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SUMMARY

A zebrafish genetic screen for determinants of sus-
ceptibility to Mycobacterium marinum identified a
hypersusceptible mutant deficient in lysosomal
cysteine cathepsins that manifests hallmarks of hu-
man lysosomal storage diseases. Under homeostatic
conditions, mutant macrophages accumulate undi-
gested lysosomal material, which disrupts endocytic
recycling and impairs their migration to, and thus
engulfment of, dying cells. This causes a buildup of
unengulfed cell debris. During mycobacterial infec-
tion, macrophages with lysosomal storage cannot
migrate toward infected macrophages undergoing
apoptosis in the tuberculous granuloma. The unen-
gulfed apoptotic macrophages undergo secondary
necrosis, causing granuloma breakdown and
increased mycobacterial growth. Macrophage lyso-
somal storage similarly impairs migration to newly
infecting mycobacteria. This phenotype is recapitu-
lated in human smokers, who are at increased risk
for tuberculosis. A majority of their alveolar macro-
phages exhibit lysosomal accumulations of tobacco
smoke particulates and do not migrate to Mycobac-
terium tuberculosis. The incapacitation of highly
microbicidal first-responding macrophages may
contribute to smokers’ susceptibility to tuberculosis.
INTRODUCTION

Tuberculosis (TB) involves a series of interactions between mac-

rophages and the infecting mycobacterium with this proposed
This is an open access article und
sequence of events (Cambier et al., 2014a; Srivastava et al.,

2014): inhaled mycobacteria are engulfed by lung alveolar mac-

rophages and, if not cleared during this initial interaction, are

transported deeper into the lung. Here, newly recruited myeloid

and other immune cells aggregate around the infected cells to

form organized granulomas.

The study of zebrafish infected with M. marinum has enabled

the dissection of these steps of TB pathogenesis, aided by the

genetic tractability of this model organism and its optical trans-

parency during its first few weeks of life (Cambier et al.,

2014a). Newly infecting bacteria can be transported across

epithelial barriers by permissive macrophages (Cambier et al.,

2014b). Additional macrophages are recruited to the initial in-

fectedmacrophage to form the tuberculous granuloma (Cambier

et al., 2014a). Cellular expansion of the granuloma, and intracel-

lular bacterial growthwithin it, proceeds through apoptosis of the

infected macrophages and their phagocytosis by newly arriving

uninfected macrophages (Davis and Ramakrishnan, 2009). On

the one hand, bacterially mediated granuloma expansion can

promote infection through bacterial spread into newly recruited

macrophages (Davis and Ramakrishnan, 2009). On the other

hand, if the supply of uninfected macrophages is limiting,

apoptotic infected cells in the granuloma undergo secondary ne-

crosis, causing granuloma breakdown and the release of bacte-

ria into the extracellular space, which enables their accelerated

growth (Pagán et al., 2015).

In this work, we characterize a zebrafish mutant identified in a

forward genetic screen (Tobin et al., 2010) to reveal how, during

genetic lysosomal storage disorders, the accumulation of unde-

graded products in the macrophage lysosome impairs the

migration of these phagocytic cells. The disruption of macro-

phage migration contributes to the pathogenesis of the lyso-

somal storage disease in the uninfected state and causes

granuloma breakdown during tuberculous infection, which

underlies hypersusceptibility. The mutation maps to snapc1b,
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a transcriptional co-regulator that causes lysosomal storage

through reduced expression of lysosomal cysteine cathepsins

B and L. Using zebrafish models of human lysosomal storage

diseases, we generalize our findings to show that the accumula-

tion of diverse biological substrates, as well as inert particles,

compromises macrophage migration through the derangement

of endocytic recycling. We then show that lysosomal storage in

macrophages inhibits their migration to engulf newly infecting

bacteria. Because the resident alveolar macrophages of human

cigarette smokers have been reported to accumulate particulate

material, we asked whether smokers’ macrophages are similarly

compromised in their response to mycobacterial infection. We

find that the majority of smokers’ alveolar macrophages have

enlarged lysosomes filled with opaque material and are impaired

in their migration toM. tuberculosis. The compromisedmigration

of these highly microbicidal first responding macrophages sug-

gests a mechanistic explanation for the reported association be-

tween smoking and TB (Lin et al., 2007).

RESULTS

snapc1b Zebrafish Mutant Hypersusceptibility to
M. marinum Infection Is Characterized by Granuloma
Breakdown
The zebrafish mutant fh111, identified in a forward genetic

screen (Tobin et al., 2010), was hypersusceptible toM.marinum,

displaying increased bacterial growth relative to wild-type sib-

lings after intravenous infection (Figures 1A and 1B). fh111 infec-

tion was characterized by the breakdown of forming granulomas

accompanied by bacterial cording, a characteristic morphology

acquired by rapidly growing extracellular bacteria after release

from necrotic macrophages (Pagán et al., 2015; Tobin et al.,

2010) (Figure 1C). We used bacterial cording as a sensitive and

specific phenotype to map fh111 (Figure 1D) (Tobin et al.,

2010). fh111 maps to a splice acceptor site mutation in the

exon 1–2 junction of the zebrafish snapc1b gene on chromo-

some 13 (Figure S1A), one of two orthologs of human SNAPC1

(Small Nuclear RNA Activating Complex Polypeptide 1) that en-

codes a component of the basal transcriptional machinery for

RNA Pol II and III-dependent transcription (Henry et al., 1998).

Zebrafish snapc1b has higher amino acid identity to human

SNAPC1 than its paralog snapc1a, located on chromosome 20

(39% versus 35%, respectively) (Flicek et al., 2014). RNA

sequencing (RNA-seq) analysis of wild-type (WT) animals at

6 days post-fertilization (dpf) showed that snapc1b RNAs

were �35-fold more abundant than snapc1a RNAs (GEO:

GSE74196). We confirmed the location and transcriptional

consequence of fh111 by RNA-seq and qRT-PCR (Figures S1A

and S1B). Causality of the fh111 mutation was confirmed by a

splice-blocking antisense oligonucleotide (morpholino) that tar-

geted the same exon 1–2 splice junction of snapc1b (Table S1)

that phenocopied fh111 susceptibility (Figures S1C and S1D)

and by non-complementation with an independent retroviral

insertion allele that disrupts exon 1 of snapc1b (la010158) (Fig-

ures S1E and S1F) (Varshney et al., 2013).

In sum, our findings suggest that Snapc1b deficiency causes

hypersusceptibility to mycobacterial infection through early

granuloma breakdown, which releases mycobacteria into the
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extracellular milieu that is more growth permissive than the

intracellular environment, culminating in bacterial cording mor-

phology (Pagán et al., 2015).

Macrophages of snapc1b Mutants Are Increased in
Number and Have Enlarged Lysosomes
Granuloma breakdown can result from a global reduction in

macrophage numbers available to replenish the granuloma

(Pagán et al., 2015). We were surprised to find that, even in

uninfected snapc1b mutants, macrophage numbers were

increased as revealed by increased numbers of fluorescentmac-

rophages in transgenic animals (Ellett et al., 2011) and by stain-

ing with neutral red, a vital dye that accumulates inmacrophages

(Davis and Ramakrishnan, 2009) (Figures 1E–1G). The increased

abundance of microglia, tissue resident macrophages of the

brain derived from a primitive hematopoietic lineage (Clements

and Traver, 2013), suggested a derangement in multiple waves

of myelopoiesis (Figures 1H and 1I).

Most of the macrophages in mutants were enlarged and

discoid in shape (Figures 1J, 1K, and S2A–S2C). The enlarged

macrophages contained prominent vacuoles, which were re-

vealed to be fused lysosomes by staining with LysoTracker (Fig-

ure 1L) (Peri and Nüsslein-Volhard, 2008). Themutant lysosomes

were larger than wild-type and occupied a greater proportion of

total macrophage volume (Figure 1M). This aberrant macro-

phage morphology is similar to what has been observed in hu-

man lysosomal storage disorders (Kieseier et al., 1997). Our

observation of an increased abundance of tissue resident mac-

rophages (histiocytosis) accompanied by increased expression

of myeloid growth factors (Table S2) also mirrors findings in

several human lysosomal storage disorders (Allen, 2008; Hsu

et al., 2012). Neutrophils, the other myeloid cells present at this

developmental stage, were not increased in snapc1b mutants

and displayed normal morphology, consistent with their lack of

involvement in homeostatic scavenger functions (Figure S2D;

data not shown).

snapc1b Mutant Macrophages Become Vacuolated and
Immotile as a Result of Lysosomal Accumulation of
Undigested Cell Debris
To understand the development of vacuolated morphology, we

compared microglial morphology and dynamics in uninfected

animals during physiological efferocytosis of apoptotic neurons.

In wild-type animals, macrophages assumed a vacuolated

morphology upon phagocytosis of particulate material (presum-

ably cell debris) but reverted to normal within 4 hr (Figure 2A;

Movie S1). Vacuolated morphology was accompanied by a tran-

sient reduction in speed of homeostatic migration; movement

resumed upon reversion to normal morphology (Figures 2A

and 2B; Movie S1). In snapc1b mutants, macrophages became

irreversibly vacuolated after only a few phagocytic events,

accompanied by sustained immotility and consequently reduced

displacement—36 mmversus 131 mm for wild-type—over a 13-hr

observation period (Figures 2A and 2B; Movie S1). These vacu-

olated macrophages did not have obvious phagocytic defects

and continued to extend pseudopods in apparent phagocytic

events (Figure 2A; Movie S1). Vacuolated macrophages were

also unable to migrate in response to the chemotactic molecule
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Figure 1. snapc1b Mutants Are Hypersusceptible to

M. marinum and Have Increased Numbers of Macro-

phages that Display Vacuolated Morphology

(A) Representative images of wild-type (WT) and

snapc1bfh111/fh111 mutant larvae 4 days post-infection (dpi)

with 150 M. marinum (Mm). Scale bar, 300 mm.

(B) Quantification of Mm burden measured by fluorescence in

snapc1bfh111/+ incross larvae at 5 dpi with 240 Mm.

(C) Confocal images of green fluorescent macrophages (MF)

and red fluorescent bacteria in intact granulomas of WT larvae

and extracellular corded bacteria following complete granu-

loma breakdown in snapc1b mutant larva at 2 dpi with 200

Mm. Scale bar, 15 mm.

(D) Quantification of bacterial cording in larvae from an incross

of snapc1bfh111/+ parents at 5 dpi with 200 Mm.

(E) Confocal images of the caudal hematopoietic tissue (CHT)

of representative WT and snapc1b mutant larvae with red

fluorescent macrophages at 6 days post-fertilization (dpf).

Scale bar, 20 mm.

(F and G) Quantification of fluorescent macrophages (F) and

neutral red-stained cells (G) in the CHT of snapc1bfh111/+ in-

cross larvae at 6 dpf.

(H) Confocal images of fluorescent macrophages in the head

of representative WT and snapc1b mutant larvae at 3 dpf.

Dotted lines indicate the outline of larvae. Scale bar, 100 mm.

(I) Total macrophage volume in the brains of WT and snapc1b

mutant larvae at 5 dpf. Volumetric analysis performed from 3D

confocal images on red fluorescence signal.

(J) Confocal images of fluorescentmacrophages in the brain of

WT and snapc1b mutant larvae at 3 dpf. Scale bar, 60 mm.

(K) Measurement of oblate ellipticity of macrophages in the

brains of WT and snapc1b mutant larvae at 3 dpf.

(L) Confocal images red fluorescent macrophages stained

with LysoTracker green in the brains of 3 dpf WT and snapc1b

mutant larvae. Scale bar, 30 mm.

(M) Average lysosomal volume per animal normalized to total

macrophage volume. Macrophage and lysosomal volumes

were determined by volumetric analysis of red fluorescence

(macrophages) and green fluorescence (lysosomes) in 3D

confocal images.

Statistical significancewas assessed by one-way ANOVAwith

Sidak’s post-test (B, F, and G) or Student’s t test (I, K, and M).

See also Figures S1 and S2, and Tables S2 and S3.
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Figure 2. Lysosomal Storage in snapc1b Mutants Compromises Physiological Efferocytosis

(A) Still images from confocal video of green fluorescent macrophages in snapc1b mutant larval and WT sibling brains. Time of image is indicated in minutes.

Arrowsmark pseudopodia; arrowheadsmark vacuoles. Vertical dotted red line indicates the time point immediately following phagocytic event. Scale bar, 15 mm.

(B) Speed of WT and snapc1b mutant macrophages from the confocal video in (A). Average speed before and after the phagocytic events are indicated by a

horizontal blue line. Green dots correspond to time points in the images shown in (A).

(C) Migration of normal and vacuolated macrophages from the same animal to CCL2 injected into the HBV.

(D) Representative confocal image of red fluorescent macrophages stained with acridine orange (AO) in brains of snapc1bmutant larvae andWT siblings at 3 dpf.

Arrow marks a wild-type macrophage with very little AO staining. Arrowhead marks a rare AO positive macrophages seen in WT brains. Scale bar, 30 mm.

(E and F) Confocal images (E) and quantification (F) of green fluorescent acridine-orange-stained unengulfed cell debris in the brains of snapc1bmutant larvae and

WT siblings at 5 dpf. Scale bar, 150 mm. Images in (E) denoted as red data points in (F).

Statistical significance was assessed by Student’s t test (B and F) and paired t test (C). See also Figure S3.
CCL2 injected into the hindbrain ventricle (HBV) (Cambier et al.,

2014b), indicating a broad migratory defect toward both cell

debris and chemotactic factors (Figure 2C). These findings are

consistent with observations that macrophages from patients

with Gaucher’s disease, the most common human lysosomal

storage disorder, are defective for migration but competent for

phagocytosis (Aflaki et al., 2014).
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Acridine orange staining confirmed that the lysosomal

accumulations in mutant macrophages were phagocytosed

apoptotic bodies (Abrams et al., 1993; Peri and Nüsslein-Vol-

hard, 2008) (Figure 2D). Together, these findings suggested

that lysosomal accumulation of undigested cell debris in

mutant macrophages impairs migration irreversibly and leads

to progressive macrophage incapacitation. If so, then we
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Figure 3. snapc1b Mutant Macrophages Fail to Participate in
Granuloma Formation

(A) Confocal images of granulomas in the hindbrain ventricle of snapc1b

mutant larvae and WT siblings with green fluorescent macrophages at 2 dpi

with 100 red fluorescent Mm. Scale bar, 60 mm.

(B) Tracks of macrophage movement following granuloma formation in

snapc1b mutant larvae and WT siblings shown in (A). Tracks are coded for

speed. Tracks created by vacuolated macrophages are indicated with an

asterisk.

(C and D) Speed (C) and displacement (D) of snapc1b mutant and WT sibling

macrophages in (A and B). Statistical significance was assessed using one-

way ANOVA with Sidak’s post-test.
hypothesized that mutants would have an accumulation of extra-

cellular apoptotic bodies in the brain as seen in several human

lysosomal storage disorders (Huang et al., 1997). They did (Fig-

ures 2E and 2F). Furthermore, a global reduction in apoptosis

induced by the pancaspase inhibitor Q-VD-OPh reduced extra-

cellular cell debris (Figure S3A) and decreased the number of

macrophages with lysosomal accumulations of the debris and

with enlarged lysosomes (Figures S3B and S3C).

Together, these findings show that snapc1b mutant macro-

phages become irreversibly vacuolated due to their inability to

degrade phagocytosed cell debris. As more and more macro-

phages lose their migratory capability, a deficit of functioning

macrophages may develop.
Macrophage Migration Deficit Underlies Granuloma
Breakdown in snapc1b Mutants
We recently showed that reduction in themacrophage supply re-

duces granuloma macrophage replenishment to the point at

which apoptotic infected macrophages, failing to be engulfed,

undergo secondary necrosis (Pagán et al., 2015). Having

observed that the vacuolated macrophages of snapc1bmutants

failed to migrate to dying cells in the uninfected state and

failed to migrate to newly infecting bacteria, we wondered

whether they were also unable to migrate to dying cells in the

tuberculous granuloma. If so, a functional macrophage defi-

ciency could develop in the context of global macrophage

excess, providing an explanation for our observation of early

granuloma breakdown.

We performed detailed time-lapse confocal imaging of form-

ing granulomas in wild-type and snapc1b mutant larvae over

�18 hr. Wild-type granulomas retained cellularity over this

period through continuous influx of macrophages (Movie S2;

Figures 3A and 3B). In contrast, Snapc1b-deficient granulomas

broke down soon after formation (Movie S2). Mutant granulomas

were surrounded by mostly vacuolated macrophages that failed

to migrate into the granuloma (Figures 3A and 3B; Movie S2).

The migration deficit in snapc1b mutants was specific to the

vacuolated macrophages; the morphologically normal macro-

phages in the mutants maintained displacements and speeds

similar to those of wild-type animals (Figures 3C and 3D;

Movie S2). Thus, macrophage lysosomal storage leads to gran-

uloma breakdown by preventing migration to the forming

structure and is functionally equivalent to a global macrophage

deficiency. Our findings suggest that, once the snapc1bmutants

have exhausted their migration-competent macrophages, the

tuberculous granuloma breaks down resulting in bacterial

cording.

Lysosomal Cathepsin Deficiency Underlies snapc1b

Mutant Macrophage Abnormalities and
Hypersusceptibility to M. marinum

Human SNAPC1 is involved in global RNA polymerase II-depen-

dent transcription (Baillat et al., 2012). RNA-seq analysis of

snapc1b mutants and wild-type siblings revealed more than

1,000 differentially expressed genes in the mutant (Table S3),

suggesting zebrafish Snapc1b functions in a similar manner.

How might a broadly acting transcriptional regulator produce

such specific phenotypes? Guided by the snapc1b mutant

phenotype, we analyzed the RNA-seq dataset for lysosomal

genes including those associated with human lysosomal storage

disorders (Table S2) (Platt et al., 2012). Only two, the myeloid

cell-specific lysosomal cysteine cathepsins B and L1 (ctsbb

and ctsl1) (Heng et al., 2008), were underrepresented in the

mutant, at 9% and 13% of wild-type levels, respectively (Table

S2), and we confirmed their commensurate reduction by qRT-

PCR analysis (85% and 83%, respectively) (Figure 4A; data not

shown). We were able to test lysosomal cathepsin activity

in situ using MagicRed (MR)-Cathepsin L, a modified cathepsin

L target sequence, which fluoresces only when cleaved (Peri

and Nüsslein-Volhard, 2008). In wild-type animals, brain macro-

phages quickly cleaved injected MR-cathepsin L; this number

was reduced as expected by administration of the irreversible
Cell 165, 139–152, March 24, 2016 143
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Figure 4. Cathepsin L Deficiency Causes snapc1b Mutant Vacuolated Macrophage Morphology and Susceptibility to M. marinum

(A) Quantitative real-time PCR of relative ctsl1 transcript in snapc1b+/� incross larvae at 6 dpf. Values normalized to transcript level of the heterozygous larvae,

representative of two experiments.

(B andC) Confocal images of green fluorescentmacrophages in larvae injectedwith red fluorescent MR-Cathepsin L at 3 dpf, either following treatment with E64d

or DMSO control at 2dpf (B) or in snapc1b mutants and WT siblings (C). Yellow or white arrowheads denote macrophages that are positive or negative for MR-

Cathepsin, respectively. Scale bar, 50 mm.

(D) Confocal images of green fluorescent macrophages stained with LysoTracker red in the brains of 3-dpf E64d-treated and DMSO control larvae. Scale

bar, 50 mm.

(E) Average macrophage speeds during a 5-hr movie in the brains of 3-dpf E64d-treated and DMSO control larvae.

(F) Quantification of bacterial cording in DMSO control and E64d-treated larvae at 5 dpi with 150 Mm.

(G) Confocal images of green fluorescent macrophages stained with LysoTracker red in the brains of 3-dpf ctsl1morphants and control larvae. Scale bar, 50 mm.

(H) Average macrophage speeds during a 5-hr movie in the brains of 3-dpf ctsl1 morphants and control larvae.

(I) Quantification of bacterial cording in control, snapc1b, and ctsl1 morphants at 5 dpi with 200 Mm.

(J) Quantification of vacuolated macrophages in the brains of 3-dpf WT or snapc1b mutant larvae following injection of ctsl1 RNA or control at 0 dpf.

(K) Quantification of bacterial cording at 2 dpi with 215 Mm in the HBV of snapc1b mutants and WT siblings following injection of ctsl1 RNA or control.

Statistical significance was assessed by ANOVA with Sidak’s post test (E, H, and J) or Fisher’s exact test (F, I, and K). See also Figure S4.
pan-cysteine cathepsin inhibitor, E64d (42.7% of macrophages

in control versus 3.63% in E64d-treated larvae, p < 0.0001) (Mur-

ray et al., 1997) (Figure 4B). snapc1bmutants displayed reduced

MR-cathepsin-L cleavage compared to wild-type siblings, indic-

ative of reduced lysosomal cathepsin L activity (47.2% ofmacro-
144 Cell 165, 139–152, March 24, 2016
phages in WT animals versus 5.3% in mutants, p < 0.0001)

(Figure 4C).

We next tested whether cysteine cathepsin deficiency under-

lies all of the snapc1b mutant phenotypes. Inhibition of cysteine

cathepsins by E64d recapitulated both baseline and infected



snapc1b mutant phenotypes—macrophage lysosomal storage

with accompanying migratory defects at baseline, and hyper-

susceptibility to infection with bacterial cording (Figures 4D–

4F). We attempted morpholino knockdown of ctsbb and ctsl1

to probe their individual culpabilities in the snapc1bmutant phe-

notypes (Table S1). As the ctsbbmorpholino was highly toxic, we

could only pursue ctsl1 further. ctsl1 morphants recapitulated

the snapc1b phenotypes (Figures 4G–4I). Transient overexpres-

sion of ctsl1 mRNA in snapc1b mutant larvae restored normal

macrophage morphology in uninfected snapc1b mutants and

rescued cording (Figures 4J and 4K). Together these experi-

ments implicate cysteine cathepsins in snapc1b hypersuscepti-

bility resulting from macrophage incapacitation. Our data

ascribe a substantial portion of snapc1b phenotypes to

cathepsin L1 deficiency though we cannot rule out a minor role

for cathepsin B deficiency. Prior findings that cathepsin L

knockout mice are not hypersusceptible to M. tuberculosis

(Nepal et al., 2008) may reflect functional redundancies present

in the mouse but not the zebrafish.

Our finding that cathepsin L1 deficiency mediated hypersus-

ceptibility prompted us to ask whether this lysosomal hydrolase

might play a role in macrophage microbicidal activity for two rea-

sons. First, a deficit in macrophage microbicidal activity (e.g.,

through TNF deficiency) has been shown to result in granuloma

breakdown with bacterial cording (Tobin et al., 2010). Second,

in vitro, cathepsin L has been reported to indirectly facilitate

mycobacterial killing by cleaving ubiquitin into microbicidal pep-

tides (Alonso et al., 2007). However, we found that macrophages

of both snapc1b mutants and ctsl1 morphants restricted bacte-

rial growth normally (Figure S4). These findings suggest that

cathepsin L-mediated macrophage microbicidal capacity is

dispensable in vivo and confirms that its deficiency induces sus-

ceptibility by compromising macrophage migration.

Zebrafish Models of Human Lysosomal Storage
Disorders Display Accelerated Tuberculous Granuloma
Breakdown
While cathepsin deficiency causes protein accumulation in lyso-

somes, many human genetic lysosomal storage disorders result

from the accumulation of diverse lipid species (Platt et al., 2012).

Patients with Gaucher’s disease, the most common lysosomal

storage disease, have macrophages with migration defects

in vitro (Aflaki et al., 2014; Liel et al., 1994) and are susceptible

to a variety of pathogens including mycobacteria, though this

may be due to concomitant immune defects including pancyto-

penias (Aker et al., 1993; Jain and Yelwatkar, 2011; Machaczka

et al., 2014; Zimran, 2011). We asked whether the mechanism of

susceptibility uncovered for ctsl1 deficiency extended to lyso-

somal storage disorders characterized by lipid accumulation.

Knockdown of the zebrafish orthologs of the genes responsible

for Gaucher’s disease, Tay-Sachs disease, and metachromatic

leukodystrophy produced increased numbers of vacuolated

macrophages with enlarged lysosomes and migratory defects

(Tables S1 and S2; Figures 5A–5C). Upon infection, all three ex-

hibited early granuloma breakdown and bacterial cording (Fig-

ures 5D–5F). Thus, etiologically diverse lysosomal storage

disorders can increase susceptibility to tuberculous infection,

regardless of the nature of the accumulated material.
Macrophage Lysosomal Storage Disrupts Endocytic
Recycling
Our work so far had linked macrophage lysosomal storage to

impaired migration to increased susceptibility to mycobacteria.

Having understood the cellular basis of the link between

impaired macrophage migration and susceptibility, we sought

to understand how macrophage lysosomal storage might impair

migration. Recycling between the endosomal and plasma mem-

branes is known to be required for cell migration. This recycling

delivers membrane lipids and proteins required for movement to

the plasmamembrane and facilitates adjustments in cell-surface

area that are critical for cell motility (Bretscher and Aguado-Ve-

lasco, 1998; Traynor and Kay, 2007; Veale et al., 2010). Lyso-

somes share contents with endosomes, and recent evidence

suggests that, like endosomes, they participate in recycling to

the plasma membrane (Bright et al., 2005, 2015). Accordingly,

embryonic fibroblasts isolated from twomousemodels of severe

lysosomal storage disorders display broad dysregulation of the

entire endocytic pathway (Fraldi et al., 2010).

We asked whether endocytic recycling was disrupted in the

zebrafish macrophages with lysosomal storage by monitoring

the fate of fluorescently labeled high-molecular-weight dextran

(10,000MW) in normal animals and those with macrophage lyso-

somal storage. Following endocytosis, high-molecular-weight

dextran is trafficked to lysosomes but not readily degraded,

and its loss from lysosomes strictly reflects trafficking from

them. In pulse-chase experiments, dextran-labeled lysosomes

have been shown to fuse rapidly with endosomes, and several

hours later the dextran is released into the extracellular medium

suggesting subsequent fusion events that involve trafficking to

the plasma membrane (Bright et al., 2015).

We injected fluorescent dextran into the brains of 3-dpf zebra-

fish larvae—wild-type, cathepsin deficient by E64d treatment,

and gba-deficient morphants. In all groups, 74%–82% of the

macrophages had taken up the dye within 5 hr (Figure 6). After

30 hr, only 33% and 39% of the macrophages in the wild-type

fish retained the dextran, whereas 77% and 79% did in the

cathepsin and gba-deficient animals, respectively (Figure 6),

suggesting that stalling of the entire endocytic system is a com-

mon feature of lysosomal storage diseases and underlies the

defective migration displayed by vacuolated macrophages.

Our finding that the lysosomal accumulation of diverse biomol-

ecules compromises endocytic recycling, and thus cell motility,

suggested a common mechanism independent of the specific

lysosomal substrate. If so, then lysosomal storage induced by

non-biological particles should produce the same phenotypes.

We injected beads into the HBV, which were phagocytosed by

brain resident macrophages (Figure S5A). Bead-laden macro-

phages were compromised for homeostatic migration and ex-

hibited disruption of endocytic recycling (Figures S5B–S5E).

Lysosomal Accumulation Compromises Macrophage
Migration to Newly Infecting Mycobacteria
In addition to their role in forming andmaintaining the granuloma,

resident macrophages are the first cells to migrate to mycobac-

teria at the initial site of infection (Cambier et al., 2014a; Philips

and Ernst, 2012). This first macrophage-mycobacterium interac-

tion can be visualized in the zebrafish hindbrain ventricle (HBV),
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Figure 5. Lysosomal Storage Disorders Disrupt Macrophage Migration and Cause Granuloma Breakdown

(A and B) Confocal images of green fluorescent macrophages in the brain of 3-dpf control and morphant larvae, unstained (A) or following staining with

LysoTracker Red (B). Scale bars, 10 mm.

(C) Quantification of average macrophage speed in control and morphant larvae by macrophage morphology (wt, wild-type; vac, vacuolated).

(D–F) Quantification of bacterial cording in control and morphant larvae at 3 dpi with 200 Mm. Statistical significance was determined using paired t tests with

Bonferroni correction (C) and Fisher’s exact test (D–F).
a cavity into which phagocytes migrate in response to mycobac-

teria (Cambier et al., 2014b). In the snapc1b mutant, only the

subset of brain-resident macrophages that still had normal

morphology migrated to the bacteria and phagocytosed them,

while the vacuolated macrophages, failing to migrate from the

adjacent brain parenchyma, remained uninfected (data not

shown). We could not directly test the migration of bead-laden

brain resident macrophages, as only a minority of them engulfed

sufficient numbers of beads injected into the HBV. So we in-

jected either beads or the nuclear stain Hoechst 33342 into the

caudal vein followed by bacteria into the HBV (Figure S5F). As

observed previously, the Hoechst-stained macrophages could

be discerned by their blue nuclei and were morphologically

normal (Figure S5G) (Davis and Ramakrishnan, 2009). After con-

firming that similar numbers of circulating macrophages were

labeled blue by either dye or beads, we injected bacteria into

the HBV (Figure S5F). Multiple Hoechst-positive macrophages

migrated to the HBV in response to the bacteria, as expected
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(Davis and Ramakrishnan, 2009), but hardly any bead-filled

ones did (Figures S5G–S5I). Thus, the accumulation of indigest-

ible inert particles in macrophage lysosomes compromises their

migration so as to preclude their ability to phagocytose infecting

mycobacteria.

Lysosomal Accumulation of Tobacco Smoke
Particulates Compromises Macrophage Migration to
M. tuberculosis in Humans
Human TB is thought to begin when mycobacteria are phagocy-

tosed by pulmonary alveolar macrophages, the resident macro-

phages at the air-lung interface (Bates et al., 1965; Hocking and

Golde, 1979; Ratcliffe and Wells, 1948; Verrall et al., 2014).

Consistent with their role in primary defense against diverse

inhaled bacteria (Green and Kass, 1964; Hocking and Golde,

1979), the ability of a substantial number of individuals to clear

M. tuberculosis early after infection has been ascribed to the mi-

crobicidal activity of the alveolar macrophage (Verrall et al.,
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2014). Despite their central defensive role, many alveoli are nor-

mally devoid of macrophages because their numbers are limiting

(Betz et al., 1993; Ferin, 1982). Therefore, efficient and complete

phagocytosis of inhaled particulates is predicated on the rapid

migration of alveolar macrophages from nearby alveoli (Lehnert,

1992; Peão et al., 1993). This migration should be particularly

relevant to TB, the outcome of which depends upon the fate of

the 1-3 bacteria deposited in a distal alveolus, which might not

contain a macrophage (Bates et al., 1965; Ratcliffe and Wells,

1948). In light of our findings that bead-laden macrophages

were compromised for migration to newly infecting bacteria in

the zebrafish, we wondered whether the accumulation of to-

bacco smoke particulates in the alveolar macrophages of ciga-

rette smokers (Harris et al., 1970; Martin, 1973) might be similarly

compromised, accounting for the poorly understood association

between smoking and the acquisition of new TB infection

(Anderson et al., 1997; den Boon et al., 2005). If an infecting

mycobacterium were to be deposited in a macrophage-deficient
alveolus and not rapidly phagocytosed by nearby alveolar mac-

rophages rendered immotile secondary to lysosomal engorge-

ment, it would have an extended period of extracellular growth

before engulfment by alveolar macrophages or other myeloid

cells recruited from afar.

We examined alveolar macrophages obtained from smokers,

nonsmokers, and ex-smokers by bronchoalveolar lavage

(O’Leary et al., 2014) (Table S4; Supplemental Experimental Pro-

cedures). The majority of smokers’ alveolar macrophages ex-

hibited vacuolated morphology and had accumulated opaque

material in large lysosomal inclusions as evidenced by staining

with neutral red, a vital dye that concentrates in lysosomes (Fig-

ures 7A and 7B). The abnormal cells were readily identified by

their autofluorescence, consistent with previous findings (Martin,

1973). These cells were present at a lower frequency in ex-

smokers and virtually absent in nonsmokers (Figures 7A and 7B).

Using a transwell assay, we confirmed prior reports that alve-

olar macrophages from nonsmokers and ex-smokers migrate
Cell 165, 139–152, March 24, 2016 147
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to zymosan-activated serum, a rich source of the chemoattrac-

tant C5a (Figure S6A) (Barlow et al., 2008; Sweeney et al.,

2015). In this assay, nonsmokers’ and ex-smokers’ alveolar

macrophages also migrated to M. tuberculosis within 2 hr (Fig-

ures 7C and S6B). Migration of smokers’ macrophages to

M. tuberculosis was impaired (Figure 7D). Our hypothesis

predicts that this overall migration impairment is due to a

selective inability of the vacuolated subset to migrate. Indeed,

by calculating the fraction of the smokers’ normal versus

vacuolated macrophages that migrated, we found that the

migration impairment was specific to the vacuolated subset

(Figure 7E). In sum, we show that the majority of smokers’

macrophages fail to migrate toward M. tuberculosis due

to lysosomal accumulation of particulates, and their non-

participation may contribute to the susceptibility of these indi-

viduals to TB.
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DISCUSSION

We have described a zebrafish mutant in the snapc1b basal

transcription factor component that displays the hallmark char-

acteristics of human lysosomal storage disorders and is hyper-

susceptible to M. marinum infection. RNA-seq of snapc1b

mutants revealed reduced expression of the lysosomal degrada-

tive cathepsins L and B, and pharmacological inhibition of

cathepsin activity or knockdown of cathepsin L recapitulates

the key mutant phenotypes of vacuolated macrophage mor-

phology and susceptibility to infection.

Though cathepsin L is involved in the lysosomal degradation of

phagocytosedmaterial, its deficiency heremediates susceptibil-

ity to mycobacteria not by reducing macrophage microbicidal

capacity but rather by causing lysosomal accumulation of undi-

gested cell debris. This disrupts endocytic membrane recycling



and thereby compromises macrophage migration in a variety of

contexts. By modeling human lysosomal storage diseases in the

zebrafish, we find that the accumulation of diverse substrates

causes susceptibility to infection through this same mechanism.

Our studies provide insights into the fundamental and common

role played by macrophages as scavengers of dying cells during

homeostasis and during tuberculous granuloma maintenance.

These insights shed light on the protective role of tissue macro-

phages in early tuberculous infection and how lysosomal

accumulation of tobacco smoke products may compromise

this role.

Macrophage Migration Defects Due to Lysosomal
Accumulation of Undigested Cell Debris Contribute to
the Pathogenesis of Lysosomal Storage Disorders
Sequential live visualization of the developing snapc1b mutant

highlights the continuous scavenging role ofmacrophages under

homeostatic conditions. Our work suggests that the accumula-

tion of undigested cell debris in macrophage lysosomes may

itself contribute substantially to the pathogenesis of human lyso-

somal storage diseases. We find that defects in macrophage

degradative function render the cell vacuolated, immotile, and

unable to further perform a critical scavenging function, which

depends on directed migration to the dying cell (Hochreiter-Huf-

ford and Ravichandran, 2013). This may contribute to the accu-

mulation of unphagocytosed debris from cells undergoing

apoptosis in the course of homeostatic tissue remodeling and

repair, and the pathological consequences of their secondary

necrosis.

The increased number of apoptotic bodies observed in human

lysosomal storage disorders has been attributed to increased

cell death triggered by the accumulation of lysosomal substrates

(Huang et al., 1997). However, macrophages also accumulate

lysosomal substrates in a variety of human lysosomal storage

diseases (Kieseier et al., 1997); our findings suggest that the

resultant immotility of an increasing proportion of macrophages

may contribute to the accumulation of dead cells. Because tis-

sue turnover is high in the developing brain, the macrophage

scavenging deficit we propose may be particularly relevant for

the pathogenesis of the neurological manifestations of lysosomal

storage disorders hitherto attributed to neuronal dysfunction

(Jeyakumar et al., 2005). Hematopoietic stem cell transplants

in humans andmice improve clinical manifestations of lysosomal

storage disorders, including neurological ones that are recalci-

trant to enzyme replacement therapy (Biffi et al., 2004; Malatack

et al., 2003; Norflus et al., 1998). In light of our findings, we spec-

ulate that hematopoietic stem cell transplantation alleviates dis-

ease pathology by restoring macrophage degradative function

and consequently migration to engulf cell debris.

Macrophage Migration Defects Caused by Lysosomal
Accumulation Promote Tuberculous Granuloma
Breakdown
Our studies of the snapc1b mutant, in which vacuolated macro-

phages fail to migrate into the tuberculous granuloma, reveal the

inextricable link between macrophage homeostatic and immune

function. Like the brain, the forming tuberculous granuloma is an

environment with high cell turnover and the maintenance of its
cellularity depends on the continuous migration of new macro-

phages that engulf dying infected macrophages (Davis and

Ramakrishnan, 2009; Pagán et al., 2015). In the context of tissue

remodeling, the clearance of dying cells prevents their second-

ary necrosis and release of inflammatory material into the extra-

cellular space (Hochreiter-Hufford and Ravichandran, 2013).

Likewise, in the TB granuloma, timely engulfment of dying in-

fected macrophages prevents their secondary necrosis and

release of bacteria into the extracellular milieu (Pagán et al.,

2015). Granuloma breakdown is clinically significant because it

increases both disease severity and risk of transmission (Camb-

ier et al., 2014a).

Human lysosomal storage disorders are rare and often lethal

within the first year of life, and thus unlikely to be significant

contributors to the global burden of TB. Likewise, snapc1b

mutant zebrafish fail to reach adulthood, and SNAPC1-null mu-

tations in humans are likely embryonic lethal. However, even

relatively small reductions in themacrophage supply to the gran-

uloma can accelerate its breakdown (Pagán et al., 2015). It is

possible that subtle alterations in macrophage degradative func-

tion, caused by altered expression of SNAPC1, or lysosomal

cathepsins or other hydrolases, could create local macrophage

deficits and increased susceptibility to TB. Thus, macrophage

lysosomal accumulation from diverse genetic etiologies may

together be not insignificant contributors to the global TB

burden.

Lysosomal Accumulation in Alveolar Macrophages of
Smokers May Contribute to TB Susceptibility
Finally, our findings that lysosomal storage also compromises

the migration of lung resident alveolar macrophages to myco-

bacteria suggests a mechanism for the observed susceptibility

of smokers to new TB infection. There is accumulating evidence

for a role for alveolar macrophages being first-responding pro-

tective cells in TB. In mice, aerosolized M. tuberculosis is found

almost exclusively in alveolar macrophages for the first 7 days,

after which infection moves into other myeloid cells such as

monocytes and dendritic cells recruited from the lung intersti-

tium or circulation (Srivastava et al., 2014; Urdahl, 2014). Their

greater microbicidal capacity is mirrored in humans whose alve-

olar macrophages inhibit M. tuberculosis growth in contrast to

peripheral blood monocytes, which are growth permissive (As-

ton et al., 1998). Our findings suggest that migration defects re-

sulting from macrophage lysosomal engorgement impede the

rapid engulfment (and therefore eradication) of infecting mi-

crobes at points of entry and may therefore facilitate bacterial

entry into growth-permissive cells.

Cigarette smoking increases not only the risk of progression

to active pulmonary TB disease, but also the risk of new TB

infection, suggesting defective early response mechanisms in

smokers (Anderson et al., 1997; den Boon et al., 2005; Gyawali

et al., 2012). Smokers’ alveolar macrophages phagocytose bac-

teria and yeast normally and have normal bactericidal activity

against M. tuberculosis (Cohen and Cline, 1971; Harris et al.,

1970; O’Leary et al., 2014). The incapacitation of alveolar macro-

phages by tobacco smoke particulates may contribute to

increased risk of infection in two ways: (1) delayed time to

phagocytosis by the alveolar macrophage, allowing for a longer
Cell 165, 139–152, March 24, 2016 149



extracellular growth period by the bacteria, and (2) increased

chance of initial phagocytosis by a recruited, growth-permissive

macrophage.

In addition to providing an explanation for the increased sus-

ceptibility of individuals with genetic lysosomal storage disor-

ders to respiratory, skin, and mucosal infections (Jain and

Yelwatkar, 2011; Machaczka et al., 2014), our findings may

constitute a basis for the susceptibility of smokers to other res-

piratory infections (Bagaitkar et al., 2008; Lin et al., 2007), Finally,

this mechanism may also contribute to the poorly understood

association between indoor air pollution and TB (Sumpter and

Chandramohan, 2013).

Smokers’ increased susceptibility to infection may be revers-

ible. A longitudinal study of alveolar macrophages after trans-

plant of a smoker’s lung into a nonsmoker revealed a progressive

decrease in ‘‘smokers alveolar macrophages’’ from >90% to 3%

in 3 years (Marques et al., 1997). In our cohort, not only did ex-

smokers have significantly fewer alveolar macrophages with

lysosomal storage than smokers, but overall migration to

M. tuberculosis was restored. These findings provide an addi-

tional rationale for smoking cessation as a prescription for TB

prevention.

EXPERIMENTAL PROCEDURES

Detailed methods and bacterial and zebrafish strains associated with all pro-

cedures below are available in Supplemental Experimental Procedures.

Zebrafish Husbandry and Larval Injections

Zebrafish husbandry and experiments were conducted according to guide-

lines from the UK Home Office, and the US NIH (approved by the University

of Washington Institutional Animal Care and Use Committee). The wild-

type AB strain was used for experiments except those in which the

snapc1b(fh111) line or transgenic lines were used. Unless noted, crosses us-

ing snapc1b(fh111) were performed as heterozygote incrosses, which were

genotyped at the completion of the experiment, to ensure blinded scoring

of phenotypes. Except where noted, ‘‘WT’’ refers to snapc1bfh111/+ and

snapc1b+/+. Bacteria, beads, and dye were injected into the caudal vein

and/or hindbrain ventricle.

Human Alveolar Macrophage Experiments

Alveolar macrophages (AM) were retrieved at bronchoscopy after informed

consent and as approved by the Research Ethics Committee of St. James’

Hospital, using a protocol that preserves viability of macrophages from both

smokers and nonsmokers (O’Leary et al., 2014). Macrophage migration and

microscopical visualization procedures are detailed in Supplemental Experi-

mental Procedures.

Bacterial Strains

Wild-typeM.marinum (Mm) (strain M - ATCC #BAA-535) expressing tdTomato

under the constitutive promotermsp12was used for fluorescence microscopy

and quantification of intracellular bacterial burdens (Takaki et al., 2013). The

attenuated Derp mutant Mm was used to enumerate intracellular bacteria

(Cosma et al., 2006; Takaki et al., 2013), and WTMmwas used for all other as-

says. Bacterial were cultures and prepared for injection as described (Takaki

et al., 2013).

M. tuberculosis H37Ra (ATCC 25177) was used for the human alveolar

macrophage studies and prepared as described in Supplemental Experi-

mental Procedures.

Statistical Analyses

Statistical analyses were performed using Prism 6 (GraphPad). Not significant,

p R 0.05, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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