory cyto-
kines such as IL-1 and TNFa at the translational level
(94). They have proven therapeutic effectiveness in
animal models of inflammatory arthritis (95). In addi-
tion, some CSAIDs were also shown to inhibit the
production of NO by chondrocytes or by human OA
cartilage (96,97).

Drugs that will target NF-kB activity/activation

Table 2. Gene therapy for osteoarthritis*

Potential targets
Cartilage

Catabolic factors (for example, MMPs, NO)
Anabolic factors (growth factors)
Apoptotic factors (for example, caspases, ceramides)

Synovium
Cytokines (for example, IL-1b, TNFa)
Antiinflammatory cytokines (IL-4, IL-10, IL-13)
Cytokine receptor antagonist (IL-1Ra)
Soluble receptors (sIL-1RII, sTNFR)

Strategies
Gene replacement
Gene addition
Gene control

* In both cartilage and synovium, catabolic factors (for example,
metalloproteases [MMPs], nitric oxide [NO]) and cytokines (for
example, interleukin-1b [IL-1b], tumor necrosis factor a [TNFa])
should be either reduced or eliminated. In contrast, some growth
factors and the cytokine receptor antagonist (interleukin-1Ra [IL-
1Ra]) or soluble receptors (soluble IL-1 receptor type II [sIL-1RII],
soluble tumor necrosis factor receptor [sTNFR]) should be stimulated.
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could have definite potential for the treatment of arthri-
tis. COX-2 and IL-1b are but 2 of several genes modu-
lated by NF-kB activation. A recent report showed that
specifically blocking the activation of this factor in vivo
in the CIA model induced a marked reduction in the
expression of IL-1b and TNFa in synovium, as well as
suppressing the degradation of bone and cartilage of the
arthritic joint (98).

Inhibition of NO production. The discovery and
characterization of the functions of the iNOS isoenzyme
have provided the impetus for novel therapeutic ap-
proaches toward developing a potential new class of
drugs. The challenge lies in making selective inhibitors
that target only the inducible form of NOS in order not
to down-regulate the constitutive OA physiologic iso-
form. The use of a selective iNOS inhibitor in a model of
experimentally induced OA in dogs (99,100) was dem-
onstrated to reduce in vivo the progression of early
lesions, which was then associated with a reduction in
cartilage MMP activity and IL-1b in synovium. More-
over, it was shown that the selective inhibition of iNOS
decreased in situ the level of chondrocyte apoptosis.
These data bring forward the potential of selective iNOS
inhibitors, not only as effective agents for the treatment
of the signs and symptoms of OA, but also for disease-
modifying activity.

Antiapoptotic therapy. Chondrocyte apoptosis is
a complex process mediated by the activation of several
intercellular signaling pathways (74,75), including the
caspase cascade which induces DNA damage (101).
Current and future knowledge about its regulatory
mechanisms will make it possible to develop a strategy
for therapeutic approaches that could be targeted for
future OA treatment. Targeting the caspase cascade or
the mechanisms involved in caspase activation with the
use of specific inhibitors is very appealing, although their
potential side effects will require careful evaluation.

Gene therapy: an attractive concept and maybe
more. Gene therapy (Table 2) in articular joint tissues
can be used as a drug delivery system to modify or
reestablish the balance between catabolic/anabolic fac-
tors or to modulate proinflammatory cytokines. Ideally,
this must be done to the cell or must be tissue specific.
The potential for the use of biologic molecules as
therapeutic agents is limited. Lately, much attention has
been focused on the use of gene transfer techniques.
Their potential for the treatment of OA is of very
significant interest, since a consistently high local con-
centration of the therapeutic protein in the joint can be
provided and sustained delivery maintained over time.
Several strategies to replace defective or deficient pro-

tein products are now under study (Table 2). Treatment
approaches consist of various ex vivo or in vivo tech-
niques using viral or nonviral vectors (102). One strategy
consists of insertion into the cells of a gene enabling the
production of a protein not normally expressed or
expressed in low and insufficient amounts by the OA
cells. The viral system is favored because it generally
allows for a very effective transfer to a large percentage
of cells while maintaining a sustained high level of
protein expression that can be extended over significant
periods of time. Ex vivo transfer of marker genes to OA
cells has been demonstrated in experimental models
with the use of a retroviral vector (89).

The selection or combination of the gene(s) that
would offer the best protection against OA remains to
be determined. The transfer of genes such as IL-1Ra,
IL-10, and IL-13 has been studied using OA or inflam-
matory animal models (103). However, more specifically
with regard to OA, the use of IL-1Ra gene therapy has
elicited much attention. The rationale is based mainly on
the fact that this antagonist has the ability in vitro to
arrest cartilage degradation and in vivo to reduce the
progression of experimental OA (30,89,90).

Conclusion

The current understanding of the pathophysio-
logic pathways involved in OA has evolved greatly in
recent years. Specifically, the role of inflammation has
been explored and new findings have allowed for a much
better understanding of the disease process, the modu-
lating factors, as well as the major regulators, which may
have potential therapeutic value by specifically and
effectively retarding the progression of this disease. A
large amount of new information about OA pathophys-
iology and new targets for the development of therapeu-
tic strategies has been generated from in vitro and
experimental studies. Caution should obviously be ex-
erted in extrapolating this to the clinical situation.
Nevertheless, the future holds great promise for the
development of new and successful approaches to the
treatment of this disease.
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