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SUMMARY

The adult pancreas is capable of limited regenera-
tion after injury but has no defined stem cell popu-
lation. The cell types and molecular signals that
govern the production of new pancreatic tissue
are not well understood. Here, we show that inacti-
vation of the SCF-type E3 ubiquitin ligase substrate
recognition component Fbw7 induces pancreatic
ductal cells to reprogram into a, d, and b cells.
Loss of Fbw7 stabilized the transcription factor
Ngn3, a key regulator of endocrine cell differentia-
tion. The induced b cells resemble islet b cells in
morphology and histology, express genes essential
for b cell function, and release insulin after glucose
challenge. Thus, loss of Fbw7 appears to reawaken
an endocrine developmental differentiation program
in adult pancreatic ductal cells. Our study high-
lights the plasticity of seemingly differentiated adult
cells, identifies Fbw7 as a master regulator of cell
fate decisions in the pancreas, and reveals adult
pancreatic duct cells as a latent multipotent cell
type.

INTRODUCTION

The pancreas comprises an exocrine component (ductal and

acinar cells) and an endocrine component (b cells, a cells,

d cells, pancreatic polypeptide-positive [pp] cells, and ε cells).

The endocrine cells are organized in defined islet structures

embedded in the acinar compartment, which function as key

regulators of carbohydrate metabolism (Edlund, 2002). The

autoimmune disease Type 1 diabetes irreversibly destroys insu-

lin-secreting b cells in pancreatic islets, resulting in a lack of

insulin production and hyperglycemia (Atkinson et al., 2011).

Treatment is most commonly with insulin injections, but the de-

gree of glycemic control with this approach does not compare to

functional pancreatic b cells. Regenerative b cell treatments in

diabetic patients could allow for the long-term restoration of

normal glycemic control and thus represent a potentially curative

therapy (Yi et al., 2013).
C

The generation of new pancreatic b cells is being pursued on

several fronts in vitro, including differentiation of induced plurip-

otent stem cells (iPSCs) and reprogramming of other pancreatic

cell types (Pagliuca and Melton, 2013). Regenerating pancreatic

b cells in situ is an attractive alternative to these approaches,

driven by evidence of spontaneous b cell neogenesis in the adult

pancreas (Bonner-Weir et al., 2004; Dor et al., 2004; Lysy et al.,

2012; Pagliuca and Melton, 2013; Teta et al., 2005). b cell regen-

eration during adulthood is very limited but can be achieved

experimentally using pancreatic duct ligation in mice (Xu et al.,

2008) and pancreatectomy in rats (Bonner-Weir et al., 2004).

Inducible depletion of acinar and islet cells with diphtheria toxin

showed that duct cells can give rise to both acinar and endocrine

cells (Criscimanna et al., 2011). Thus, ductal cells in the adult

pancreas show a latent propensity for b cell generation. Addi-

tionally, genetic approaches have converted other pancreatic

cell types into b cells. Adenoviral overexpression of the three

transcription factors neurogenin-3 (Ngn3), Maf1a, and Pdx1 is

sufficient to convert adult acinar cells into b cells (Zhou et al.,

2008), and overexpression of Pax4 converts glucagon-produc-

ing a cells into b cells (Collombat et al., 2009). However, the ca-

pacity for b cell neogenesis in the normal adult pancreas, and the

regulatory events surrounding it, remain largely unknown.

Ngn3 is the earliest factor that specifically regulates the

development of the endocrine compartment in the embryonic

pancreas (Habener et al., 2005). Ngn3�/� mice completely lack

endocrine islet development (Gradwohl et al., 2000), and trans-

genic overexpression of Ngn3 activates an islet differentiation

program in the embryo and in cultured pancreatic ductal cell

lines (Heremans et al., 2002; Schwitzgebel et al., 2000). In the

adult pancreas, Ngn3 expression is very limited, but levels rise

during b cell neogenesis induced by pancreatic duct ligation,

where Ngn3 is required for b cell replenishment (Van de Casteele

et al., 2013; Xu et al., 2008). Moreover, expansion of Ngn3+ cells

bordering the ducts contributes to the b cell expansion observed

when overexpressing Pax4 (Al-Hasani et al., 2013), indicating

thatmanipulation of Ngn3 levels and/or activitymay be beneficial

for regeneration therapies. Ngn3 is a highly unstable protein

(Roark et al., 2012), and the level and timing of its expression

must be precisely controlled to ensure the correct production

of b cells, but the details of its posttranslational regulation remain

elusive.

Fbw7 (F-box and WD-40 domain protein 7) is the substrate

recognition component of an evolutionarily conserved SCF
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Figure 1. Pdx1-Driven Deletion of Fbw7 in

the Pancreas Induces Occurrence of Cells

in the Ducts Displaying b Cell Hallmarks

(A–D) Hematoxylin and eosin (H&E) staining of

Fbw7f/f or Pdx1-Cre; Fbw7f/f pancreas. (a) Fbw7f/f

pancreatic islet; (b) Fbw7f/f duct; (c) and (d) Pdx1-

Cre; Fbw7f/f cells with altered morphology in the

ducts.

(E and F) Double IF for insulin (ins) and cytokeratin

19 (CK19) in Fbw7f/f (E) or Pdx1-Cre; Fbw7f/f (F)

pancreas at 4 weeks.

(G–I) Double IF for Glut2 and insulin in Fbw7f/f (G)

or Pdx1-Cre; Fbw7f/f (H and I) pancreas at

4 weeks. Nuclei were counterstained with DAPI.

White dashed squares in (F) and (H) represent the

areas magnified in (F) and (I) respectively. n > 5

mice per genotype (representative picture shown).

See also Figure S1.
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(complex of SKP1, CUL1, and F-box protein)-type ubiquitin

ligase. SCF(Fbw7) degrades proteins that function in cellular

growth and division pathways, including c-Myc, cyclin E,

Notch, and c-Jun (Welcker and Clurman, 2008). Emerging evi-

dence shows that Fbw7 controls stem cell self-renewal, cell

fate decisions, survival, and multipotency in numerous tissues,

including the hematopoietic (Iriuchishima et al., 2011) and ner-

vous systems (Hoeck et al., 2010; Matsumoto et al., 2011), liver

(Onoyama et al., 2011), and intestine (Sancho et al., 2010). This
140 Cell Stem Cell 15, 139–153, August 7, 2014 ª2014 The Authors
suggests that Fbw7 has a crucial func-

tion in fundamental cell differentiation

processes.

Here, we show that Fbw7 contributes

to the regulation of Ngn3 stability, and

loss of Fbw7 induces a direct ductal-to-

b cell differentiation in the adult pancreas.

Our study not only reveals a role for Fbw7

in pancreatic cell fate determination and

identifies Ngn3 as a target of Fbw7 but

also demonstrates that ductal cells can

be induced to alter their identity in the

adult pancreas in the absence of injury

to the organ with a single genetic change.

RESULTS

Fbw7 Deletion in the Pancreas
Induces Scattered Duct Cells to
Display Functional Mature b Cell
Hallmarks
Given the role of Fbw7 in controlling cell

fate decisions in other organs, we asked

whether Fbw7 also functions in cell type

specification in the pancreas. We deleted

Fbw7 in embryonic pancreatic progenitor

cells using a Cre recombinase under the

control of the Pdx1 promoter (Pdx1-Cre;

Fbw7f/f mice). Although pancreatic organ

size and gross morphology appeared

normal, histological analysis revealed
increased ductal cell proliferation and an expansion of the ductal

compartment (Figures S1A and S1B available online), consistent

with the increase in proliferation upon Fbw7 deletion observed in

other organs (Hoeck et al., 2010; Matsumoto et al., 2011;

Onoyama et al., 2007, 2011; Sancho et al., 2010). Unexpectedly,

scattered cells in the Pdx1-Cre; Fbw7f/f ducts showed an

enlarged cytoplasm and smaller rounded nuclei when compared

with surrounding ductal cells, andmore closely resembled islet b

cells (Figures 1A–1D). Insulin expression, which is normally
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restricted to islets in control mice (Figure 1E), was detected in

these aberrant ductal cells (Figure 1F). The majority of insulin-

positive cells in Pdx1-Cre; Fbw7f/f ducts were devoid of the

ductal cell marker cytokeratin-19 (CK19), but costaining of

CK19 and insulin was sometimes observed (Figure 1F), suggest-

ing an intermediate transition state between ductal and insulin-

positive cells. No insulin costaining with the acinar cell marker

amylase was observed (Figures S1C and S1D). Thus, the

absence of Fbw7 appears to trigger abnormal differentiation of

a subset of ductal cells, biasing them toward an endocrine fate.

In addition to ectopic insulin-positive cells (in 17% of ducts),

Pdx1-Cre; Fbw7f/f ducts also contained cells expressing the

a cell marker glucagon, albeit less frequently (3% of ducts)

(Figures S1E and S1F). We also observed glucagon/insulin

double-positive cells in Pdx1-Cre; Fbw7f/f ducts (Figures S1G–

S1I), similar to progenitor cells described in human embryonic

pancreas (Piper et al., 2004). Thus, deletion of Fbw7 in the

pancreas promotes the occurrence of cells coexpressing

markers of different pancreatic cell lineages, a cellular pheno-

type that is not normally observed in the adult pancreas.

One of the features of functional b cells is the expression of the

glucose transporter Glut2 (Slc2a2). In control animals, Glut2 was

coexpressed with insulin in islet b cells by double insulin/glut2

immunofluorescence (IF) (Figure 1G). Glut2 was also coex-

pressed with insulin in the Pdx1-Cre; Fbw7f/f aberrant ductal

cells (Figures 1H and 1I).

Inducible Deletion of Fbw7 in the Adult Pancreas
Promotes b Cell Neogenesis
Because Pdx1-expressing progenitors give rise to all the pancre-

atic lineages (Oliver-Krasinski and Stoffers, 2008), the emer-

gence of insulin-positive cells in Pdx1-Cre; Fbw7f/f ducts could

be due to a developmental defect. To test whether Fbw7 deletion

can induce b cell neogenesis in adult mice, and to clarify the cells

that give rise to ectopic b cells, we combined inducible Fbw7

deletion using the R26-CreERT line with lineage tracing using

R26-LSL-YFP. ‘‘RY’’ control mice express a tamoxifen-inducible

form of Cre recombinase from the ubiquitous Rosa26 (R26)

promoter, leading to the permanent expression of yellow fluores-

cent protein (YFP) in recombined cells. In the Fbw7f/f back-

ground (‘‘RFY’’ line, Figure 2A), tamoxifen treatment results in

recombination of the floxed Fbw7 alleles in Cre-expressing cells

concomitantly with activation of YFP expression (Figure 2B).

Intraperitoneal injection of tamoxifen induced recombination

in all pancreatic cell types but with different efficiencies. Almost

all acinar cells showed YFP positivity (91%), while recombination

occurred much less frequently in islet (10%) and ductal cells

(5%) (Figures 2C and 2D). Despite the high percentage of recom-

bination in the acinar compartment (Figure 2D), no insulin positiv-

ity was observed in cells with acinar cell morphology, and insulin/

amylase double-positive cells could not be detected in the RFY

pancreas (Figures 2E–2N). Likewise, direct intrapancreatic injec-

tion of 4-OH-tamoxifen into the pancreatic tail resulted in exclu-

sive recombination in acinar cells, and here, no b cell neogenesis

was observed (Figures S2A–S2D). In contrast, despite the low

percentage of recombination in ducts (5%), RFY mice gave

rise to insulin/green fluorescent protein (GFP) double-positive

cells in ducts as early as 13 days postintraperitoneal injection

of tamoxifen (Figures 2E–2N) as well as at later time points
C

(Figures S2E and S2F). Therefore, Fbw7 deletion in ductal cells,

but not in acinar cells, induces the acquisition of b cell identity.

Deletion of Fbw7 in the Pancreas Leads to Increased
Ngn3 Protein Levels
Fbw7 targets many proteins involved in proliferation and differ-

entiation for proteasomal degradation, such as N-terminally

phosphorylated c-Jun (p-c-JunSer73), Notch intracellular domain

1 (NICD1), phosphorylated c-Myc, and phosphorylated Cyclin

E (Welcker and Clurman, 2008). It has been shown that

SCF(Fbw7)-mediated substrate degradation is tissue specific

(Hoeck et al., 2010; Ishikawa et al., 2008; Nakayama and Na-

kayama, 2006; Onoyama et al., 2007, 2011; Sancho et al.,

2010; Thompson et al., 2008; Wang et al., 2012). Western blot-

ting of lysates from whole Pdx1-Cre; Fbw7f/f pancreas, in

which Fbw7 is inactivated in all pancreatic cell types, showed

increased p-c-JunSer73 and NICD1 protein levels when

compared to Fbw7f/f controls, while phosphorylated c-Myc

and Cyclin E levels were not substantially affected (Figure 3A;

quantifications in Figures S3A and S3B). In b cells, NICD1 and

p-c-JunSer73 were barely detectable, either in control RY or in

Fbw7-deleted RFY pancreas (Figure S3C). In the acinar

compartment, the loss of Fbw7 did not increase p-c-JunSer73

or NICD1 in RFY compared with RY mice (Figure S3D). In order

to analyze Fbw7 function in ducts, we examined sections from

Pdx1-Cre; Fbw7f/f animals. p-c-JunSer73 fluorescence intensity

was increased in Pdx1-Cre; Fbw7f/f compared with control ducts

(Figures 3B and 3C), suggesting that SCF(Fbw7) primarily acts in

pancreatic ductal cells.

Of the known substrates increased by Fbw7 loss in the

pancreas, none are thought to be involved in b cell neogenesis.

While Notch has been reported to be involved in embryonic

pancreatic differentiation, it has been proposed to inhibit b cell

neogenesis rather than promoting it (Esni et al., 2004; Murtaugh

et al., 2003). We therefore examined the possibility that Fbw7

in the pancreas may control the levels of one or more other

substrates. Transcription factors involved in embryonic b cell

development include Pdx1, Ngn3, Hnf3, and Hnf6 (Zaret,

2008). Pdx1, Hnf3, and Hnf6 protein levels were unaltered in

Pdx1-Cre; Fbw7f/f compared with Fbw7f/f pancreas, but the

protein levels of Ngn3 were strongly increased (Figure 3D; quan-

tifications in Figures S3E and S3F). Ngn3 messenger RNA

(mRNA) levels were also increased (Figure 3E), in agreement

with previous reports of positive autoregulatory loops controlling

Ngn3 expression (Ejarque et al., 2013; Wang et al., 2008). The in-

crease in Ngn3 after Fbw7 loss also correlated with highermRNA

levels of the Ngn3 transcriptional target genes Insm1,HeyL,Ctgf,

and Nkx2-2 (Swales et al., 2012) when analyzed by quantitative

PCR (qPCR) (Figure 3E), and increased protein levels of the

Ngn3 transcriptional targets NeuroD1 and Insm1 (Figures 3D,

3F, 3G, S3E, and S3F). Ngn3 is a key regulator of endocrine dif-

ferentiation, making it an excellent candidate for inducing b cell

neogenesis induced by Fbw7 loss.

Fbw7 Binds to, Ubiquitinates, and Induces Proteasomal
Degradation of Ngn3
To investigate the mechanism by which Fbw7 affects Ngn3, we

first analyzed the stability of Ngn3 protein using cycloheximide to

inhibit protein synthesis. Ngn3 half-life was increased more than
ell Stem Cell 15, 139–153, August 7, 2014 ª2014 The Authors 141



Figure 2. Inducible Deletion of Fbw7 in the Adult Pancreas Promotes b Cell Neogenesis

(A) Scheme of the RY (R26-CreERT; R26-LSL-YFP) and RFY (R26-CreERT; Fbw7f/f; R26-LSL-YFP) mouse models.

(B) Schematic diagram of RY pancreas before and after tamoxifen (Tam) injection.

(C) GFP immunoperoxidase staining in RY pancreas after tamoxifen injection. Section shows acinar cells, an islet, and a duct. n > 3 mice per genotype.

(D) Quantification of GFP-positive cells in the different pancreatic cell type compartments ofRY (n = 3) mice 13 days postinjection. A, acinar; I, islet; D, ducts. Data

are represented as mean + SEM.

(E–N) Triple IF for insulin (ins), GFP, and amylase (amy) in RFYmice 13 days after tamoxifen injection. n > 3 mice per genotype. Nuclei were counterstained with

DAPI. Ducts are circled with a yellow dashed line. White dashed squares represent the area magnified in the squares shown below.

See also Figure S2.
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2-fold after Fbw7 silencing, suggesting that Fbw7 acts to desta-

bilize Ngn3 protein (Figure 4A). Ngn3-hemagglutinin (Ngn3-HA)

coimmunoprecipitated Flag-tagged Fbw7 isoform-a and, to a

lesser extent, isoform-b (Figure 4B, left panel; and vice versa,

as shown in the right panel), and endogenous Fbw7 interacted

with Ngn3-HA (Figure 4C). Ngn3 is a heavily ubiquitinated protein

(Roark et al., 2012), but Ngn3 ubiquitination was strongly

reduced in Fbw7D HCT116 cells when compared to congenic

Fbw7wt cells (Figure 4D). In vitro, wild-type (WT) Fbw7–Flag

protein complexes promoted efficient ubiquitination of recombi-

nant Ngn3, but the inactive mutant Fbw7a-DFbox–Flag did not
142 Cell Stem Cell 15, 139–153, August 7, 2014 ª2014 The Authors
(Welcker et al., 2004) (Figures 4E and S4A). All together, these

data suggest that Ngn3 is a substrate of the SCF(Fbw7) ubiquitin

ligase.

Most Fbw7 substrates contain a phosphodegron motif that

serves as the recognition motif for Fbw7 interaction (Welcker

and Clurman, 2008). Multiple higher molecular weight bands of

Ngn3-HA detected by immunoblot collapsed after calf intestinal

phosphatase (CIP) treatment, suggesting that they represent

phosphorylated forms. Silencing of Fbw7 increased the levels

of these higher molecular weight forms (Figure 4F). GSK3b is

the kinase responsible for modifying the phosphodegron motifs



Figure 3. Fbw7 Loss in the Pancreas Leads to Increased Ngn3 Protein Levels

(A–D) In (A) and (D), a western blot analysis is shown of Fbw7f/f and Pdx1-Cre; Fbw7f/fwhole pancreas lysates. n = 3mice per genotype. (B) Double IF of CK19 and

p-c-JunSer73 in Fbw7f/f andPdx1-Cre; Fbw7f/f pancreas at 4 weeks. n > 3mice per genotype (representative picture shown). (C) Quantification of experiment in (B).

p-c-Jun fluorescence intensity wasmeasured using LSM software; each dot represents the mean intensity of a single cell. Fbw7f/f n = 471 cells (20 ducts/2 mice);

Pdx1-Cre; Fbw7f/f n = 505 cells (20 ducts/3 mice).

(E) qPCR analysis of Ngn3 target genes from Fbw7f/f and Pdx1-Cre; Fbw7f/f mouse pancreas at 4 weeks. n > 3 mice per genotype. Error bars indicate SEM.

(F) IF for Insm1 in Fbw7f/f and Pdx1-Cre; Fbw7f/f pancreas at 4 weeks. Ducts are circled with a yellow dashed line.

(G) Quantification of experiment in (F). Insm1 fluorescence intensity per cell was measured as for p-c-Jun above. Fbw7f/f n = 518 cells (20 ducts/2 mice);

Pdx1-Cre; Fbw7f/f n = 527 cells (20 ducts/3 mice).

Error bars in (C) and (G) represent mean ± SD. See also Figure S3 and Table S1.
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of c-Myc and Notch1 (Welcker and Clurman, 2008; Welcker

et al., 2004). In silico analysis revealed a GSK3b consensus

site at the Ngn3 C terminus (Ser183–Ser187). GSK3b inhibitor

treatment increased Ngn3 protein levels (Figure 4G), suggesting

that GSK3b regulates the stability of Ngn3. We generated con-

structs of Ngn3 with Ser183 and/or Ser187 mutated to alanine

to assess the role of the putative phosphodegron motif (Fig-

ure 4H). Mutation of the predicted GSK3b phosphorylation site

Ser183 altered the electrophoretic mobility of Ngn3 protein,

while mutation of Ser187 had less effect (Figure 4I, left panel).

While WT Ngn3 could efficiently interact with Fbw7, the interac-

tion was severely impaired when Ser183 was mutated (Ngn3-AA

and Ngn3-AS; Figure 4I, right panel). Accordingly, while the

mRNA levels from all four Ngn3 constructs were comparable,

the stability of Ngn3-AA and Ngn3-AS was greatly increased

(Figures S4B and S4J). These data suggest that Fbw7 directly
C

controls Ngn3 stability by regulating its ubiquitination and pro-

teasomal degradation and that GSK3b-mediated phosphoryla-

tion of Ser183 might regulate this process. Since Ngn3 has

been shown to be involved in b cell neogenesis in the adult

pancreas (Al-Hasani et al., 2013; Baeyens et al., 2006; Xu

et al., 2008), accumulation of Ngn3 protein is likely to contribute

to adult b cell neogenesis induced by Fbw7 inactivation.

Conditional Overexpression of Ngn3-AA in the Adult
Pancreatic Ducts Induces b Cell Neogenesis
To determine whether accumulation of Ngn3 protein is sufficient

to induce b cell neogenesis, we generated a conditional induc-

ible transgenic mouse line that expresses the phospho mutant,

stable form of Ngn3 (Ngn3-AA) together with GFP after Cre

recombination (Pdx1-Cre; Rosa26-loxSTOPlox-Ngn3-AA-IRES-

GFP or Pdx1-Cre; R26-LSL-Ngn3-AA; Figure 5A). Pdx-Cre
ell Stem Cell 15, 139–153, August 7, 2014 ª2014 The Authors 143



Figure 4. Fbw7 Binds to and Ubiquitinates Ngn3 and Induces Its Proteasomal Degradation

(A) Western blot analysis of Ngn3 protein levels during a cycloheximide (CHX) time course after silencing Fbw7. Graph shows mean Ngn3 levels normalized to

actin, as a percentage of initial protein levels. n = 3 independent experiments.

(B) Ngn3–HA and Fbw7a–Flag/Fbw7b–Flag IP from cotransfected HEK293T cells. Western blots (WB) of input and IP material are shown.

(C) HA IP from HCT116-Fbw7wt and Fbw7 knockout (Fbw7D) cells transfected with Ngn3-HA. Anti-Fbw7 (Bethyl Laboratories) detects endogenous Fbw7.

(D) In vivo Ngn3 ubiquitination is reduced in Fbw7D compared with Fbw7wt cells. Ubiquitinated Ngn3 was resolved by Ni2+-NTA affinity purification and

immunoblotting with anti-Ngn3 antibody.

(E) Recombinant Ngn3 (rNgn3-myc) is ubiquitinated in vitro, using Flag-IP complexes of pcDNA3, Fbw7a-Flag, or Fbw7a-DFbox-Flag from transfected HEK293T

cells. Ubiquitinated complexes were enriched by Ni2+-NTA affinity purification before immunoblotting.

(F) Calf intestinal phosphatase (CIP) treatment of lysates from Ngn3-HA and sh-control/sh-Fbw7 cotransfected HEK293T cells.

(legend continued on next page)
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induced recombination in mouse pancreas but not in liver or tail

(Figure 5B). Ngn3 protein, which is undetectable in control adult

pancreas, was detected in Pdx1-Cre; R26-LSL-Ngn3-AA

pancreas (Figure 5C) but not in liver. Pdx1-Cre; R26-LSL-

Ngn3-AA pancreas showed increased Ngn3 and Ins2 mRNA

levels when compared to unrecombined R26-LSL-Ngn3-AA

mice (Figure 5D). Transgenic Ngn3-AA expression resulted in

increased b cell area as analyzed by immunostaining for insulin

(Figures 5E and 5F). These data suggested that the overexpres-

sion of a stable form of Ngn3 (Ngn3-AA) from embryonic

pancreas development onward results in an increase in b cells.

In order to test whether overexpression of Ngn3-AA in the adult

pancreatic ducts was sufficient to induce b cell reprogramming,

we crossed R26-LSL-Ngn3-AA mice to CK19-CreERT mice, in

which the expression of tamoxifen-inducible Cre-ERT protein

is driven by the promoter of the ductal marker cytokeratin 19

(Means et al., 2008) (Figure 5G). Thirteen days post-tamoxifen

injection (Figure 5H), GFP expression could be detected specif-

ically in ductal cells of CK19-CreERT; R26-LSL-Ngn3-AA mice,

while it was absent in R26-LSL-Ngn3-AA ducts (Figure 5I).

Furthermore, we detected a significant increase in insulin-posi-

tive ductal cells in tamoxifen-injected CK19-CreERT; R26-LSL-

Ngn3-AA pancreas (Figures 5J and 5K), suggesting that

Ngn3-AA overexpression in the adult pancreatic duct is sufficient

to induce ductal-to-b cell conversion.

Fbw7 Deletion in the Adult Pancreatic Ducts Induces
Direct Conversion of Ductal Cells into b Cells
The aforementioned data suggest that Fbw7 may control adult

b cell neogenesis by regulating Ngn3 protein stability. To test

whether b cells arise as a direct consequence of Fbw7 loss

in ductal cells, we asked whether loss of Fbw7, specifically in

the adult ductal compartment, is sufficient to achieve cell

conversion. To this end, we generated CK19-CreERT; Fbw7+/+;

R26-LSL-YFP (‘‘CY’’) control and CK19-CreERT; Fbw7f/f; R26-

LSL-YFP (‘‘CFY’’) inducible Fbw7 deletion mice (Figures 6A

and 6B). The efficiency of recombination 2 weeks after tamoxifen

injection was between 40% and 50% in both CY and CFY ducts,

as reported previously (Means et al., 2008). Complete recombi-

nation was confirmed by PCR analysis of genomic DNA isolated

from YFP+ CFY cells (Figure 6C). qPCR analysis demonstrated

that Fbw7 mRNA was highly expressed in CY ductal cells

but undetectable in CFY ductal cells and mature pancreatic

b-cells sorted from MIP-GFP mice (in which GFP expression is

driven by the insulin promoter) (Figure 6D). These data suggest

that Fbw7 mRNA is enriched in ductal cells, in agreement

with substrate stabilization predominantly in this cell type after

Fbw7 loss (Figure 3B).

Fbw7 inactivation in ductal cells did not alter the number of

ducts (Figure 6E) or islets (Figure 6F). However, a significant

number of insulin-positive cells (almost 0.5%, i.e. �1% of the
(G) GSK3b inhibitor (SB216763) treatment of cells transfected with Ngn3-HA.

(H) Graphic scheme of Ngn3 mutant constructs generated, showing the putative

(I) Ser183Ala mutation (AA, AS) disrupts Ngn3 interaction with Fbw7. Left: input. R

indicated mutant construct.

(J) Ser183Ala mutation (AA, AS) increases Ngn3 stability. Ngn3 protein levels we

Ngn3–HA mutants. Graph shows mean Ngn3 levels normalized to actin, as a pe

In (B)–(I), n > 2 independent experiments. Error bars in (A) and (J) represent SEM

C

Fbw7 knockout cells if considering �50% recombination effi-

ciency) was observed in the ducts of CFYmice, while they rarely

arose in CY mice (Figure 6G). About 12% of the CFY ducts

contained induced b cells, typically between one and three cells

per duct. It is interesting that 3.8% of CFY ducts contained

glucagon-positive a cells and 5.5% contained somatostatin-

positive d cells, while pp or amylase-positive ductal cells were

never detected (Figures S4C and S4D). Thus, deletion of Fbw7

in adult pancreatic ductal cells induces conversion of some

ductal cells to a or d cells or, most frequently, to b cells.

Inactivation of Fbw7 could trigger resident ductal progenitor

cell proliferation followed by redifferentiation or induce direct

transdifferentiation. To distinguish between these possibilities,

Fbw7 inactivation and lineage tracing was combined with long-

termbromodeoxyuridine (BrdU) labeling. BrdUwas incorporated

in scattered cells in the pancreatic CY ducts and increased in

CFY ducts (Figures 6H, 6I, and S4E). However, less than 1% of

insulin-positive CFY duct cells were labeled after 2 weeks of

continuous BrdU exposure, beginning directly before Fbw7

deletion (Figures 6J, S4F, and S4G). Thus Fbw7 deletion in the

adult pancreatic ducts induces direct conversion of a subset of

exocrine ductal cells into endocrine b cells, without a require-

ment for cell proliferation.

Induced b Cells in Adult Fbw7 Mutant Ducts Resemble
Functional b Cells
To explore the functionality of the b cells formed after Fbw7 dele-

tion, we performed mRNA expression profiling of GFP+ sorted

cells from tamoxifen-injected CY and CFY mice and compared

them to GFP+ cells from MIP-GFP mice as a positive control

for b cells (Figure 7A). CFY GFP+ ductal cells showed a modest

increase in expression of numerous b cell specific genes,

consistent with a small subset of ductal cells undergoing b cell

conversion. In agreement with the increase in Ngn3 stability in

Fbw7-deleted cells, CFY GFP+ ductal cells also showed an

increase in the expression of reported Ngn3 target genes

(Chga, Insm1,Dll3, Syp,Chn1,HeyL, Atp2a3, and Pcsk2; Swales

et al., 2012) (Figure 7B). qPCR analysis confirmed increased

mRNA expression of the b cell marker genes Ins2, Gck, Pdx1,

and Nkx6.1 in CFY GFP+ ductal cells compared with CY GFP+

cells (Figure 7C).

As well as showing gene expression characteristics of islet b

cells, insulin-positive cells in the ducts of CFY mice costained

with the functional b cell markers c-PPT, Glut2, MafA1, Nkx6.1,

Pax6, PC1/3, Pdx1, Urocortin 3 (Ucn3), and Isl1, showing com-

parable staining to islet b cells (Figures 7D, 7E, and S5). Insu-

lin-positiveCFY ductal cells were negative for the ductal markers

Sox9 and DBA, while other CFY ductal cells retained expression

of these markers (Figures 7E and S5).

An important hallmark of b cell function is the ability to

release insulin after glucose stimulation. To test this, we
GSK3b phosphorylation site in mouse Ngn3. S, serine; A, alanine.

ight: Fbw7a-Flag IP from HEK293T cells co-transfected with Ngn3–HA or the

re measured after cycloheximide treatment in cells transfected with different

rcentage of initial protein levels.

; n = 3 independent experiments. See also Figure S4 and Table S1.

ell Stem Cell 15, 139–153, August 7, 2014 ª2014 The Authors 145



Figure 5. Conditional Overexpression of Ngn3-AA in the Adult Pancreatic Ducts Is Sufficient to Induce b Cell Neogenesis

(A) Schematic representation of the Pdx1-Cre; R26-LSL-Ngn3-AA model.

(B) R26-LSL-Ngn3-AA recombination PCR performed in genomic DNA from tail (T), liver (L) and pancreas (P).

(C) Western blot analysis for Ngn3 in R26-LSL-Ngn3-AA or Pdx1-Cre; R26-LSL-Ngn3-AA mouse pancreas and liver.

(D) qPCR analysis of Ngn3 and Ins2 in R26-LSL-Ngn3-AA or Pdx1-Cre; R26-LSL-Ngn3-AA pancreas. n = 3 mice per genotype. Error bars indicate SEM.

(E) Insulin staining in R26-LSL-Ngn3-AA or Pdx1-Cre; R26-LSL-Ngn3-AA mouse pancreas. Scale bar, 300 mm.

(F) Quantification of insulin-positive (ins+) area in R26-LSL-Ngn3-AA (n = 14 sections; 578 islets/3 mice) or Pdx1-Cre; R26-LSL-Ngn3-AA (n = 20 sections;

900 islets/4 mice). Dots represent percentage of ins+ cells for each section. Error bars represent mean ± SEM.

(G) Scheme of the CK19-CreERT; R26-LSL-Ngn3-AA model.

(H) Schematic diagram of the CK19-CreERT; R26-LSL-Ngn3-AA pancreas before and after tamoxifen injection.

(I) GFP immunoperoxidase staining in R26-LSL-Ngn3-AA or CK19-CreERT; R26-LSL-Ngn3-AA pancreas after tamoxifen injection. Dashed square indicates the

area magnified.

(J) Representative picture showing insulin-positive cells in the pancreatic duct of tamoxifen-injected CK19-CreERT; R26-LSL-Ngn3-AA mice.

In (I) and (J), n > 5 mice per genotype (representative picture shown).

(K) Quantification of insulin-positive ductal cells in tamoxifen-injected R26-LSL-Ngn3-AA (n = 5 mice/3,462 cells) and CK19-CreERT; R26-LSL-Ngn3-AA animals

(n = 8 mice/5,965 cells). Data are represented as mean + SEM.

See also Table S1.
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subjected GFP+ cells sorted from CY and CFYmouse pancreas

to in vitro glucose challenge (Figures 7F and 7G). WhileCYGFP+

cells did not respond to glucose, CFYGFP+ cells showed a sub-

stantial release of insulin (Figure 7G). Each CFY well of 30,000

cells contained approximately 300 converted b cells (based on

a 1% conversion frequency), which secreted 214 pg (1.07 ng/

ml) of insulin, i.e., 0.71 pg per cell. By comparison, 5,000 islet b

cells sorted from a MIP-GFP pancreas responded to glucose

by releasing 3,378 pg (16.89 ng/ml) of insulin, i.e., 0.67 pg per

cell (Figure 7H). Based on this result, the response to glucose

challenge in the converted cells is comparable to that of islet b

cells (Figure 7I). Thus, the b cells converted after Fbw7 loss in

the adult pancreatic ducts show both the characteristic marker

expression and functionality of mature b cells.

DISCUSSION

Ectopic expression of combinations of transcription factors can

induce changes of cellular fate in adult pancreatic tissue (Zhou

et al., 2008); however, examples of reprogramming in vivo by

loss of a single molecule are rare. In this study we show that

Fbw7 maintains adult ductal cell fate, as Fbw7 inactivation re-

sults in transdifferentiation of ductal cells into a and d cells

and, predominantly, b cells. The newly formed b cells resemble

islet b cells with regard to cellular morphology, marker gene

expression, and insulin secretion in response to glucose chal-

lenge. Our findings indicate an unexpected plasticity of ductal

cells, in which loss of a single gene (Fbw7) renders the duct cells

multipotent, able to remain exocrine or transdifferentiate into

endocrine a, d, or b cell types.

Fbw7 Function in the Adult Pancreas
Fbw7 is a key regulator of stem cell function, as Fbw7 inactiva-

tion results in increased proliferation and impaired differentiation

of hematopoietic, liver, intestinal, and neural progenitor cells

(Hoeck et al., 2010; Iriuchishima et al., 2011; Matsumoto et al.,

2011; Onoyama et al., 2011; Sancho et al., 2010, 2013). The

potent tumor suppressor function of Fbw7 is likely to be a direct

consequence of deregulated stem cell proliferation and differen-

tiation (Wang et al., 2012). However, the role of Fbw7 in the

pancreatic ducts is distinct from Fbw7 function in other organ

systems. Ductal to endocrine cell transdifferentiation after

Fbw7 loss occurs in the absence of proliferation, suggesting

that the subset of cells that respond to Fbw7 deletion in this

way does not behave as adult stem cells in other organ systems,

requiring cell division before differentiation. Rather, Fbw7 seems

to function in the adult pancreas to constantly maintain cell fate

in a subset of ductal cells.

Fbw7 Loss Converts Adult Ductal Cells into Functional
b Cells
We found that the expression and activity of Fbw7 in the adult

pancreas is enriched in the ductal compartment. Adult pancre-

atic ducts have been suggested to harbor b cell progenitors,

which are reactivated after challenge (Bonner-Weir et al.,

2008). Pancreatic duct ligation (PDL), combined with lineage

tracing of the ductal epithelium, demonstrated that a quarter

of new b cells formed in response to injury were derived from

ductal cells (Inada et al., 2008). In contrast, alloxan treatment
C

was recently shown to induce transdifferentiation of acinar

cells into b cells (Baeyens et al., 2014). We found that Fbw7

expression was quickly and dramatically downregulated

24 hr after PDL, but alloxan treatment induced no change in

Fbw7 expression (Figures S6A and S6B). These data suggest

that Fbw7 transcriptional downregulation may contribute to

duct-derived b cell neogenesis in response to pancreatic injury

(Figure S6C).

Although it is conceivable that b cells produced elsewhere

could migrate to the ducts, the location of induced b cells

embedded within the ducts suggests that they originated in

this compartment. Several lines of evidence support this

interpretation: first, ‘‘transition’’ cells coexpressing ductal cell

(CK19) and b cell (ins) markers are observed after Fbw7 loss;

second, genetic models in which recombination is inefficient in

ducts (such as RFY mice injected intrapancreatically with OH-

tamoxifen) do not induce b cell neogenesis; and third, duct-spe-

cific Fbw7 loss combined with lineage tracing (our CFY model)

induces the occurrence of ductal YFP-labeled insulin-positive

cells.

Insulin-positive cells are also observed in ducts of normal

unchallenged mice, albeit rarely (Teta et al., 2005), a finding we

confirmed in this study. It is not knownwhether this spontaneous

transdifferentiation process is similar to the reprogramming

induced by Fbw7 inactivation. However, bihormonal insulin/

glucagon double-positive cells—presumptive a and b cell

precursors during embryonic pancreas development (De Krijger

et al., 1992) that we also observed in Fbw7 deleted ducts—have

not been described in unchallenged adult WT pancreas. Simi-

larly, CK19/insulin transdifferentiation intermediates have not

been reported in normal mice. Thus, b cell reprogramming

induced by Fbw7 inactivation appears to be a distinct process

from the spontaneous appearance of insulin-positive cells in

WT pancreatic ducts and may represent a reawakening of a

multipotent state.

A frequent stumbling block in previous models inducing cell

reprogramming has been the functionality of the newly formed

b cells. It is important to note that Fbw7-mutant induced b cells

secrete comparable amounts of insulin after glucose challenge

as bona fide b cells isolated from MIP-GFP mice. Therefore,

Fbw7 loss appears to trigger the conversion of adult pancreatic

ductal cells into apparently functional b cells.

The Fbw7-Ngn3 Axis as aMechanism Regulating Adult b
Cell Neogenesis
The activity of Fbw7 toward different substrates is tissue spe-

cific, and our results show that, in the pancreas, c-Jun, Notch,

and Ngn3 levels are increased after Fbw7 deletion. While

c-Jun has no reported function in pancreatic cell fate decisions,

the Notch signaling pathway is thought to inhibit pancreatic

endocrine development (Apelqvist et al., 1999; Fujikura et al.,

2006; Jensen et al., 2000; Oka et al., 1995). In contrast, we find

that endocrine differentiation in the ducts after Fbw7 deletion is

accompanied by an increase in NICD1 levels. This could imply

that Notch has different roles in embryonic and adult pancreatic

b cell differentiation, but it is also possible that increased Notch

signaling is not required for b cell neogenesis after Fbw7 loss,

and b cell neogenesis is induced despite an overall increase in

Notch levels.
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The stabilization of Ngn3 after Fbw7 loss is consistent with a

strong proendocrine signal. Ngn3 has been previously reported

to be required for PDL- and Pax4 overexpression-induced b

cell neogenesis (Al-Hasani et al., 2013; Xu et al., 2008), and our

data show that Ngn3 stabilization in the ducts is sufficient to

induce b cell neogenesis (Figure 5). Despite its essential role in

endocrine differentiation, and the reported Ngn3 instability at

the protein level, the regulatory mechanisms that control the

abundance of Ngn3 are not fully understood. In this study, we

show that Ngn3 is a substrate for SCF(Fbw7). Ngn3 behaves

as a canonical Fbw7 substrate, containing a GSK3 consensus

phosphorylation site that, when mutated, increases the stability

of the protein. Our data indicate that Ngn3 stabilization after

Fbw7 loss contributes to a transdifferentiation program, inducing

ductal cells to differentiate into b cells. Induction of adult b cell

neogenesis is desirable for diabetes treatment, and modulation

of the Fbw7-Ngn3 axis could potentially be exploited as a

therapeutic approach toward generation of new b cells for cell

replacement therapies.

EXPERIMENTAL PROCEDURES

Mouse Lines

The Pdx1-Cre (Hingorani et al., 2003), R26-LSL-YFP (Srinivas et al., 2001),

CK19-CreERT (Means et al., 2008), R26-CreERT (Ventura et al., 2007), MIP-

GFP (Hara et al., 2003), and Fbw7f/f (Jandke et al., 2011) mouse lines have

been previously described. The R26-LSL-Ngn3-AA mouse was generated

using mouse Ngn3-AA complementary DNA (cDNA) to create a conditional

Rosa26-Ngn3-AA-IRES-eGFP-pA+ targeting vector as described elsewhere

(Nyabi et al., 2009), followed by selection of embryonic stem cell clones

targeted with linearized vector and generation of chimeric Swiss diploid

embryos. All animal experiments were approved by the CRUK London

Research Institute Animal Ethics Committee and conformed with UK Home

Office regulations under the Animals (Scientific Procedures) Act 1986 including

Amendment Regulations 2012.

Cell Lines and Plasmids

HCT116-Fbw7wt and HCT116-Fbw7D cells, and Fbw7a–Flag and Fbw7b–Flag

constructs, have been described elsewhere (Grim et al., 2008). Full-length

Ngn3cDNA frommouseembryonic pancreaswasobtainedbyPCRandcloned

intopcDNA3 togenerate thepcDNA3-Ngn3plasmid.MutationofNgn3Ser183/

Ser187 to alanine was achieved by conventional PCR site-directed mutagen-

esis. p-RS-sh-control and p-RS-sh-Fbw7 constructs were generated by clon-

ing short hairpin-containing oligos into the pRS vector (Addgene).

Genetic Labeling Experiments

For all experiments, adult (6–9 weeks except where indicated) age- and strain-

matched animals were used. Mice were either injected intraperitoneally with
Figure 6. Fbw7 Deletion in the Adult Pancreatic Ducts Induces Dir
Cell Division

(A) Scheme of the CY and CFY mouse model genotypes.

(B) Schematic diagram of CY pancreas before and after tamoxifen injection.

(C) PCR analysis of the Fbw7 andR26 loci on genomic DNA isolated fromGFP-sor

Fbw7f unrecombined allele; D, Fbw7 recombined allele; R26-LSL, R26 unrecom

(D) qPCR analysis of Fbw7mRNA in GFP+ (duct) and GFP� (endocrine and acinar

each) and GFP+ (b) cells from MIP-GFP mice (n = 3 pooled pancreas). n = 3 inde

(E and F) Quantification of number of ducts (E) or islets (F) per square millimeter i

scale bar, 20 mm; n = 3 mice/genotype. ns, not significant.

(G) Quantification of the percentage of total ductal cells that are insulin positive i

12,220 cells). Representative example in adjacent picture; scale bar, 20 mm.

(H–J) Triple IF for GFP, insulin (ins), and BrdU in tamoxifen-injected CY (H) or CF

sentative picture shown). Nuclei were counterstained with DAPI. White dashed s

See also Figure S4 and Table S1.

C

100 mg/g body weight of tamoxifen dissolved in peanut oil (at least three

mice per genotype) or intrapancreatically injected with 20 ml–50 mM 4-OH-

tamoxifen (two mice per genotype) as indicated. Analyses were performed

5/13 days (short term) or 60/82 days (long term) postinjection. Where indi-

cated, BrdU (0.8 mg/ml) was given in drinking water 1 day before the first

tamoxifen injection and kept until the end of the experiment. The pancreas

was excised, processed, and stained as described in the Supplemental Exper-

imental Procedures.

IF and Immunohistochemistry Staining

Rhodamine-DBA (Sigma) was used to detect ductal cells by confocal micro-

scopy. IF and immunohistochemistry staining was performed as described

elsewhere (Sancho et al., 2010). Antibodies are listed in the Supplemental

Experimental Procedures. Quantification of the insulin-positive area in Ngn3

conditional transgenic mouse pancreas was performed on NanoZoomer

2.0-HT (HAMAMATSU) scanned slides using AdobePS-CS5.

Western Blot Analysis

Pancreas lysates were homogenized in RIPA lysis buffer supplemented

with protease inhibitor (Sigma). 293T cells were lysed in NP-40 lysis buffer. Im-

munoblots were carried out as described elsewhere (Nateri et al., 2005).

Antibodies are listed in the Supplemental Experimental Procedures.

Immunoprecipitations

Human embryonic kidney 293T (HEK293T) cells coexpressing HA-Ngn3 and

Fbw7-Flag were treated for 5 hr with proteasome inhibitor MG-132 (25 mM;

Calbiochem), lysed with 0.2% NP40 buffer, and incubated with anti-Flag or

anti-HA agarose beads (Sigma). For the endogenous Fbw7-Ngn3 interaction

assay, Ngn3 was immunoprecipitated from HCT116-Fbw7wt and HCT116-

Fbw7D cells transfected with Ngn3-AA. Endogenous Fbw7 in inputs and

immunoprecipitation (IP) samples was detected using anti-Fbw7 antibody

(Bethyl Laboratories).

Ubiquitination Assays

For in vivo ubiquitination assays, His-Ub was affinity purified with nickel-nitri-

lotriacetic acid (NTA)-agarose beads, as described elsewhere (Davies et al.,

2010). In vitro ubiquitination assays with Fbw7 and Fbw7a-DFbox-Flag immu-

noprecipitated complexes were performed as described elsewhere (Popov

et al., 2007).

Fluorescence-Activated Cell Sorting Analysis

Single pancreatic cell suspensions were obtained by 30 min digestion in

1.6 mg/ml collagenase type IV (Whorttington), followed by filtration on a

70 mm nylon mesh. Cells from six age-matched (6- to 8-week-old) mice per

genotype were sorted for GFP expression for each independent experiment.

DNA Isolation and Allele Recombination PCR

Genomic DNA from GFP+/GFP� cells sorted from six tamoxifen-injected CFY

and CY mice was isolated by digestion in DirectPCR Lysis Reagent (Viagen).

PCR primers used to detect the efficiency of recombination of Fbw7 and

R26 alleles are given in the Supplemental Experimental Procedures.
ect Conversion of Ductal Cells into b Cells with No Intermediate

tedCY andCFY cells 13 days post-tamoxifen injection. wt, Fbw7WTallele; flox,

bined allele; R26-D, R26 recombined allele.

) cells sorted from tamoxifen-injectedCFY andCYmice (n = 6 pooled pancreas

pendent experiments.

n at least seven fields per mouse (representative example in adjacent picture);

n tamoxifen-injected CY (n = 10 mice/10,070 cells) and CFY mice (n = 7 mice/

Y (I and J) mice (5 days post-tamoxifen injection; n > 5 mice/genotype; repre-

quare (I) represents the area magnified (J). Error bars in (D)–(G) indicate SEM.
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Figure 7. Converted b Cells Induced by Fbw7 Deletion Resemble Functional Mature b Cells

(A) Schematic diagram of the comparison strategy used for the mRNA expression profile.

(B) Heatmap representing expression of 15 b cell markers and 15Ngn3 target genes inGFP+ sorted cells from tamoxifen-injectedCY (n = 6),CFY (n = 6), andMIP-

GFP (n = 3) mice.

(C) qPCR analysis of Ins2,Gck,Pdx1, andNkx6.1 expression in GFP+ cells sorted fromCY andCFYmice (n = 6 pooled pancreas per genotype). n = 2 independent

experiments.

(D and E) Double IF of insulin (ins) together with different b cell markers or ductal markers (Sox9, Dolichos biflorus agglutinin) in ductal CFY b cells. Scale bars,

5 mm. n > 5 mice per genotype (representative picture shown).

(legend continued on next page)
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Microarray Analysis and qPCR

RNAwas isolated from sortedGFP+ cells from tamoxifen-injectedCY andCFY

mice (six pooled pancreas per genotype) or MIP-GFP mice (three pooled

pancreas) using a RNeasy Micro Kit (QIAGEN). RNA microarray hybridizations

were performed by the Cancer Research UK Manchester Institute Microarray

Service using the GeneChip Mouse Gene 1.0 ST array (Affymetrix) after

genome amplification of the RNA.

For qPCR analysis of sorted cells, RNA was isolated as described for the

microarray, and cDNA amplification was performed using theQuantitect whole

transcriptome amplification kit (QIAGEN). For qPCR analysis in Pdx1-Cre;

Fbw7f/f mice, RNA was isolated using the RNeasy Mini Kit (QIAGEN), and

cDNA was generated using the Transcriptor First Strand cDNA Synthesis Kit

(Roche). Diluted cDNAs were used for qPCR SYBR-Green detection of target

genes, using primer sequences given in the Supplemental Experimental

Procedures.

Glucose Challenge In Vitro

Determination of insulin release after glucose challenge was performed as

described elsewhere (Banga et al., 2012), with minor modifications. Briefly,

30,000 GFP+ sorted CY or CFY cells (from six pooled pancreas per genotype)

or 5,000 GFP+ cells from MIP-GFP pancreas were plated per well in Dulbec-

co’s modified Eagle’s medium without serum/glucose/phenol red. Cells

were starved for 2 hr, the medium was changed, and 20 mM glucose was

added (final volume, 200 ml). Insulin concentration was determined in superna-

tants using the Mouse Insulin ELISA Kit (Crystal Chem).

Statistics

Statistical evaluation was performed using the Student’s unpaired t test. *p%

0.05, **p % 0.01, ***p % 0.001 were considered statistically significant. See

Table S1 for exact p values.

ACCESSION NUMBERS

The Gene Expression Omnibus accession number for the microarray data re-

ported in Figure 7B is GSE58969.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.stem.2014.06.019.
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Shemer, R., Nord, C., Scheel, D.W., Pan, F.C., et al. (2014). Transient cytokine

treatment induces acinar cell reprogramming and regenerates functional beta

cell mass in diabetic mice. Nat. Biotechnol. 32, 76–83.

Banga, A., Akinci, E., Greder, L.V., Dutton, J.R., and Slack, J.M. (2012). In vivo

reprogramming of Sox9+ cells in the liver to insulin-secreting ducts. Proc. Natl.

Acad. Sci. USA 109, 15336–15341.

Bonner-Weir, S., Toschi, E., Inada, A., Reitz, P., Fonseca, S.Y., Aye, T., and

Sharma, A. (2004). The pancreatic ductal epithelium serves as a potential

pool of progenitor cells. Pediatr. Diabetes 5 (Suppl 2 ), 16–22.

Bonner-Weir, S., Inada, A., Yatoh, S., Li, W.-C., Aye, T., Toschi, E., and

Sharma, A. (2008). Transdifferentiation of pancreatic ductal cells to endocrine

beta-cells. Biochem. Soc. Trans. 36, 353–356.

Collombat, P., Xu, X., Ravassard, P., Sosa-Pineda, B., Dussaud, S., Billestrup,

N., Madsen, O.D., Serup, P., Heimberg, H., and Mansouri, A. (2009). The

ectopic expression of Pax4 in the mouse pancreas converts progenitor cells

into alpha and subsequently beta cells. Cell 138, 449–462.

Criscimanna, A., Speicher, J.A., Houshmand, G., Shiota, C., Prasadan, K., Ji,

B., Logsdon, C.D., Gittes, G.K., and Esni, F. (2011). Duct cells contribute to

regeneration of endocrine and acinar cells following pancreatic damage in

adult mice. Gastroenterology 141, 1451–1462, 1462.e1–1462.e1456.

Davies, C.C., Chakraborty, A., Cipriani, F., Haigh, K., Haigh, J.J., and Behrens,

A. (2010). Identification of a co-activator that links growth factor signalling to

c-Jun/AP-1 activation. Nat. Cell Biol. 12, 963–972.

De Krijger, R.R., Aanstoot, H.J., Kranenburg, G., Reinhard, M., Visser, W.J.,

and Bruining, G.J. (1992). The midgestational human fetal pancreas contains

cells coexpressing islet hormones. Dev. Biol. 153, 368–375.

Dor, Y., Brown, J., Martinez, O.I., and Melton, D.A. (2004). Adult pancreatic

beta-cells are formed by self-duplication rather than stem-cell differentiation.

Nature 429, 41–46.

Edlund, H. (2002). Pancreatic organogenesis—developmental mechanisms

and implications for therapy. Nat. Rev. Genet. 3, 524–532.
nce-activated cell sorting (FACS) profile indicating the sorting gate used for the

cells (MIP-GFP: n = 3 pooled pancreas).

(G) and 5,000MIP-GFP (H) cells 0–60 min after the addition of 20 mM glucose.

ells, based on 300 converted b cells per well in the experiment in (G) and 5,000 b

ell Stem Cell 15, 139–153, August 7, 2014 ª2014 The Authors 151

http://dx.doi.org/10.1016/j.stem.2014.06.019
http://dx.doi.org/10.1016/j.stem.2014.06.019


Cell Stem Cell

Fbw7 Loss Reprograms Ductal Cells to b Cells
Ejarque, M., Cervantes, S., Pujadas, G., Tutusaus, A., Sanchez, L., and Gasa,

R. (2013). Neurogenin3 cooperates with Foxa2 to autoactivate its own expres-

sion. J. Biol. Chem. 288, 11705–11717.

Esni, F., Ghosh, B., Biankin, A.V., Lin, J.W., Albert, M.A., Yu, X., MacDonald,

R.J., Civin, C.I., Real, F.X., Pack, M.A., et al. (2004). Notch inhibits Ptf1 function

and acinar cell differentiation in developing mouse and zebrafish pancreas.

Development 131, 4213–4224.

Fujikura, J., Hosoda, K., Iwakura, H., Tomita, T., Noguchi, M., Masuzaki, H.,

Tanigaki, K., Yabe, D., Honjo, T., and Nakao, K. (2006). Notch/Rbp-j signaling

prevents premature endocrine and ductal cell differentiation in the pancreas.

Cell Metab. 3, 59–65.

Gradwohl, G., Dierich, A., LeMeur, M., and Guillemot, F. (2000). neurogenin3 is

required for the development of the four endocrine cell lineages of the

pancreas. Proc. Natl. Acad. Sci. USA 97, 1607–1611.

Grim, J.E., Gustafson, M.P., Hirata, R.K., Hagar, A.C., Swanger, J., Welcker,

M., Hwang, H.C., Ericsson, J., Russell, D.W., and Clurman, B.E. (2008).

Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiqui-

tin ligase. J. Cell Biol. 181, 913–920.

Habener, J.F., Kemp, D.M., and Thomas, M.K. (2005). Minireview: transcrip-

tional regulation in pancreatic development. Endocrinology 146, 1025–1034.

Hara, M., Wang, X., Kawamura, T., Bindokas, V.P., Dizon, R.F., Alcoser, S.Y.,

Magnuson, M.A., and Bell, G.I. (2003). Transgenic mice with green fluorescent

protein-labeled pancreatic beta -cells. Am. J. Physiol. Endocrinol. Metab. 284,

E177–E183.

Heremans, Y., Van De Casteele, M., in’t Veld, P., Gradwohl, G., Serup, P.,

Madsen, O., Pipeleers, D., and Heimberg, H. (2002). Recapitulation of embry-

onic neuroendocrine differentiation in adult human pancreatic duct cells

expressing neurogenin 3. J. Cell Biol. 159, 303–312.

Hingorani, S.R., Petricoin, E.F., Maitra, A., Rajapakse, V., King, C., Jacobetz,

M.A., Ross, S., Conrads, T.P., Veenstra, T.D., Hitt, B.A., et al. (2003).

Preinvasive and invasive ductal pancreatic cancer and its early detection in

the mouse. Cancer Cell 4, 437–450.

Hoeck, J.D., Jandke, A., Blake, S.M., Nye, E., Spencer-Dene, B.,

Brandner, S., and Behrens, A. (2010). Fbw7 controls neural stem cell dif-

ferentiation and progenitor apoptosis via Notch and c-Jun. Nat. Neurosci.

13, 1365–1372.

Inada, A., Nienaber, C., Katsuta, H., Fujitani, Y., Levine, J., Morita, R., Sharma,

A., andBonner-Weir, S. (2008). Carbonic anhydrase II-positive pancreatic cells

are progenitors for both endocrine and exocrine pancreas after birth. Proc.

Natl. Acad. Sci. USA 105, 19915–19919.

Iriuchishima, H., Takubo, K., Matsuoka, S., Onoyama, I., Nakayama, K.I.,

Nojima, Y., and Suda, T. (2011). Ex vivo maintenance of hematopoietic stem

cells by quiescence induction through Fbxw7 overexpression. Blood 117,

2373–2377.

Ishikawa, Y., Onoyama, I., Nakayama, K.I., and Nakayama, K. (2008). Notch-

dependent cell cycle arrest and apoptosis in mouse embryonic fibroblasts

lacking Fbxw7. Oncogene 27, 6164–6174.

Jandke, A., Da Costa, C., Sancho, R., Nye, E., Spencer-Dene, B., andBehrens,

A. (2011). The F-box protein Fbw7 is required for cerebellar development. Dev.

Biol. 358, 201–212.

Jensen, J., Pedersen, E.E., Galante, P., Hald, J., Heller, R.S., Ishibashi, M.,

Kageyama, R., Guillemot, F., Serup, P., and Madsen, O.D. (2000). Control of

endodermal endocrine development by Hes-1. Nat. Genet. 24, 36–44.

Lysy, P.A., Weir, G.C., and Bonner-Weir, S. (2012). Concise review: pancreas

regeneration: recent advances and perspectives. Stem Cells Transl. Med. 1,

150–159.

Matsumoto, A., Onoyama, I., Sunabori, T., Kageyama, R., Okano, H., and

Nakayama, K.I. (2011). Fbxw7-dependent degradation of Notch is required

for control of ‘‘stemness’’ and neuronal-glial differentiation in neural stem cells.

J. Biol. Chem. 286, 13754–13764.

Means, A.L., Xu, Y., Ray, K.C., and Gu, G. (2008). A CK19(CreERT) knockin

mouse line allows for conditional DNA recombination in epithelial cells in mul-

tiple endodermal organs. Genesis 46, 318–323.
152 Cell Stem Cell 15, 139–153, August 7, 2014 ª2014 The Authors
Murtaugh, L.C., Stanger, B.Z., Kwan, K.M., and Melton, D.A. (2003). Notch

signaling controls multiple steps of pancreatic differentiation. Proc. Natl.

Acad. Sci. USA 100, 14920–14925.

Nakayama, K.I., and Nakayama, K. (2006). Ubiquitin ligases: cell-cycle control

and cancer. Nat. Rev. Cancer 6, 369–381.

Nateri, A.S., Spencer-Dene, B., and Behrens, A. (2005). Interaction of phos-

phorylated c-Jun with TCF4 regulates intestinal cancer development. Nature

437, 281–285.

Nyabi, O., Naessens, M., Haigh, K., Gembarska, A., Goossens, S., Maetens,

M., De Clercq, S., Drogat, B., Haenebalcke, L., Bartunkova, S., et al. (2009).

Efficient mouse transgenesis using Gateway-compatible ROSA26 locus tar-

geting vectors and F1 hybrid ES cells. Nucleic Acids Res. 37, e55.

Oka, C., Nakano, T., Wakeham, A., de la Pompa, J.L., Mori, C., Sakai, T.,

Okazaki, S., Kawaichi, M., Shiota, K., Mak, T.W., and Honjo, T. (1995).

Disruption of the mouse RBP-J kappa gene results in early embryonic death.

Development 121, 3291–3301.

Oliver-Krasinski, J.M., and Stoffers, D.A. (2008). On the origin of the beta cell.

Genes Dev. 22, 1998–2021.

Onoyama, I., Tsunematsu, R., Matsumoto, A., Kimura, T., de Alborán, I.M.,

Nakayama, K., and Nakayama, K.I. (2007). Conditional inactivation of Fbxw7

impairs cell-cycle exit during T cell differentiation and results in lymphomato-

genesis. J. Exp. Med. 204, 2875–2888.

Onoyama, I., Suzuki, A., Matsumoto, A., Tomita, K., Katagiri, H., Oike, Y.,

Nakayama, K., and Nakayama, K.I. (2011). Fbxw7 regulates lipid metabolism

and cell fate decisions in the mouse liver. J. Clin. Invest. 121, 342–354.

Pagliuca, F.W., and Melton, D.A. (2013). How to make a functional b-cell.

Development 140, 2472–2483.

Piper, K., Brickwood, S., Turnpenny, L.W., Cameron, I.T., Ball, S.G., Wilson,

D.I., and Hanley, N.A. (2004). Beta cell differentiation during early human

pancreas development. J. Endocrinol. 181, 11–23.

Popov, N., Wanzel, M., Madiredjo, M., Zhang, D., Beijersbergen, R., Bernards,

R., Moll, R., Elledge, S.J., and Eilers, M. (2007). The ubiquitin-specific protease

USP28 is required for MYC stability. Nat. Cell Biol. 9, 765–774.

Roark, R., Itzhaki, L., and Philpott, A. (2012). Complex regulation controls

Neurogenin3 proteolysis. Biol. Open 1, 1264–1272.

Sancho, R., Jandke, A., Davis, H., Diefenbacher, M.E., Tomlinson, I., and

Behrens, A. (2010). F-box andWD repeat domain-containing 7 regulates intes-

tinal cell lineage commitment and is a haploinsufficient tumor suppressor.

Gastroenterology 139, 929–941.

Sancho, R., Blake, S.M., Tendeng, C., Clurman, B.E., Lewis, J., and Behrens,

A. (2013). Fbw7 repression by hes5 creates a feedback loop that modulates

Notch-mediated intestinal and neural stem cell fate decisions. PLoS Biol. 11,

e1001586.

Schwitzgebel, V.M., Scheel, D.W., Conners, J.R., Kalamaras, J., Lee, J.E.,

Anderson, D.J., Sussel, L., Johnson, J.D., and German, M.S. (2000).

Expression of neurogenin3 reveals an islet cell precursor population in the

pancreas. Development 127, 3533–3542.

Srinivas, S., Watanabe, T., Lin, C.S., William, C.M., Tanabe, Y., Jessell, T.M.,

and Costantini, F. (2001). Cre reporter strains produced by targeted insertion

of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4.
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