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SUMMARY

Pluripotent stem cells have distinct metabolic re-
quirements, and reprogramming cells to pluripo-
tency requires a shift from oxidative to glycolytic
metabolism. Here, we show that this shift occurs
early during reprogramming of human cells and
requires hypoxia-inducible factors (HIFs) in a stage-
specific manner. HIF1a and HIF2a are both neces-
sary to initiate this metabolic switch and for the
acquisition of pluripotency, and the stabilization of
either protein during early phases of reprogramming
is sufficient to induce the switch to glycolytic metab-
olism. In contrast, stabilization of HIF2a during later
stages represses reprogramming, partly because of
the upregulation of TNF-related apoptosis-inducing
ligand (TRAIL). TRAIL inhibits induced pluripotent
stem cell (iPSC) generation by repressing apoptotic
caspase 3 activity specifically in cells undergoing re-
programming but not human embryonic stem cells
(hESCs), and inhibiting TRAIL activity enhances
human iPSC generation. These results shed light on
the mechanisms underlying the metabolic shifts as-
sociated with the acquisition of a pluripotent identity
during reprogramming.

INTRODUCTION

In contrast to differentiated cells, human embryonic stem cells

(hESCs) rely mainly on glycolysis for their source of energy, re-

gardless of oxygen availability (Folmes et al., 2011; Panopoulos

et al., 2012; Prigione and Adjaye, 2010; Varumet al., 2011; Zhang

et al., 2011; Zhou et al., 2012). Pluripotent cells share this meta-

bolic particularity with cancer cells (Warburg effect) (Cairns et al.,

2011). In both cell types, glycolytic genes are upregulated, mito-

chondrial activity is reduced, and lactate production is signifi-

cantly increased (Panopoulos et al., 2012; Prigione et al., 2010;
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Varum et al., 2011; Yanes et al., 2010). Furthermore, it has

recently been proposed that the metabolic properties of stem

cells and cancer cells are important for their identity (Greer

et al., 2012; Rafalski et al., 2012). However, it is not yet clear

how stem cells gain this metabolic signature and how they again

activate mitochondrial oxidative phosphorylation pathways dur-

ing differentiation.

The bioenergetics of pluripotent cells can vary depending on

their developmental stage. For example, mouse epiblasts stem

cells, which are believed to be at the same primed stage as

hESCs, are also highly glycolytic, whereas more naive mouse

ESCs are bivalent in their energy production, switching from gly-

colysis to mitochondrial respiration on demand (Zhou et al.,

2012). Human induced pluripotent stem cells (iPSCs) are usually

reprogrammed from somatic cells to a primed stage and are very

metabolically similar to hESCs (Panopoulos et al., 2012; Suhr

et al., 2010; Varum et al., 2011). Therefore, a metabolic switch

from oxidative to highly glycolytic needs to take place during

iPSC formation. Supporting this idea, the inhibition of glycolysis

reduces reprogramming efficiency, whereas stimulation of gly-

colytic activity enhances iPSC generation (Folmes et al., 2011;

Panopoulos et al., 2012; Zhu et al., 2010). How iPSCs establish

a Warburg-like metabolic phenotype during the reprogramming

process is largely unknown.

The dependency of stem cells on glycolysis to produce ATP

could be an adaptation to low-oxygen tensions in vivo, given

that hypoxia has appeared as a key feature of the stem cell niche

(Mohyeldin et al., 2010; Suda et al., 2011). Furthermore, low oxy-

gen levels are beneficial for embryonic stem cells (hESCs), adult

stem cells (Danet et al., 2003; Ezashi et al., 2005; Morrison et al.,

2000; Simsek et al., 2010; Studer et al., 2000), and cancer cells

(Axelson et al., 2005; Cabarcas et al., 2011; Mathieu et al.,

2011; Takubo and Suda, 2012). Cellular adaptation to hypoxic

conditions is mainly mediated through the activation of the oxy-

gen-sensitive transcription factors, hypoxia-inducible factors

(HIFs). In normoxia, HIF1a and HIF2a undergo prolyl hydroxyla-

tion, which leads to specific binding to the ubiquitin E3 ligase Von

Hippel-Lindau, polyubiquitination, and proteasomal degrada-

tion. However, HIF1a and HIF2a are stabilized in low oxygen

levels, dimerize with HIF1b, and control the transcription of
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multiple target genes, including genes involved in glucose

metabolism (Pouysségur et al., 2006; Semenza, 2003). HIF1a is

expressed ubiquitously, whereas HIF2a expression is more tis-

sue restricted, and both factors have essential roles during de-

velopment (Compernolle et al., 2002; Iyer et al., 1998; Ryan

et al., 1998). Increasing evidence suggests that HIFs can activate

factors involved in pluripotency and regulate the stem cell phe-

notype in both normal and cancer cells (Ezashi et al., 2005,

Takubo and Suda, 2012, Covello et al., 2006; Mathieu et al.,

2011, 2013). In addition, hypoxia enhances the generation of

iPSCs (Yoshida et al., 2009). However the mode of function of

HIFs in the process is not fully understood. Given that HIF2a

has been shown to activate Oct4 and that HIF2a-deficient em-

bryos have severely reduced numbers of primordial germ cells

(Covello et al., 2006), it is believed to be the HIF family member

that regulates stem cells (Das et al., 2012; Franovic et al.,

2009; Heddleston et al., 2009; Li et al., 2009; Mohyeldin et al.,

2010). However, recent data indicate that HIF1a can also regu-

late stem cell properties (Takubo et al., 2010; Wang et al.,

2011). Therefore, it is important to dissect whether HIF1a and

HIF2a are involved in the acquisition of stem cell fate and, in par-

ticular, in themechanism underlying the hypoxia effect in reprog-

ramming and whether HIFs are responsible for the metabolic

shift during reprogramming.

We now show that both HIF2a and HIF1a are essential for the

metabolic changes required early for iPSC generation in hu-

mans. Furthermore, we show that HIF2a is required at early

stages, but is detrimental at later stages, of reprogramming.

HIF1a and HIF2a are sufficient to induce the stem-cell-specific

metabolic switch. However, prolonged HIF2a stabilization re-

presses reprogramming because of the upregulation of TNF-

related apoptosis-inducing ligand (TRAIL). These data reveal a

similarity between normal reprogramming and cancer progres-

sion; both require early metabolic switch induced by HIF1a

and HIF2a, and both are sensitive to the presence of TRAIL.

RESULTS

A Metabolic Switch Occurs Early during the
Reprogramming Process
Themetabolism of primed PSCs differs from the one observed in

naive PSCs or many differentiated cells (Varum et al., 2011; Zhou

et al., 2012). Primed stem cells show reduced mitochondrial ac-

tivity and rely on glycolysis, whereas differentiated cells produce

the majority of their ATP by mitochondrial oxidative phosphory-

lation. We used the reprogramming assay (Park et al., 2008;

Takahashi et al., 2007; Yu et al., 2007) to analyze the require-

ments for the acquisition of the metabolic state of primed

PSCs. Human fibroblasts were reprogrammed into an iPSC state

with the four reprogramming factors Oct4, Sox2, Lin28, and

Nanog (OSLN). To characterize the metabolic profiles of the

cells, we measured a metabolic parameter that mainly defines

the mitochondrial respiration levels, oxygen consumption rate

(OCR) under various conditions and treatments with Seahorse

Extracellular Flux Analyzer (Zhou et al., 2012). We treated the

cells with mitochondrial ATP synthase inhibitor, oligomycin,

and then a proton gradient discharger, carbonyl cyanide 4-(tri-

fluoromethoxy)phenylhydrazone (FCCP), in order to measure

the maximal turnover of the electron transport chain uncoupled
from ATP synthesis. This analysis revealed the maximal mito-

chondrial reserve in the presence of glucose (Goldsby and Hey-

tler, 1963; Heytler, 1963). Fibroblasts showed significantly higher

levels of maximal respiratory capacity than hESCs and iPSCs

(Figure 1A; Figure S1A available online). These results, in line

with previous findings (Folmes et al., 2011; Prigione and Adjaye,

2010; Hansson et al., 2012), suggest that a switch from oxidative

to glycolytic metabolism occurs during the iPSC reprogramming

process. Furthermore, we examined the kinetics of the meta-

bolic switch by analyzing the OCR and extracellular acidification

rate of the cells at different time points of the reprogramming

process and found that the FCCP response after oligomycin

treatment was already significantly reduced at day 8 (D8) in re-

programming fibroblasts in comparison to control fibroblasts

(Figures 1B, 1C, and S1B–S1D). These data indicate that the

metabolic changes initiate early in the reprogramming process

and support the previous gene expression and proteomics anal-

ysis in mouse and human reprogramming (Folmes et al., 2011;

Prigione and Adjaye, 2010; Hansson et al., 2012).

Reprogramming Process Has Hypoxic Expression
Signature
To reveal the key metabolic genes involved in the transition, we

analyzed the gene expression profiles of reprogramming cells

and observed an increased expression of metabolic genes in

early (D12) and late (D30) time points of the entire fibroblast pop-

ulation exposed to reprogramming factors (Figures 1D, S1E, and

S1F and Table S1). The majority of the increased metabolic

genes during early reprogramming are hypoxia-responsive

genes (Figure 1E). We validated the early upregulation in reprog-

ramming process for ALDOC, ENO3, and PKM2 by quantitative

PCR (qPCR; Figure 1F). Given that the reprogramming experi-

ments were performed in normoxia, we tested whether perform-

ing the process in hypoxic conditions would be beneficial

(Figure 2A). Indeed, the reprogramming process is significantly

more efficient when performed in hypoxic conditions. In compar-

ison to 20% O2, both 2% and 5% O2 promote iPSC colony for-

mation in various cell lines, including IMR90, MRC5, and JM1

(Figures 2A, 2B, and S2A–S2C), confirming that hypoxia is ben-

eficial for iPSC induction (Yoshida et al., 2009). Using western

blot analysis, we showed that the two main hypoxia-responsive

factors, HIF1a and HIF2a, were stabilized in hypoxic reprogram-

ming process (Figures 2C, S2D, and S2E).

To test whether HIF1a andHIF2a are stabilized in the normoxic

(20% O2) reprogramming process, we analyzed multiple time

points in normal reprogramming (Figures 2D and S2F). Both

HIF1a and HIF2a proteins were stabilized during normoxic re-

programming (Figures 2C, 2D, and S2F). To test whether HIFs

are also transcriptionally active during the reprogramming in nor-

moxic oxygen environment, we introduced an HIF reporter that

contains six HIF-minimal binding sites in front of enhanced yel-

low fluorescent protein (eYFP) (Zhou et al., 2011) into the fibro-

blasts used for reprogramming assay (HFF1). This sensor has

shown to react to hypoxia and both HIF1a and HIF2a activity

(Zhou et al., 2011) (Figure S2G). By D7 of reprogramming, the

fluorescent signal had increased significantly, suggesting that

HIF1a and/or HIF2a are activated during the reprogramming

process (Figure 2E). However, when iPSC colonies were formed,

the signal was highly reduced, suggesting that the viral construct
Cell Stem Cell 14, 592–605, May 1, 2014 ª2014 Elsevier Inc. 593



Figure 1. Metabolic Switch Occurs Early in Reprogramming Process

(A) Metabolic profile comparing hESCH7 and iPSCs to fibroblasts (IMR90). A representative trace of OCR changes is shown under mitochondrial stress protocol.

(B) IMR90 OSLN reprogramming cells have reduced OCR change at day 8 (D8) in response to FCCP following oligomycin treatment in comparison to the IMR90

fibroblasts.

(C) Kinetics of changes in oxidative metabolism in the entire IMR90 fibroblast population subjected to OSLN factors over the time course of reprogramming

process is shown. Significant change was first observed in D8 reprogramming cells, as shown by relative OCR changes after FCCP injection.

(D) Metabolic gene (Table S1) expression patterns display dynamic changes in early (D12) and late (D30, p = 0.001) reprogramming cells in comparison to IMR90

fibroblasts. In comparison to IMR90 fibroblasts, 74 metabolic genes show higher expression level in iPSCs and hESCs. Among those 74 genes, 27 are upre-

gulated in early (D12) reprogramming cells, whereas an additional 22 genes (total of 49) are upregulated in late (D30) reprogramming cells. Arrows indicate the

proportion of the 74 upregulated genes in each category.

(E) Microarray expression data are shown for metabolic genes that are upregulated more than 2-fold in early (OSLN D12) and late (OSLN D30) IMR90 re-

programming cells in comparison to the IMR90 fibroblasts. Hypoxia-responsive genes are highlighted in red.

(F) qRT-PCR validates the upregulation of some of these hypoxia-responsive genes in early reprogramming fibroblasts in comparison to control IMR90 fibro-

blasts. p values were calculated with a Student’s t test. *p < 0.05; **p < 0.01; ***p < 0.001. Scale bars show SEM for at least three separate experiments.

See also Figure S1.
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was inactivated in the stem cell stage, as has been observed pre-

viously (Takahashi et al., 2007; Xia et al., 2007; Yu et al., 2007).

HIF2a Is Required for the Metabolic Switch during Early
Reprogramming
To test whether HIF1a and/or HIF2a are required for the meta-

bolic switch observed during reprogramming, we used HIF1a

and HIF2a small hairpin RNA (shRNA) constructs that resulted

in a significant reduction of HIF1a and HIF2a protein levels, re-

spectively (Li et al., 2007) (Figures 2F, 2G, S3A, and S3B). Impor-

tantly, when either HIF1a or HIF2a were significantly reduced

starting from the initiation of the reprogramming process, at

the D8–D10 time point, the total OCR increase after FCCP

addition was abnormal. Although HIF1a shRNA effect in the

metabolic switch was not statistically significant, HIF2a knock-

down (KD) significantly blocked the process (Figures 2H–2K

and S3C). At D8, the reprogramming cells with HIF2aKD showed

a high OCR increase after FCCP treatment that was comparable

to fibroblasts. This starkly contrasts the highly reduced OCR de-

tected in the control reprogramming samples (Figures 2H–2K).

Furthermore, at the end of the reprogramming process, the num-

ber of iPSC colonies was also significantly reduced when HIF2a

was knocked down during the process in both normoxia and

hypoxia (Figures 2L and S3D). The iPSC colony formation was

also highly reduced when HIF1a was knocked down during the

process (Figure 2M). The reduction observed in iPSC induction

when HIF1a or HIF2awere knocked down was not due to signifi-

cantly reduced proliferation rates (Figure S3E). Furthermore, we

showed a reduction in the key metabolic hypoxia-responsive

genes in the reprogramming cells in which HIF1a or HIF2a was

knocked down (Figures 2N and S3F). Later in the reprogramming

process, an increase of small iPSC-like colonies was observed in

some of the HIF1a KD plates (Figures S3G–S3J). Altogether,

these data suggest that both HIF2a and HIF1a are required for

the metabolic switch that initiates early during the reprogram-

ming process and that this step is necessary for iPSC colony

formation.

Reprogramming Process Requires Controlled HIF2a
Activity
Because hypoxia is beneficial for reprogramming and HIF2a and

HIF1a are required for the process, we tested whether constitu-

tive stabilization of HIF1a and/or HIF2a would enhance iPSC

generation by overexpressing nondegradable forms of HIF1a

and HIF2a during reprogramming (Pro402, 564/Ala mutations

and Pro405,531/Ala mutations, respectively; Figures 3A and

S4A) (Yan et al., 2007). HIF1a overexpression (OE) during reprog-

ramming significantly increased the efficiency of iPSC colony

formation in normoxia as well as in hypoxia in IMR90 and

MRC5 fibroblast cell lines (Figures 3B–3D). However, surpris-

ingly prolonged stabilization of HIF2a significantly repressed

the reprogramming process in these conditions (Figures 3B–

3D), even in combination with HIF1a (Figures 3B and 3C). To

confirm that the morphologically and alkaline phosphatase

(AP)-staining-identified colonies consist of true pluripotent cells,

we stained all cells late in reprogramming processwith TRA-1-60

and quantified the positive cells by FACS analysis (Figures 3E–

3G and S4B–S4F). Importantly, similar to the morphological

analysis, TRA-1-60-positive cell number was increased when
HIF1a was stabilized but significantly reduced with HIF2a

stabilization (Figures 3F and 3G). As expected, TRA-1-60

FACS analysis also validated the loss-of-function data (Figures

3F, 3G, and 2M).

This difference in HIF1a OE and HIF2a OE effect on reprog-

ramming was not caused by differences in cell proliferation rates

(Figure S3E). The iPSC colonies derived from HIF1a-expressing

or control samples displayed hESC-like morphology, self-

renewal capacity, AP activity, and endogenous NANOG and

OCT4 mRNA expression (Figures 3H, 3I, and S4G). In addition,

their metabolic profile resembled the hESC metabolic profile,

as evident in the diminishedmitochondrial functional reserves in-

duced by FCCP following oligomycin treatment (Figure 3J). Cells

in these iPSC colonies were pluripotent, given that they had the

capacity to differentiate into all three germ layers, as indicated by

upregulation of mesoderm, endoderm, and ectodermmarkers in

embryoid body (EB) assays (Figure 3K) (Yu et al., 2007). Despite

several attempts, we were not able to maintain the few colonies

derived from the HIF2a-overexpressing cells. Altogether, these

data show that, although continuous and prolonged OE of

HIF1a is beneficial for reprogramming process, prolonged

HIF2a activation represses iPSC formation.

HIF2a Function at Different Stages of Reprogramming
We showed that a loss of HIF2a is detrimental for reprogramming

(Figures 2L and S3D). Surprisingly, although continuous HIF1a

activation is beneficial, continuous activation of HIF2a represses

iPSC induction, suggesting that the reprogramming process re-

quires tightly controlled HIF2a activity. To understand the timing

of HIF2a function in the process, instead of reducing HIF2a levels

from the beginning of reprogramming, we infected the cells with

shRNA against HIF2a in the middle of the reprogramming proc-

ess (D12) and measured the total number of iPSC colonies

formed late in the reprogramming process (D33; Figures 3L

and 3M). Interestingly, although HIF2a shRNA reduced iPSC col-

ony number significantly when introduced early (D0; Figure 2L),

no obvious defect was observed when HIF2a was knocked

down in the middle (D12) of the reprogramming process (Figures

3L and 3M). However, when the nondegradable form of HIF2a

was overexpressed in themiddle of the reprogramming process,

the iPSC colony number was significantly reduced (Figures 3L

and 3M). These data suggest that HIF2a is required early, but

not late, in iPSC induction. Furthermore, HIF2a needs to be

downregulated at the latter part of the reprogramming process,

given that constitutive activation of HIF2a late in the process

causes a significant repression of reprogramming.

HIF1a and HIF2a Overexpression Is Sufficient to Induce
Metabolic Changes
To analyze the mechanism of HIF1a and HIF2a action in somatic

cells, we expressed constitutively active HIF1a and HIF2a in

fibroblasts without the reprogramming factors. First, we vali-

dated the HIF1a and HIF2a activity by showing that in MRC5

fibroblast HIF1a and/or HIF2a OE results in the upregulation of

HIF target genes carbonic anhydrase 9 and miR-210 (Figures

4A and 4B). To test whether overactivation of HIF1a or HIF2a

could affect the metabolism of fibroblasts without the addition

of the reprogramming factors, we analyzed the maximum OCR

change after FCCP addition in these conditions. Importantly,
Cell Stem Cell 14, 592–605, May 1, 2014 ª2014 Elsevier Inc. 595



Figure 2. HIFs Are Required for the Metabolic Switch in Early Reprogramming

(A and B) Hypoxia (5% O2) enhances iPSC formation in three cell lines (JM1, IMR90, and MRC5). Colonies were counted at D21 after OSLN infection.

(C) Comparison of HIF1a and HIF2a protein levels in the reprogramming cells under normoxia (20% O2 at D9) and hypoxia (5% O2 at D7).

(D) HIF1a and HIF2a protein stabilization occurs in reprogramming fibroblasts (MRC5) under normoxia, as shown by western blots.

(E) HFF1 cells harboring a YFP hypoxia reporter show an increase of HIF activity during the course of reprogramming. Scale bars represent 200 mm.

(F and G) Western blots validate the KD of HIF1a and HIF2a with shRNA against HIF1a (F) and HIF2a (G), respectively, in HeLa cells.

(H and I) The changes in oxidative metabolism are shown for IMR90, IMR90 infected with OSLN, and IMR90 with OSLN+HIF1a shRNA or OSLN+HIF2a shRNA at

D8 of the reprogramming process with a representative trace of OCR under mitochondrial stress protocol (H) and relative OCR changes after FCCP injection (I).

(legend continued on next page)
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OEof HIF1a or HIF2a reduced the oxidativemetabolism, and this

metabolic change was more prominent when both transcription

factors were activated simultaneously (Figure 4C). Furthermore,

we showed that the observed reduction onmitochondrial activity

was not due to the reduction of mitochondrial number by utilizing

mitochondrial DNA copy-number assay (Figure 4D). Because no

significant change in mitochondrial copy number was found in

HIF1a and HIF2a OE cells (Figure 4D), mitochondrial activity

regulated by gene expression, rather than mitochondrial num-

ber, is critical for the metabolic switch observed in fibroblasts.

Similarly, OCR reduction was accelerated when HIF1a or

HIF2a were overexpressed with OSLN during the reprogram-

ming assay (Figure 4E). Therefore, we tested whether HIF1a

and/or HIF2a OE would accelerate the increase in expression

patterns of metabolic genes observed during reprogramming

(Figure 1D). In order to examine the change in gene expression

that occurs at various stages of the reprogramming process

when HIF2a is OE during OSLN-induced reprogramming, we

performed amicroarray analysis (Figure S5A). First, we validated

the microarray data by showing that stem cell markers were

highly enriched in reprogramming cells and that hypoxia target

genes were upregulated in HIF2a OE reprogramming cells

(Figures S5B and S5C). Ourmicroarray analysis revealed that hy-

poxia target genes were enriched in HIF2a OE samples in com-

parison to fibroblasts (Figures S5D and S5E). Furthermore,

HIF2aOE andHIF1aOE accelerated themetabolic gene expres-

sion during the reprogramming process (Figure S5F). qPCR val-

idation revealed that many of the metabolic genes normally

upregulated late in reprogramming process were already upre-

gulated at the D12 time point because of HIF2a and HIF1a

overexpression (Figure 4F), suggesting hastened kinetics of the

metabolic switch in the reprogramming cells.

Among themetabolic genes upregulated late (D30) during nor-

mal reprogramming that were expressed earlier (D12) in HIF1a

and HIF2a OE cells was pyruvate dehydrogenase kinase 3

(PDK3; Figures 4F and S5F–S5H). PDK3, an enzyme that blocks

the conversion of pyruvate to acetyl-CoA, is significantly en-

riched in hESCs and hypoxic tumor cells (Mathieu et al., 2011;

Stadler et al., 2010). Unlike other PDKs, PDK3 is not inhibited

by excess pyruvate and therefore is considered a key regulator

for a switch from oxidative to glycolytic metabolism. We studied

the kinetics of PDK3 upregulation when HIF1a and/or HIF2a are

overexpressed during reprogramming by qRT-PCR. Although, in

control, an 8-fold increase in PDK3 expression was observed at

D30 of the reprogramming process, HIF1a and HIF2a acceler-

ated this process, given that upregulation of PDK3was observed

at D7 or D12 in reprogrammedMRC5 or IMR90 cells (Figures 4F,

4G, and S5H). Furthermore, we tested whether the inhibition of

PDK3 could suppress the HIF1a-induced increase in iPSC for-

mation. Using the chemical inhibitor Radicicol (Kato et al.,
(J and K) The changes in oxidativemetabolism are shown forMRC5,MRC5 infecte

process with a representative trace of OCR under mitochondrial stress protocol (J

OSLN+HIF2a shRNA is significantly different from that in MRC5 infected with OS

(L) shRNA against HIF2a decreases iPSC colony formation in both 20% and 5%

(M) shRNA against HIF1a reduces the number of colonies observed at days 19–

(N) Expression of metabolic genes are reduced at D23 in IMR90 with OSLN+HIF1a

t test. *p < 0.05; **p < 0.01; ***p < 0.001. Scale bars show SEM for at least three

See also Figures S2 and S3.
2007), we showed that reduction of PDK3 activity reduced the

number of iPSC colonies in HIF1a-overexpressing reprogram-

ming cells as well as normal reprogramming cells (Figures 4H

and S5I), suggesting an important functional role for PDK3 in

HIF1a-induced increase in iPSC induction. However, given that

Radicicol did not fully eliminate iPSC induction, additional HIF

targets are probably involved in the process.

These data show that HIF1a and HIF2a together are sufficient

to induce the metabolic switch in fibroblasts. Similarly, HIF1a

and HIF2a stabilization in hypoxic cells is shown to be invariably

sequential (Keith et al., 2012; Zhou et al., 2011). These data sup-

port the hypothesis that HIF1a and HIF2a have a combinatorial,

perhaps sequential, role in the metabolic switch observed in

early iPSC induction. However, although HIF1a stabilization is

beneficial for the process, HIF2a stabilization late in the process

is surprisingly detrimental for iPSC induction.

HIF2a Inhibits Reprogramming through TRAIL
In accordance with the observation that HIF2a is required early,

but not late, in reprogramming, we also observed that both

MRC5 and IMR90 fibroblasts with HIF2a OE give rise to approx-

imately equal or larger number of precolonies in early time points

in comparison to the controls (before D14; Figures 5A, S6A, and

S6B), suggesting that HIF2a overexpression is beneficial during

the early phase of reprogramming. However, a significant

repression in colony formation and PDK3 expression was ob-

served in HIF2a overexpressing samples at later time points

(Figures 4G, 4H, 5A, and S6A). Similarly, HIF2a OE initiated

in the middle of reprogramming process (D12) dramatically

reduced iPSC colony formation (Figure 3M), suggesting that

HIF2a OE late during reprogramming is detrimental for iPSC

formation. Therefore, we examined the gene expression profiles

of HIF2a-overexpressing and control cells at D30 of the reprog-

ramming process in order to identify the key HIF2a target that

can repress iPSC formation.

As expected, the expression of stem cell markers was only en-

riched in the control samples, not HIF2a OE cells, validating the

lack of iPSC colonies (Figures 5B, 5C, S6C, and S6D). Impor-

tantly, we identified TRAIL as the most upregulated gene with

stabilized HIF2a at late stage of reprogramming in comparison

to controls (Figures 5D and S6E). This upregulation of TRAIL

was not observed early in reprogramming (Figure S6F) and

was specific for HIF2a OE, given that no effect in TRAIL expres-

sion was observed with stabilized HIF1a (Figure 5E). Further-

more, the significant upregulation of TRAIL was also observed

when HIF2a OE was induced late in reprogramming (D12; Fig-

ure 5F) and a trend of TRAIL downregulation was observed in

HIF2 KD late reprogramming samples (Figure S6G).

To analyze whether TRAIL expression was sufficient to re-

produce the repressive function of HIF2a, we administered
dwith OSLN, andMRC5with OSLN+HIF2a shRNA at D8 of the reprogramming

) and relative OCR changes after FCCP injection (K). OCR change in MRC5 with

LN.

O2 in comparison to the control.

21.

shRNA in comparison to the control. p values were calculated with a Student’s

separate experiments.

Cell Stem Cell 14, 592–605, May 1, 2014 ª2014 Elsevier Inc. 597



Figure 3. HIF1a and HIF2a Overexpression Have Opposite Effects on Reprogramming

(A) OE of nondegradable HIF1a and HIF2a was confirmed by western blot analysis in MRC5 6 days after OSLN infection.

(B–D) HIF1a OE promotes iPSC colony formation, whereas HIF2a OE inhibits colony formation in 5% (B) and 20% (C) O2 in MRC5 as well as 20% O2 in IMR90

(D; n = 7 independent experiments). Colonies were counted at D21 of reprogramming.

(E) Immunofluorescence microscopy shows that colonies counted at 21 days postinfection express the stem cell marker Tra-1-60. The scale bar

represents 250 mm.

(legend continued on next page)
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Figure 4. HIF1a and HIF2a Overexpression Are Sufficient to Induce a Metabolic Change

(A–D) In MRC5 fibroblasts infected with HIF1a OE alone, HIF2a OE alone, or HIF1a OE and HIF2a OE together. miR-210 expression was induced both in HIF1a-

and HIF2a-overexpressing cells (A), and carbonic anhydrase 9 (CA9) expression was induced only in HIF1a-overexpressing cells (B), confirming the functionality

of the overexpressed HIF proteins.

(C) Both HIF1a andHIF2a overexpression inMRC5 fibroblasts without OSLN factors induced glycolyticmetabolism similar to hESCH1. Shown are representative

Seahorse traces.

(D) Mitochondrial DNA copy number was not changed in HIF1a or HIF2a overexpressing MRC5 fibroblasts.

(E) Both HIF1a and HIF2a overexpression in reprogramming cells (IMR90+OSLN) at D8 resulted in a further decrease in the OCR after FFCP injection.

(F) qPCR validation of the expression level of metabolic genes that were upregulated by HIF1a or HIF2aOE in D12 sample in comparison to the control (blue and

red bars indicate the comparative expression in control as illustrated in Figure 1D).

(G) Kinetics of PDK3 mRNA level analyzed by qRT-PCR in IMR90 reprogramming cells is shown as the percentage of actin.

(H) Treatment of PDK3 inhibitor (PDKi) on HIF1a OE cells reduces colony formation in comparison to HIF1a OE cells in the vehicle control (EtOH). p values were

calculated with a Student’s t test. *p < 0.05; **p < 0.01. Scale bars show SEM for at least three separate experiments.

See also Figure S5.

Cell Stem Cell

HIF1 and HIF2 in Reprogramming
TRAIL recombinant protein into the cell-culture media during

reprogramming process. Importantly, when 50 or 100 ng/ml

of TRAIL was administered to the reprogramming process,

fibroblasts continued dividing, but no iPSC colonies were

produced (Figures 5G and S6H–S6J), showing that TRAIL
(F) Flow cytometry analysis of Tra-1-60 at D21 after OSLN infection in IMR90.

(G) Quantification of Tra-1-60-positive cells detected by flow cytometry at D21 of

and flow cytometry analysis of those triplicates are presented in Figures S4F and

(H–J) iPSC colonies reprogrammed from HIF1a OE IMR90 fibroblasts can self-

mitochondrial activity similar to hESCs (H7) that is different from the parental fib

(K) The differentiation abilities of both EV iPSC and HIF1a iPSC derived EBs are de

Brachyury and kinase insert domain receptor (KDR) are markers for mesoderm,

Tubb3 are markers for ectoderm.

(L) An experimental scheme is shown to test the requirement and specificity of H

(M) When infected at D12, HIF2a OE reduces colony formation, whereas HIF2a K

the EV-infected cells. p values were calculated with a Student’s t test. *p < 0.0

experiments.

See also Figure S4.
mimics HIF2a OE phenotype by repressing the iPSC induction,

but not fibroblast viability. Furthermore, we showed that

the addition of TRAIL-neutralizing antibody (TRAIL Ab) on

HIF2a overexpressing cells was able to counteract HIF2a-

repressive function and rescue iPSC formation (Figures 5H
reprogramming. Scale bars show SEM for triplicate experiments. Colony count

S4D, respectively.

renew (H), express endogenous Oct4 and Nanog (I), and display a reduced

roblasts (IMR90; J). Scale bars represent 200 mm.

monstrated by qRT-PCR analysis of genes representative of three germ layers.

alpha-fetoprotein (AFP) and Sox17 are markers for endoderm, and Pax6 and

IF2a at the later stage of the iPSC reprogramming process.

D by shRNA shows no significant change in colony formation in comparison to

5; **p < 0.01; ***p < 0.001. Scale bars show SEM for at least three separate
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Figure 5. HIF2a Inhibits iPSC Formation

through TRAIL Activation

(A) Kinetics of iPSC colony formation in HIF2a OE

IMR90 fibroblasts (OSLN+HIF2a), showing an early

increase (before D14) but dramatic reduction of iPSC

colony formation in late time points in comparison to

the control (OSLN+EV).

(B and C) Stem cell markers are significantly upre-

gulated in the control (B), but not HIF2a OE (C), cells

during reprogramming.

(D) Microarray analysis reveals that TRAIL is the

most upregulated gene at D30 in HIF2a OE re-

programming cells in comparison to normal IMR90

reprogramming cells.

(E) qRT-PCR validation shows the high TRAIL mRNA

expression in HIF2a, but not HIF1a, OE reprogram-

ming cells in late time points (D30).

(F) TRAIL mRNA expression analyzed by qRT-PCR

increased at late time points (D30) in HIF2a OE cells

infected at D12 of the reprogramming process in

comparison to OSLN control cells.

(G) Administration of TRAIL during IMR90 re-

programming process (from D7) represses iPSC

formation but not fibroblast growth.

(H) Administration of TRAIL antibody on HIF2a-

overexpressing cells rescues iPSC formation in

IMR90. Colonies were counted at D21.

(I) Administration of TRAIL antibody (75 ng/ml) in the

normal reprogramming process (in IMR90) promotes

colony formation.

(J–L) In bothMRC5 (J) and IMR90 (K) reprogramming

cells, HIF2a OE represses PARP cleavage 5-fold (L)

in comparison to EV control and HIF1a OE cells

(three independent experiments).

(M) Western blots confirm that PARP cleavage

is reduced in reprogramming cells treated with

50 ng/ml TRAIL for 8 hr in comparison to the control.

(N) NF-kB target genes are visualized on a scatter

plot comparing HIF2a OE at D30 to EV for those that

are expressed 4-fold more in HIF2a OE cells.

(O) Quantification of XIAP expression by qRT-PCR

assay shows an increased XIAP expression in HIF2a

OE reprogramming cells in comparison to the EV at

D27. Importantly, such an increase is reduced in

HIF2a OE reprogramming cells treated with TRAIL

Ab. p values were calculated with a Student’s t test.

**p < 0.01 and ***p < 0.001. Scale bars show SEM for

at least three separate experiments.

See also Figure S6.
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and S6K–S6L). These data show that HIF2a exerts its

dominant repression at the late stage of reprogramming

through TRAIL.

TRAIL Effect in Reprogramming
To test whether TRAIL is normally expressed and has a repres-

sive effect during normal reprogramming, we added TRAIL Ab

during normal reprogramming (from D7 on) and counted the

iPSC colony number at D17 and D21 in the process. Importantly,

the colony number was significantly increased when endoge-

nous TRAIL was sequestered by TRAIL Ab (Figure 5I). The colo-

nies formed were able to undergo self-renewing division and

expressed endogenous Oct4 (Figure S6L). These data show
600 Cell Stem Cell 14, 592–605, May 1, 2014 ª2014 Elsevier Inc.
that normal reprogramming generates low levels of endogenous

TRAIL, which has a repressive property on the reprogramming

process, and hence we proceeded to reveal the mechanism of

TRAIL action in the process.

TRAIL, by activating a specific set of receptors, can either in-

duce apoptosis through the caspase pathway or display an anti-

apoptotic effect, mostly through nuclear factor kB (NF-kB)

signaling (Mérino et al., 2007; Walczak et al., 1999). We tested

whether HIF2a OE activates the caspase pathway through

TRAIL in the reprogramming cells by analyzing the level of

cleaved PARP, the cleavage target of active caspase 3. Instead

of caspase activation, we observed the repression of caspase,

as indicated by the significant reduction of cleaved PARP in



Figure 6. hESCs Bypass TRAIL Effect Due to Low Level of DcR2

(A and B) H1 hESCs can self-renew in the presence of TRAIL in culture.Morphologies (A) and percentage of survival (B) are shown for H1 cells with 50 or 100 ng/ml

TRAIL in culture for 7 days in comparison to control H1 cells.

(C) DcR2 mRNA expression is low in hESCs in comparison to reprogramming cells (IMR90 OSLN).

(D) TRAIL administration does not reduce PARP cleavage in H1 or H7.

(E) Models for the repressive action of prolonged HIF2a OE on reprogramming: TRAIL inhibits caspase activity by binding DcR2 and activating NF-kB (1) or

binding heteromeric complex of DcR2/DR5 (2). p values were calculated with a Student’s t test. ***p < 0.001. Scale bars show SEM for at least three separate

experiments.

See also Figure S7.
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HIF2a, but not HIF1a-overexpressing, reprogramming cells

(Figures 5J–5L). Furthermore, we tested whether exogenously

added TRAIL protein in the reprogramming system can affect

PARP cleavage and found that, 8 hr after TRAIL addition at

D17 of iPSC reprogramming, a reduction of PARP was also de-

tected (Figure 5M).

Given that reprogramming cells require active caspases (Li

et al., 2010), a reduction of caspase activity could be causal

for the lack of iPSC formation in cells constitutively overexpress-

ing HIF2a. Gene expression profiling data further revealed that

expression of NF-kB targets, and in particular cFLIP and XIAP,

inhibitors of caspase activation, are higher in HIF2a-overex-

pressing cells than the control (Figures 5N, 5O, and S6M and

Table S2), suggesting that TRAIL could induce antiapoptotic

activity instead of apoptotic signaling in reprogramming cells.

Importantly, TRAIL Ab significantly reduced the upregulation

of XIAP observed in HIF2a-overexpressing reprogramming cells

(Figure 5O).

hESCs Are Not Responsive to TRAIL
Because reprogramming cells are sensitive to TRAIL, we tested

TRAIL effect on pluripotent hESCs and iPSCs and found that,

surprisingly, these pluripotent cells can self-renew in the pres-

ence of TRAIL (Figures 6A, 6B, and S7A–S7D). Furthermore,

we found that this difference in TRAIL responsiveness correlated

with differential expression of TRAIL receptors. Although DR4

expression is 10-fold lower in reprogramming cells in compari-

son to hESCs, decoy receptor 2 (DcR2) expression is signifi-

cantly higher in fibroblasts (IMR90, 8% of actin; Figure S7E)

and reprogramming cells (1.3% of actin) than in hESCs or iPSCs

(0.05% of actin; Figures 6C and S7D). Previous data have shown

that DcR2, upon binding to TRAIL, can induce NF-kB signaling,

which imposes an inhibitory effect on caspase activation (Ehr-

hardt et al., 2003; Kim et al., 2002). A lower level of DcR2 in

hESCs might protect these cells from TRAIL-induced anticas-
pase signals. Accordingly, in pluripotent cells cultured in the

presence of TRAIL for prolonged periods, we found that PARP

cleavage is not reduced in comparison to the controls (Figures

6D and S7A–S7C). These results show that TRAIL does not in-

hibit caspase activity in hESCs or iPSCs.

DISCUSSION

This study shows that reprogramming has distinct stages.

Although both HIF1a and HIF2a are required, HIF2a has a

stage-specific function in the process. HIF2a is essential in early,

but not late, in reprogramming. When stabilized, HIF2a is bene-

ficial in early reprogramming, but prolonged stabilization of

HIF2a, in contrast to HIF1a dramatically blocks iPSC formation.

We identified themechanism for prolonged HIF2a repressive ac-

tion in reprogramming. Through TRAIL, HIF2a inhibits caspase 3

activity, thereby repressing iPSC formation. Unlike reprogram-

ming cells, hESCs can self-renew in the presence of TRAIL in cul-

ture. This correlates with the low expression of DcR2 in hESCs.

Human embryonic stem cells are glycolytic (Panopoulos et al.,

2012; Prigione et al., 2010; Varum et al., 2011; Zhou et al., 2012),

and the reprogramming process undergoes and requires a met-

abolic switch from oxidative to glycolytic (Armstrong et al., 2010;

Panopoulos et al., 2011, 2012; Prigione et al., 2010, 2014; Varum

et al., 2011). This metabolic switch precedes the stem cell fate

marker expression (Folmes et al., 2011; Zhou et al., 2012).

Here, we show, by analyzing the metabolic flux, that the meta-

bolic switch begins early in the reprogramming process. These

data are in accordance with recent expression analysis of mouse

reprogramming cells and human reprogramming with cMyc as

one of the reprogramming factors (Polo et al., 2012; Prigione

et al., 2014). Interestingly, both HIF1a and HIF2a enhance and

are required for this switch, possibly through separate transcrip-

tional targets (Keith et al., 2012; Loboda et al., 2010). An interest-

ing question is whether themetabolic switch alone is sufficient to
Cell Stem Cell 14, 592–605, May 1, 2014 ª2014 Elsevier Inc. 601



Figure 7. Model of HIF2a Stage-Dependent Role during the Reprog-

ramming Process

When oxidative fibroblasts are reprogrammed into glycolytic pluripotent cells,

metabolic switch from oxidative to glycolytic occurs. Our study shows that

such a metabolic switch takes place in early stage of the reprogramming

process, and HIF1a and HIF2a are essential for this metabolic change. In

contrast, constitutive HIF2a stabilization is detrimental for the reprogramming

process at the later stage, given that it promotes TRAIL expression, which

prevents reprogramming.

Cell Stem Cell

HIF1 and HIF2 in Reprogramming
initiate the reprogramming process. We showed that prolonged

stabilization of HIF1a and HIF2a in fibroblasts is sufficient to

induce the metabolic switch from oxidative to highly glycolytic

observed in stem cells; however, it was not sufficient to induce

pluripotency. This could be due to the repressive effect of

HIF2a in iPSC induction through TRAIL. It will be important for

future research to test whether switching cell metabolism with

more tightly controlled HIFa expression, alone and/or in combi-

nation with other factors, could be another avenue for driving

somatic reprogramming.

Our findings show that HIF2a is required during the early iPSC

reprogramming process to promote the metabolic switch. How-

ever, prolonged stabilization of HIF2a represses iPSC formation

through TRAIL-induced inhibition of caspase 3 signaling. Previ-

ously, it was shown that the activation of apoptotic caspases

occurs during the reprogramming process, and their inhibition

prevents iPSC generation (Li et al., 2010). Now, we show that

HIF2a OE inhibits the caspase 3 activity induced by the re-

programming factors. We also show that HIF2a inhibits iPSC

formation through TRAIL. The binding of TRAIL to its cognate re-

ceptors DR4 and DR5 activates both apoptotic and nonapop-

totic signaling, whereas binding to its decoy receptor 2 (DcR2)

only activates antiapoptotic pathways (Degli-Esposti et al.,

1997; Sanlioglu et al., 2005). Interestingly, reprogramming cells

have a low level of DR4 but a high level of DcR2. In these cells,

TRAIL could activate DcR2, and thereby the NF-kB pathway

that can repress caspase activity (Ehrhardt et al., 2003; Kim

et al., 2002). Furthermore, given that reprogramming cells

require an active caspase pathway (Li et al., 2010), TRAIL-

dependent caspase inhibition could block iPSC formation (Fig-

ure 6E). Our finding that NF-kB targets, and in particular, the

antiapoptotic gene XIAP, are upregulated in HIF2a OE reprog-

ramming cells in comparison to controls (Figures 5N and 5O)

support this hypothesis. Alternatively, DcR2 could form a hetero-

meric complex with DR5 and inhibit caspase activation through

steric hindrance (Mérino et al., 2006) (Figure 6E).We showed that

both fibroblasts and reprogramming cells have higher ex-

pression of DcR2 than hESCs, which may be due to low p53 ex-

pression in hESCs (Liu et al., 2005). Fibroblasts survive with

TRAIL-induced inhibition of the caspase pathway, whereas

fibroblasts in the process of becoming iPSCs are sensitive to
602 Cell Stem Cell 14, 592–605, May 1, 2014 ª2014 Elsevier Inc.
TRAIL, indicating that similar DcR2 levels in two cell types can

lead to different outcomes because of cell-dependent responses

to the downstream pathway.

This study presents an example of a significant difference be-

tween HIF1a and HIF2a function in the same cellular process.

Our results suggest that HIF1a and HIF2amay play nonoverlap-

ping roles in iPSC reprogramming process: HIF1a and HIF2a are

essential for the metabolic switch and induction of pluripotency.

Additionally, prolonged stabilization of HIF1a increases iPSC in-

duction; however, surprisingly prolonged stabilization of HIF2a

significantly represses reprogramming through TRAIL activation

(Figure 7). A fine balance exists between the differential roles of

the two HIFa factors in early embryonic development, a period

when physiological hypoxia is critical for the formation and early

differentiation of both germline and somatic stem cells (Dunwoo-

die, 2009). Our findings in this study provide further evidence on

functional difference between HIF1a and HIF2a (Hu et al., 2007;

Husa et al., 2010). Reprogramming assays can be used in the

future to reveal how structural differences between the two

HIFa factors lead to their diverse functional outcomes.

Along with previous studies, this study shows that TRAIL does

not induce death in hESCs, cancer stem cells or adult stem cells

(Kruyt and Schuringa, 2010). However, TRAIL is detrimental for

cancer cells (Mérino et al., 2007; Walczak et al., 1999). Our study

now reveals that TRAIL also represses the iPSC reprogramming

process. These data suggest a similar mechanism in response to

TRAIL in cancer cells and reprogramming cells. In general, the

results suggest that cells undergoing reprogramming process

may have similar characteristics to the cells undergoing progres-

sion toward aggressive tumor cell, allowing us to propose that

cancer progression is a slow reprogramming process. First, can-

cer cells and cells under reprogramming (iPSC induction) both

change their metabolism from oxidative to highly glycolytic early

during the process. Second, HIFs regulate the switch in both cell

types. Third, cancer cells and reprogramming cells are sensitive

to TRAIL, whereas cancer stem cells and PSCs are resistant to

TRAIL. These similarities between cancer cells and reprogram-

ming cells may allow us to utilize somatic cell reprogramming

process in the future as a model for understanding mechanisms

and events involved in the cancer progression and to learn from

our current knowledge in cancer progression in order to facilitate

understanding of the acquisition of pluripotency.

EXPERIMENTAL PROCEDURES

Cell Culture and Reprogramming

hESCs and isolated iPSCs were maintained as previously described (Ware

et al., 2006). Reprogramming of human fibroblasts (MRC5, IMR90, and

HFF1) was carried out with OSLN lentiviruses (generated from Addgene con-

structs #21162 and #21163) (Yu et al., 2009). In order to examine hypoxia effect

on iPSC formation, cells were cultured under 2% or 5% of O2 from D7 postin-

fection. The number of iPSC colonies was defined as the number of AP-,

Oct4-GFP-, and/or Tra-1-60-positive colonies. See details in the Supplemen-

tal Experimental Procedures.

Overexpression and Inhibition of HIF1a or HIF2a during

Reprogramming

Retroviruses expressing nondegradable HIF1a or HIF2a (Addgene constructs

#19005 and #19006) (Yan et al., 2007) were infected along with OSLN on D0.

An empty vector (EV) construct was used as a control. In order to examine

the role of HIF2a in the later stage of the reprogramming process, OSLN
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reprogramming cells were infected with HIF2a retrovirus at D12. HIF1a and

HIF2a KD were obtained with shRNA constructs (shHIF1a in comparison

to shRNA scramble control; Addgene plasmids #22131/shHIF2#2 and

#22132/shHIF2#3) (Nemetski and Gardner, 2007; Li et al., 2007). HIF1a and

HIF2a OE and KD were validated by western blot analysis.

iPSC Formation with Recombinant TRAIL, TRAIL Ab, or PDK3

Inhibitor Administration

During the iPSC reprogramming process, human TRAIL recombinant protein

(R&D Systems; 50 or 100 ng/ml), human TRAIL polyclonal antibody (R&D

Systems; 75 or 50 ng/ml), or PDK3 inhibitor Radicicol (Sigma-Aldrich,

36.5 ng/ml) (Kato et al., 2007) were added to OSLN-infected fibroblasts on

D7 and every other day along with media change.

Western Blot Analysis, qRT-PCR Analysis, and Mitochondrial DNA

Copy-Number Measurement

Standard protocols were used. See details in the Supplemental Experimental

Procedures. Primers used in our study are listed in Table S3.

Whole-Genome-Wide Microarray Analysis

Total RNA isolated from IMR90 and MRC5 reprogramming cells infected with

HIF2a OE virus or EV control at days 12 and 30 were used in the microarray

analysis. RNA qualification, Agilent microarray labeling, hybridization, and

scanning were performed in microarray facility at the Institute for Systems

Biology. Any intensity-dependent biases were removed in the data with the

normalize.qspline function in the affy Bioconductor package.

OCR Measurement with Seahorse Cellular Flux Assays

Mito Stress and Glucose Stress assays were performed on fibroblasts and re-

programming fibroblasts (infected by OSLN) with the Seahorse XF96 Extracel-

lular Flux Analyzer. The OCR values were further normalized to the number of

cells and quantified by the Hoechst staining (HO33342; Sigma-Aldrich). See

the Supplemental Experimental Procedures for details.

In Vivo Detection of HIF Activity with eYFP Reporting System

In order to test the level of HIF transcriptional activity during reprogramming,

fibroblasts were infected with HIF reporter HBR-6U lentivirus (Zhou et al.,

2011) before undergoing normal reprogramming assay in normoxia.

Statistical Analysis

Throughout the paper, p values were calculated with Student’s t tests. *p <

0.05, **p < 0.01, ***p < 0.001. Scale bars show the SEM of at least three

separate experiments.

ACCESSION NUMBER

Microarray data have been deposited to the NCBI Gene Expression Omnibus

under accession number GSE54898.

SUPPLEMENTAL INFORMATION

Supplemental Information contains Supplemental Experimental Procedures,

seven figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.stem.2014.02.012.
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