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ABSTRACT

Given the limited regenerative capacity of the heart, cellular therapy with stem cell-derived cardiac
cells could be a potential treatment for patients with heart disease. However, reliable imaging tech-
niques to longitudinally assess engraftment of the transplanted cells are scant. To address this issue,
we used ferumoxytol as a labeling agent of human embryonic stem cell-derived cardiac progenitor
cells (hESC-CPCs) to facilitate tracking by magnetic resonance imaging (MRI) in a large animal model.
Differentiating hESCs were exposed to ferumoxytol at different time points and varying concentra-
tions. We determined that treatment with ferumoxytol at 300 ig/ml on day 0 of cardiac differenti-
ation offered adequate cell viability and signal intensity for MRI detection without compromising
further differentiation into definitive cardiac lineages. Labeled hESC-CPCs were transplanted by open
surgical methods into the left ventricular free wall of uninjured pig hearts and imaged both ex vivo and
in vivo. Comprehensive T,*-weighted images were obtained immediately after transplantation and
40 days later before termination. The localization and dispersion of labeled cells could be effectively
imaged and tracked at days 0 and 40 by MRI. Thus, under the described conditions, ferumoxytol can be
used as a long-term, differentiation-neutral cell-labeling agent to track transplanted hESC-CPCs in vivo
using MRI.  STEM CELLS TRANSLATIONAL MEDICINE 2016;5:67-74

SIGNIFICANCE

The development of a safe and reproducible in vivo imaging technique to track the fate of trans-
planted human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) is a necessary step
to clinical translation. An iron oxide nanoparticle (ferumoxytol)-based approach was used for cell la-
beling and subsequent in vivo magnetic resonance imaging monitoring of hESC-CPCs transplanted
into uninjured pig hearts. The present results demonstrate the use of ferumoxytol labeling and im-
aging techniques in tracking the location and dispersion of cell grafts, highlighting its utility in future
cardiac stem cell therapy trials.

transplanted hESC-derived cardiac cells [2-4,
9-12]. However, the clinical application of cell-

INTRODUCTION

Stem cell-based therapies have the potential to
regenerate and repair various tissues, thereby
providing hope of novel treatment options for
many intractable diseases such as heart failure.
The success of preclinical studies has partially
relied on the use of appropriate large animals
to establish reliable models for cellular transplan-
tation [1-5]. Stem cell-based therapies in small
animal models have yielded promising but vari-
able results [6-8]. Several studies have supported
the use of large animals, such as pigs, with a sim-
ilar heart size and physiology to humans, to mon-
itor the survival, engraftment, and efficacy of

based therapies will require noninvasive imaging
approaches that will allow in vivo monitoring of
transplanted cells [7, 8, 13, 14].

Despite promising advances in cell labeling [6-8,
13-17], no single method to date has yielded a non-
toxic, readily accessible, and accurate system for longi-
tudinal monitoring of transplanted cells in the heart.
Superparamagnetic iron oxide nanoparticles (SPIOs)
are well characterized and widely used cell-labeling
agents for magnetic resonance imaging (MRI)
[15-17]. However, SPIO exposure has been associ-
ated with cytotoxicity, actin-cytoskeleton modula-
tion, and carcinogenesis, which are undesirable
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side effects when labeling hESC-derived cardiac cells [18-22].
Fluorine-19 (*°F) labeling might be a promising alternative
for cellimaging, because it has little effect on stem cell viability,
proliferation, and differentiation [23-25]. Furthermore,
19 MRI has no significant background signal from host tissue
[26] and has been used in a cell therapy-based clinical trial
[27]. However, many MRI facilities lack the specialized equip-
ment required for *°F MR image acquisition, thereby reducing
the accessibility of this technique [28].

The development of a simple, safe, and reproducible in
vivo imaging technique to track the fate of transplanted
hESC-CPCs would assist in the clinical translation of cell-based
therapies. Recent studies have described the properties of
the ultra-small superparamagnetic iron oxide nanoparticle,
ferumoxytol (Feraheme; AMAG Pharmaceuticals, Inc., Wal-
tham, MA, http://www.amagpharma.com) as a labeling
agent [7, 14, 29-31]. Ferumoxytol interacts with cells via a
synthetic carbohydrate coating and is currently used for
the treatment of iron-deficiency anemia in the presence of
chronic kidney disease [32]. Furthermore, ferumoxytol dis-
plays limited cytotoxicity and genotoxicity and might improve
the viability of certain cell populations (i.e., microglia) [14, 33,
34).

The present proof-of-principal study aimed to define a
ferumoxytol-based approach for cell labeling and subse-
quent in vivo MRI monitoring of hESC-CPCs transplanted into
uninjured pig hearts. In the present study, we investigated
the capacity of hESCs to uptake ferumoxytol during differenti-
ation at varying labeling concentrations, while maintaining op-
timal survival and the ability to generate cardiovascular cell
types. We hypothesized and subsequently demonstrated that
ferumoxytol can be used as an effective, differentiation-
neutral labeling agent for the in vivo MRI monitoring of
hESC-CPCs in the pig heart.

MATERIALS AND METHODS

Ferumoxytol Cell Labeling

hESC/hESC-CPCs were treated with a 24-hour pulse of ferumoxytol
at a concentration of 50 ug/ml, 100 wg/ml, 200 ug/ml, or
300 ug/ml. hESC/hESC-CPCs were exposed to ferumoxytol
pulses at different stages of differentiation, including 1 day be-
fore differentiation start (d —1), day 0 of differentiation (d0),
and day 3 after differentiation started (d3) (Fig. 1A). Next, the
cells were washed three times with phosphate-buffered saline
and media changed to a ferumoxytol-free medium.

In Vitro MRI Cell Preparation

To determine the imaging potential and signal attenuation of
ferumoxytol-labeled hESC-CPCs, the cells were harvested at days
4 and 10 of differentiation and resuspended in 50-ul agarose gel
plugs for in vitro MRI.

Post-Sort Culture

Freshly sorted day 3 CD13+/ROR2+ cells were recultured on
Matrigel-coated plates in Roswell Park Memorial Institute plus
B27 for a recovery period of 24 hours before injection into the
healthy pig heart (supplemental online Fig. 1).

©AlphaMed Press 2016

Cell Injection and Animal Maintenance

Animal housing, maintenance, and experimentation were ap-
proved by, and performed in accordance with the guidelines
set by, the Institutional Animal Care and Use Committee of the
University of California and the National Institutes of Health
Guide for the Care and Use of Laboratory Animals. A total of 3
Yorkshire pigs weighing approximately 40 kg underwent thora-
cotomy and transplantation of ferumoxytol-labeled hESC-CPCs
under direct visualization. Two injection sites were selected on
the left ventricular free wall and marked with suture. Site 1
was injected with ferumoxytol-labeled CPCs. Site 2 was injected
with unlabeled CPCs. A suspension of 4 X 10 cells (determined
by hemocytometer) in approximately 300 ul of conditioned me-
dia was injected in each site using a 27-gauge needle. The pigs
were imaged using T,-based MRI on the day of transplantation
and again 40 days later. The pigs were immunosuppressed with
cyclosporine (serum level of 100-120 ng/ml) and treated with
ketoconazole (20 mg/kg) and trimethoprim sulfa (40 mg/kg) daily,
which began 3 days before cell transplantation and was continued
until euthanasia. After 40 days, the pigs were euthanized, and the
hearts were harvested and sectioned for histological analysis. De-
tailed protocols are given in the supplemental online data and
used published procedures.

RESULTS

Variation in Signal Intensity Is Dependent on
Ferumoxytol Exposure Day

The differentiation protocol efficiently generated precardiac me-
soderm as shown by quantitative polymerase chain reaction and
flow cytometry (supplemental online Fig. 2A-2C). Furthermore,
under these conditions, differentiating cells gave rise to cardio-
myocytes, smooth muscle cells, and endothelial cells in vitro
(supplemental online Fig. 2C, 2D; supplemental online Video 1).
We analyzed the labeling efficiency of hESC/hESC-CPCs using 0,
50, 100, 200, and 300 ug/ml of ferumoxytol on day —1, dO, or d3 of
differentiation (Fig. 1A). hESC-CPCs labeled on d3 revealed the high-
est levels of signal intensity across all concentrations, as determined
by R2* values (ms™?) (Fig. 1B, 1C; supplemental online Table 1).
Higher doses of ferumoxytol did not significantly increase the R2*
values (ms™~%; p > .05) in hESC-CPCs (Fig. 1B, 1C). Mass spectrom-
etry data confirmed these findings, showing a positive correlation
between higher intracellular iron and d3 ferumoxytol labeling,
but not with increased ferumoxytol treatment concentrations
(Fig. 1D, 1E; supplemental online Table 2). These results indicate
that the signal intensity of the ferumoxytol-labeled cells is largely
dependent on the day of exposure and that the ferumoxytol dose,
at the concentrations tested, had little influence on cell labeling.

Ferumoxytol Affects Cell Viability and Differentiation

Under all labeling conditions, approximately 40% of cells adopted
a PDGFRa+/CD13+/CD56+ precardiac mesoderm phenotype,
comparable to that of the unlabeled control (p > .05; Fig. 1F). How-
ever, flow cytometric analysis with propidium iodide and annexin V
revealed a significant increase in apoptotic cells (viability <50%)
when higher concentrations of ferumoxytol (>200 wg/ml) were
used on d3 (p < .05; Fig. 1G). Furthermore, cells labeled on d3
and d —1 failed to upregulate NKX2-5, a transcription factor impor-
tant for cardiovascular lineage differentiation (supplemental
online Fig. 3). However, labeling at dO resulted in minimal apoptosis
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Figure 1. Analysis of signal intensity, viability, and differentiation of ferumoxytol-treated cells. (A): Timeline details of small molecules and
media supplements (e.g., B27) used to guide differentiation and time points and duration of ferumoxytol labeling. Graphs of R2* values of
ferumoxytol-labeled cells obtained by magnetic resonance (MR) imaging at day 4 (B) and day 10 (C) of differentiation. R2* values were calculated
from T,*-weighted MR images of cells labeled for 24 hours with varying iron concentrations at days —1, 0, and 3 of hESC cardiac differentiation
(n =3, mean £ SEM). Views of unlabeled control (green) and positive control (yellow) representing 100 wg/ml pure ferumoxytol suspended
in 50-ul agarose plugs are shown. Mass spectrometry data (in atom counts) comparing iron retention between cells treated with different
iron concentrations (50, 100, 200, and 300 ug/ml) (D) and at different days of differentiation (day —1, day 0, and day 3) (E). (F): Flow cytometry
analysis showing PDGFRa, CD56, and CD13 expression in corresponding ferumoxytol-labeling conditions (n = 3, mean * SEM). (G): Flow cytom-
etry analysis showing Pl and Annexin V expression in corresponding ferumoxytol-labeling conditions (n = 3, mean * SEM). Percentage of viable
cells depicted graphically. (H): Field-of-view images showing NKX2-5 (green) expression in cells labeled at day 0 with 100 ug/ml, 200 wg/ml, and
300 wg/ml ferumoxytol. Scale bars = 100 wm. Abbreviations: CHIR, CHIR99021; d, day; hESC, human embryonic stem cell; Pl, propidium iodide;
uTh, Thurston measurement.
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and was permissive for cardiac differentiation, as indicated by ex-
pression of NKX2-5eGFP, cardiac troponin T, a-actinin, CNN1, and
CD31 (Fig. 1H; supplemental online Figs. 3, 4; supplemental online
Video 2). These results demonstrate that ferumoxytol can ad-
versely affect cell viability and differentiation in a temporal and
dose-dependent manner. Accordingly, hESCs were labeled at dO
using 300 wg/ml of ferumoxytol, because this provided adequate
signal intensity for MRl with no adverse effect on viability or cardiac
differentiation.

Ferumoxytol-Labeled Cells Can Be Detected in Tissue
Ex Vivo

To determine whether ferumoxytol-labeled cells could be identified
by ex vivo MRI, approximately 1.2 X 10’ unsorted labeled or unla-
beled hESC-CPCs were injected into two separate sites of explanted
pig hearts (Fig. 2; supplemental online Fig. 5). T, *-weighted imaging
revealed strong negative contrast in areas of labeled hESC-CPC
injection (R2* value, 0.34 * 0.096ms *and 0.29 + 0.04 ms ™ *; Fig. 2A,
2B; supplemental online Fig. 5; supplemental online Video 3). Unla-
beled hESC-CPCs were indistinguishable from surrounding tissue
(R2* value, 0.018 *+ 0.002 ms ™ and 0.020 * 0.001 ms %) and could
not be detected by MRI (Fig. 2A, 2B; supplemental online Fig. 5).
Thus, ferumoxytol-labeled hESC-CPCs can be identified and imaged
in porcine heart tissue using MRI.

In Vivo Identification of Ferumoxytol-Labeled
hESC-Derived Cardiac Cells by MRI

We transplanted approximately 4 X 107 ferumoxytol-labeled
or unlabeled hESC-CPCs isolated by fluorescence-activated
cell sorting based on coexpression of CD13 and ROR2 [1]
(supplemental online Fig. 6) into two separate sites of the left
ventricular free wall of adult pig hearts. MRI was performed at
day 0 and day 40 after injection (n = 3) (Fig. 3; supplemental
online Videos 4-6). Shortly after day 0 of cell transplantation,
T,*-weighted imaging revealed a large area of strong negative
contrast at the injection site (R2* value, 1.45 = 0.31 ms %), indi-
cating the presence of cells within the myocardium of the left
ventricle (Fig. 3; supplemental online Video 4). By contrast, un-
labeled cells were indistinguishable from the surrounding
heart tissue (R2* value, 0.083 * 0.011 ms™ }). Day 40 MRI de-
tected a reduced area of negative contrast with decreased signal
in the approximate anatomical location to that of day 0 imaging
(R2* value, 0.32 + 0.05 ms ™ 1), suggesting a decrease in graft
size and/or signal attenuation (Fig. 3; supplemental online
Videos 5, 6).

Ferumoxytol-Labeled hESC-CPCs Differentiate Toward
Cardiac Linages In Vivo

To further verify both cell retention and differentiation toward
cardiac lineages, hearts were harvested on day 40, and areas
showing negative contrast by MRl were analyzed for the presence
of hESC-CPC-derived cells. Cell clusters (ranging from 5 to >500
cells) staining positive for human mitochondria and iron dextran
were located at the outer myocardial layer near the epicardium,
suggesting that hESC-derived cells retained ferumoxytol and
remained near the site of injection (Fig. 4; supplemental online
Figs. 7, 8). Consistent with previous reports, most transplanted
cells (>90%) were not retained in the recipients’ heart [1-4, 8,
30, 34]. Nevertheless, the hESC-CPCs that remained gave rise to

©AlphaMed Press 2016

at least three definitive cardiac lineages, namely cardiomyocytes
(cardiac troponin C [cTnC]), smooth muscle (CNN1), and endothe-
lial cells (CD31) (Fig. 4C—4E). These results demonstrate that
ferumoxytol-labeled hESC-CPCs can successfully differentiate to-
ward definitive cardiac cell types after transplantation into live pig
hearts.

DiscussION

The present proof-of-principle report describes a transfec-
tion reagent-free, ferumoxytol-based labeling strategy for MRI
monitoring of transplanted hESC-CPCs. We have demonstrated
that labeling hESCs with 300 ug/ml of ferumoxytol on day 0 of
differentiation offers optimal cell viability without compromising
cardiac lineage commitment and adequate signal intensity with
MRI. hESCs exposed to ferumoxytol at d —1 failed to differenti-
ate into cardiomyocytes, which might have been because of
the acute sensitivity of hESCs to a range of culture perturbations,
as previously reported [38—41]. Furthermore, ferumoxytol label-
ing on d3 resulted in a significant decrease in cell viability, which
might have contributed to the observed lack of cardiac differ-
entiation. The sensitivity of day 3 cultures to ferumoxytol can
be partially explained by the current hESC cardiac differentiation
methods, resulting in some cell death at days 3—4, which might
have been exacerbated by ferumoxytol labeling. It remains
possible that ferumoxytol could also have a negative effect on
differentiation, potentially accounting for the inability of d3-
labeled hESC-CPCs to differentiate toward contractile cardio-
myocytes. Our data suggest that the development of successful
cell labeling strategies require a multifaceted approach, taking
into consideration the differentiation method, time-point of la-
beling, labeling agent, and treatment concentrations. We reason
that the ferumoxytol-labeling strategy used in the present study
provides favorable conditions to cope with the most efficient and
recently developed human pluripotent stem cell (hPSC) cardiac
differentiation protocols.

We used an ex vivo imaging model to confirm that signal in-
tensity was preserved in porcine cardiac tissue and that labeled
cells could be adequately imaged with MRI. Sites of unlabeled
hESC-CPCs injections were physically marked with sutures to cor-
relate the injection site with the MR images, and, as anticipated,
the unlabeled cells could not be visualized. However, the sites
where ferumoxytol-labeled hESC-CPCs were injected demon-
strated high R2* values, resulting from the high intracellular
ferumoxytol concentration. Furthermore, in vivo studies in the
pig demonstrated that MRI can monitor ferumoxytol-labeled
cells for up to 40 days in the host myocardium. Immunohistochem-
ical analysis of the explanted hearts in the area of the MRI sig-
nal revealed the presence of ferumoxytol-labeled hESC-derived
cardiac cells. These results suggest that the MRI signal corresponds
to the presence of labeled cells. Moreover, transplanted hESC-CPCs
were able to differentiate toward cardiomyocytes (cTnC+), en-
dothelium (CD31+), and smooth muscle (CNN1+) in vivo, sug-
gesting that the differentiation process successfully continued
after transplantation.

Previous rodent-based studies have demonstrated that iron-
labeled ESCs, or their derivatives, can be imaged for up to 28 days
when injected into mouse hindlimbs and hearts [6, 7, 31]. Further-
more, consistent with our findings, other groups have reported sig-
nal attenuation (ranging from 30% to 60%), cell migration, and cell
loss at varying time points after transplantation [8, 14, 31, 35].
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Figure 2. Exvivo detection of ferumoxytol-labeled human embryonic stem cell-derived cardiac progenitor cells (RESC-CPCs) in pig hearts by
magnetic resonance (MR) imaging. (A;: Ex vivo MR images of porcine heart showing injection sites of ferumoxytol-labeled (arrow) and un-

labeled (asterisk) hESC-CPCs; 1.2 X 10

hESC-CPCs were injected at each site. Labeling was done at day 0 of differentiation with 300 ug/ml of

ferumoxytol. (B): R2* values (ms~?) of epicardium, endocardium, and labeled hESC-CPC injections (n = 3, mean = SEM). R2* values were

calculated from T,*-weighted MR images.

Figure 3.
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In vivo detection of ferumoxytol-labeled human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) in pig hearts by

magnetic resonance (MR) imaging. (A—C): Day 0 and day 40, in vivo T,*-weighted MR images from three porcine hearts showing locations
of ferumoxytol-labeled (arrows) hESC-CPCs; 4 X 107 hESC-CPCs were injected. Scale bars = 1 cm. Labeling was done at day 0 of differentiation
with 300 ug/ml of ferumoxytol. (D): R2* values (ms ™ ') measured from porcine host myocardium and labeled hESC-CPC injections at day 0

and day 40 (n = 3, mean = SEM). R2* values were calculated from T,*-weighted MR images.

Recent studies, however, have shown that iron oxide labeling,
combined with magnetic targeting, might improve graft reten-
tionintherat heart [29, 30, 34, 36]. Thus, ferumoxytol cell label-
ing might have utility in both in vivo cardiac graft imaging and
cell retention. The prospective value of the present study lies
in its extended duration and the use of a large animal model.

www.StemCellsTM.com

The pig is an excellent large animal model for preclinical studies
for hESC-derived cardiac cell transplantation owing to its similar
heart size and physiology to humans. These properties of the
porcine model also make it ideal for MRI-based studies, for
which image resolution is pivotal in designing future clinical
applications.

©AlphaMed Press 2016
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=

CNN1

Figure 4. Ferumoxytol-labeled hESC-CPCs differentiation toward definitive cardiac cell types in vivo. (A): Porcine heart harvested at day 40 showing
injection sites of ferumoxytol-labeled and unlabeled cells. (B): Transverse sections of day 40-harvested porcine heart; cell grafts are shown in sections
2 (ferumoxytol labeled) and 4 (unlabeled). (C—E): Stained frozen sections of ferumoxytol-labeled hESC-CPCs in injected hearts from sacrificed pigs
(day 40). Immunohistochemical stains depict the expression of DAPI (blue), anti-human mitochondria (red), and cTnC (C), CD31 (D), and CNN1 (E)
(green). Scale bars = 50 wm. Abbreviations: cTnC, cardiac troponin C; DAPI, 4',6-diamidino-2-phenylindole; Hu-mito, human mitochondria.

We chose to deliver a single injection of hESC-CPCs into
normal pig hearts to eliminate many of the variables resulting
from the injury process. The hostile inflammatory environ-
ment, along with the active fibrosis and scar formation, could
have interfered with the viability, maturation, and monitoring
of the labeled cells. The present study was a proof-of-principle
study to establish a reliable imaging technique for tracking
transplanted hESC-CPCs that remain viable and differentiate
into definite cardiac cell types. However, consistent with pre-
vious studies [3, 13, 37, 38], we observed that not all delivered
cells were present after 40 days. Similar poor cellular reten-
tion was observed between ferumoxytol-labeled and unla-
beled transplanted hESC-CPCs. Therefore, it is unlikely that
ferumoxytol labeling exacerbates cellular loss after transplan-
tation. Other possibilities, such as cell death at delivery, cell
rejection despite immunosuppressive therapy, or that the
cells were unable to engraft into their new environment and
were cleared by the host immune system, warrant further in-
vestigation. Nonetheless, despite the low number of viable

©AlphaMed Press 2016

transplanted cells in the host myocardium, MRI was still able
to accurately locate and image the labeled hESC-CPC grafts,
thereby demonstrating the sensitivity of this cell monitoring
technique.

Although more established methods for spatially identifying
transplanted cells in vivo require animal sacrifice and histological
analysis, we have demonstrated a practical and widely applicable
tool for imaging at the cellular level. However, the low sample
sizes (n = 3) used for this proof-of-principal study did not allow
for statistically powered definitive conclusions to be drawn. Thus,
future large animal in vivo studies with greater sample sizes are
required. Furthermore, the present study did not compare the
utility of this labeling protocol using different cell delivery meth-
ods, such as intracoronary, epicardial, and transendocardial.
We observed a decline in signal intensity at 40 days compared
with day 0. Although this was most likely a result of a significant
reduction in the number of retained cells, we could not for-
mally exclude that the reduction in signal intensity was caused
by the prolonged time periods. Future studies are warranted to
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determine whether the ferumoxytol signal diminishes over time.
The present study also did not determine the quantity or mini-
mum volume necessary to produce a signal on MRI. Nevertheless,
future hPSC cardiac treatments will likely incorporate multiple in-
jection sites, with each site requiring far greater cell numbers than
those used throughout the present study (~4 X 107) to elicit a
therapeutically relevant response in the setting of myocardial in-
jury [3]. As such, the ferumoxytol-labeling strategy we have de-
scribed could be appropriately used for translational studies
and, possibly, clinical trials.

CONCLUSION

The results of the present proof-of-principle study have dem-
onstrated that (a) a 24-hour pulse of ferumoxytol at the onset
of differentiation is sufficient to label hESC-CPCs without compro-
mising cell viability or differentiation; (b) MRI can accurately track
the location of ferumoxytol-labeled hESC-CPCs transplanted into
a pig’s heart for up to 40 days after delivery; and (c) transplanted
ferumoxytol-labeled hESC-CPCs differentiate into three cardio-
vascular lineages, despite the low retention rate. Therefore,
ferumoxytol can be used as a differentiation-neutral hESC-
CPC-labeling agent that facilitates long-term MRI monitoring of
transplanted cells in large animals.
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