Operative Techniques in

Sports Medicine

L
G) CrossMark

ELSEVIER

Equine Models for the Investigation of
Mesenchymal Stem Cell Therapies in
Orthopaedic Disease

Aimée C. Colbath, VMD, MS, DACVS, David D. Frisbie, DVM, PhD, DACVS,
DACVSMR, Steven W. Dow, DVM, PhD, DACVIM," John D. Kisiday, PhD, **
C. Wayne Mcllwraith, BVSc, PhD, DACVS, DACVSMR, and

Laurie R. Goodrich, DVM, PhD, DACVS **

Mesenchymal stem cells (MSCs) have emerged as a promising treatment for orthopaedic
disease. Well-established equine models of posttraumatic osteoarthritis, focal cartilage
healing, and tendonitis provide a platform for testing safety and efficacy of biologic therapies
such as MSCs in a species with naturally occurring disease. Horses routinely experience
similar conditions that mirror human musculoskeletal injury, including osteoarthritis, meniscal
injuries, and Achilles tendinopathy, which provide relevant clinical models for therapeutic
interventions. The use of MSCs in equine models of osteoarthritis and focal cartilage healing
has yielded encouraging results. When MSCs have been used in equine models of tendonitis
or tendonosis, most clinical and experimental studies have been consistently positive.
Currently, the relationship among MSC lifespan, persistence within the injured site, admin-
istration methods, and treatment efficacy remains unclear, resulting in widespread interest in
cell tracking. We conclude that equine models of musculoskeletal disease can provide
important preclinical insights into the likely efficacy and mechanisms of activity of MSCs for
the treatment of human orthopaedic injuries.
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importance of equine musculoskeletal disease models, which
relate to human disease and what has been learned to date from
the use of these models regarding the efficacy and mechanisms
of MSC therapeutics.

Introduction

Originally, the primary therapeutic activity of mesenchymal
stem cells (MSCs), which exhibit pluripotent differentiation
capacity, was considered to be through participation in local
tissue regeneration.' However, the current dogma suggests that
the primary mechanisms of action of MSCs are the paracrine
secretion and cell-to-cell interactions, leading to stimulation of
host innate healing mechanisms.” This article focuses on the

The Horse as a Model for
Orthopaedic Disease in Humans

Small laboratory animals have been used extensively to test
MSC use for the treatment of musculoskeletal disease.”
Certainly, a great deal has been learned about cellular therapies
from rodent models, but rodents are considered anatomically
inferior to equine models in their cartilage thickness, joint size,
and joint forces.”” In addition, equine models of tendonitis
have been proposed as superior to small animal models
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because the equine superficial digital flexor tendon (SDFT) is
functionally very similar to the human Achilles tendon.*”
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Further, equine experimental studies of musculoskeletal dis-
ease may use a strenuous, controlled exercise regimen, with
horses being trained to exercise on a treadmill to standardize
postinjury activity providing more accurate prognostics of
healing and reinjury rates.'”"” Therefore, equine musculoske-
letal models fill an important role as a preclinical model,
transitioning promising therapeutics from small animal models
into an equine model with greater clinical translation.

Horses as athletes, also provide a source of naturally
occurring disease including articular cartilage trauma, osteo-
arthritis (OA), meniscal injury, osteochondritis dessicans,
tendon injury, and ligament injury allowing for both clinical
and experimental disease models.' """ The ability to logistically
handle equine research studies are limited in the United States
and Europe and may result in greater costs than that of rodent
studies. However, the ability to use current imaging modalities
and provide a level of exercise similar to a human athlete in a
species with naturally occurring disease provides unique
preclinical testing that is essential to enable translation to
human trials. Large animal orthopaedic research centers, such
as the Colorado State University Orthopaedic Research Center,
are well equipped for research studies involving horses, and
costs associated with animal procurement are considered
reasonable for long-term pivotal preclinical testing.

Specifically, experimental studies using horses as a model
for posttraumatic osteoarthritis (PTOA) and focal articular
cartilage defects provide multiple objective criteria for evalua-
tion that include both symptom and disease modification. The
horse joint is a good model for the human joint owing to the
size, volume of synovial fluid, and cartilage thickness. 18 The
large amount of synovial fluid allows for sequential arthrocent-
esis, which is particularly helpful when monitoring the joint's
response to treatment.”® For example, Ardanaz et al'” used
sequential arthrocentesis to demonstrate that repeated intra-
articular administration of allogeneic MSCs did not elicit
increased joint inflammation. Likewise, Williams et al”’ used
repeat arthrocentesis to document the anti-inflammatory
effects of allogeneic MSCs in a lipopolysaccharide model of
joint inflammation. The available volume of synovial fluid in
the equine joint provides enough sampling quantity for
sequential tests of total protein, nucleated cell counts, cyto-
kines, and biomarkers.”"**

Pain may be graded subjectively by equine veterinarians
who are adept in subjective musculoskeletal examination but
objective pain evaluation is also common place through the use
of force plates or inertial sensor systems or both.”” In addition,
joints may be evaluated by multiple imaging modalities
including radiographs, computed topography, and magnetic
resonance imaging (MRI) and monitored by repeat arthro-
scopic evaluation.

Grossly, the articular surface is subjectively assessed for
abnormalities and routinely coupled with histologic grading of
joint tissues. In 2010, Mcllwraith et al published an OARSI
histologic grading system for experimental models of OA and
cartilage degradation. This system outlined a microscopic
scoring system for histologic analysis of chondrocyte necrosis,
complex chondrone formation, fibrillation or fissuring, focal
cell loss, and safranin O/fast green staining in addition to

macroscopic scoring of erosions.”” Other published grading
systems for joint injury evaluation in human, equine, and other
model systems, include the ICRS visual histologic assessment
scale, the O'Driscoll scoring system, the modified O'Driscoll
scoring system, and the system of Pineda et al.””*" Histologic
grading scales remain variable among studies, thus confound-
ing attempts to directly compare study results.”” In addition,
postmortem infrared assessment of the joint surface is a
promising new technology for monitoring cartilage surface
abnormalities including subtle cartilage fibrillation (Drs Mar-
kus Wimmer and David Frisbie, unpublished data).

Experimental studies of tendonitis may be evaluated with
much of the same objective and subjective criteria including
lameness examinations, gait analysis, and imaging. Histologic
analysis may be used to identify scar tissue or assess fibril
diameter, collagen fiber organization, inflammatory infiltra-
tion, and lesion progression.””~” Imaging modalities include
ultrasound, elastography, contrast computed tomography,
and MRI. In addition, tenoscopy may also be performed in
areas where there is surrounding tendon sheath if sequential
gross anatomical monitoring is desired.

Equine Posttraumatic
Osteoarthritis Model

Equine in vivo models of joint disease include PTOA and
models for focal cartilage defects. A PTOA model has been well
described in the middle carpal joint of horses.”'"'*'*** This
model, through the creation of bone and cartilage debris as well
as an osteochondral fragment, results in secondary OA that
mirrors clinical disease (racing thoroughbred and quarter
horses) and can be effectively monitored by radiographs
(Fig. 1).”* The model has been used to test multiple treatments
including steroids, hyaluronic acid, and culture-expanded
MSCs and shock wave therapy.'”'*'>>**>° In addition to
radiographic assessment, monitoring may include lameness
examinations, gait evaluation, synovial fluid analysis, follow-
up arthroscopy, and histology, MRI, and computed
tomography.

Experimental OA models have generated conflicting results
after intra-articular MSC administration. For example, a model
of amphotericin B-induced OA in donkeys showed clinical
and radiographic improvement when MSCs were adminis-
tered intra-articularly.”” In contrast, in the earlier described
PTOA model, intra-articular MSCs resulted in no change in
clinical outcome, histologic scores, or gross appearance but did
cause a decrease in PGE, within OA joints."’ Tt would be
presumptive to directly compare the results of such grossly
differing models. Amphotericin B creates a severe, long-lasting
lameness through the exposure of a chemical that is foreign to
the joint. In contrast, the carpal model of PTOA creates a long-
term joint insult, resulting in a slow onset of OA, which is
arguably more clinically realistic. It is, however, reasonable that
intra-articular MSCs may result in a more potent effect in the
more severe model of amphotericin-induced OA but over-
reaching to directly compare results.
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Figure 1 Dorsolateral-palmaromedial oblique radiographic images obtained 71 days after experimental induction of
posttraumatic osteoarthritis of the carpus. (A) No evidence of osteophyte formation is seen at the site of a surgically induced
osteochondral fragment. (B and C) Osteophyte formation is evident at the site of the surgically induced osteochondral
fragment. (Adopted with with permission from Carvalho et al.**).

MSCs have become a popular treatment for musculoskeletal
disease in the horse, and clinical studies have focused on their
intra-articular use in animals with naturally occurring joint
injury. A large retrospective study was performed by Broeckx
et al,”® which evaluated the use of autolo gous MSCs, allogeneic
MSCs, or chondrogenically primed MSCs for the treatment of
degenerative joint disease. In 165 cases, only 3 instances of
joint inflammation postinjection (“joint flares”) were observed.
Overall, 78% of horses treated with MSCs and 86% of horses
treated with chondrogenically induced MSCs returned to
work. Interestingly, the study seemed to reveal a difference
in efficacy depending on the joint treated; horses injected with
chondrogenic-induced MSCs for pastern, fetlock, and coffin
joint OA had a higher percentage of returning to work. In
contrast, the treatment of stifle disease with chondrogenically
induced MSCs resulted in a decrease in the rate of return to
work. ™

Although Broeckx et al” found little advantage for using
MSCs in the osteoarthritic stifle. The treatment of meniscal
disease appears particularly promising based on an experi-
mental model by Murphy et al’” reporting evidence of
meniscal regeneration and significant dampening of the
progression of OA in a sheep model of induced OA initiated
by medial meniscectomy.”” Similarly, Ferris et al'” published
encouraging results for intra-articular MSCs as a complemen-
tary therapy to stifle arthroscopy for the treatment of equine
meniscal disease with 75% of horses returning to work.

Further in vivo, controlled, experimental research is necessary
to understand the benefits of MSCs and their effect on cartilage,
meniscus, and synovial membrane in joint inflammation and
OA with and without surgical intervention.

Equine Models of Focal Cartilage
Healing

In a well-accepted and frequently used equine focal cartilage
healing model, a critically sized cartilage defect is created on the
non—weight-bearing portion of the stifle (the equivalent of the
knee joint in humans) (Fig. 2). One to two defects can be
created in each lateral (single) or medial (up to 2 defects)
trochlear ridge, allowing the horse to serve as its own internal
control.“** Monitoring may include, as mentioned previ-
ously, lameness examinations, gait evaluation, imaging, syno-
vial fluid analysis, follow-up arthroscopy, and histology.
Using the equine model of focal cartilage healing, MSCs
have been administered in scaffolds to retain the cells within
sites of injury. Examples of scaffolds include bacterial cellulose,
collagen-based scaffolds, and fibrin glue.”** Cartilage defects
treated with MSCs imbedded in a fibrin scaffold resulted in
significantly improved 30-day arthroscopic and chondrogene-
sis scores but no significant difference between experimental
and control lesions was found in the long term (8 months).””
When MSCs were instead combined with platelet-enhanced

Figure2 A model of focal cartilage healing using the trochlear ridge of the stifle. (A) A defect is created in the trochlear ridge.
(B) The defect is filled with fibrin. (C) At 1 year, histopathologic analysis using H&E staining shows filling of the cartilage
defect with fibrocartilage. H&E, hematoxylin and eosin. (Courtesy: Dr L. Goodrich) (Color version of figure is available

online.).
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fibrin scaffolds in a lateral trochlear ridge defect of the stifle
joint, ectopic bone formed in the repair tissue, which resulted in
a thinner repair tissue when compared with cell-free scaffolds
alone.” These findings indicated that MSCs should not be
combined with platelet-enhanced fibrin scaffold for cartilage
regeneration owing to the risk of bone formation.™ In contrast,
when autologous, culture-expanded chondroprogenitor cells
were implanted in fibrin scaffolds, improved cartilage repair
tissue was observed when compared with culture-expanded
allogeneic chondroprogenitor cells or fibrin scaffold alone.™
Although, chondroprogenitor cells may differ significantly from
MSCs, the study suggests further investigation into using cells
within a scaffold. ™

In a recent study, when culture-expanded MSCs were not
implanted in a fibrin scaffold, but given freely into the joint,
MSC treatment did not affect clinical scores. However, on gross
and arthroscopic assessment, stem cell treatment did improve
the firmness of the repair tissue and immunohistochemical
analysis revealed greater aggrecan content compared with the
control repair tissue within the defects.™® Likewise, in 33 cases
of clinical stifle injury, intra-articular administration of MSCs
yielded improved outcome vs historical controls.”

The current literature suggests that free intra-articular MSC
treatment without securing the cells within a scaffold, appears
promising and deserves an ongoing experimental consider-
ation. Additional studies are essential before firm recommen-
dations can be made regarding scaffold-imbedded MSCs for
the treatment of cartilage injuries. Research questions include
the effect of scaffolds on viability of MSCs, the quality of the
resultant repair tissue, and also how scaffolds affect the ability
of MSCs to migrate and interact with the local joint
environment.

Equine Impact Models of OA

Impact models of joint injury have been developed. An impact
model of stifle cartilage degeneration and OA was first described
by Bolam et al,”” in which adult horses were subject to
arthroscopically induced impact injury to the medial femoral
condyle. This injury resulted in microscopic and macroscopic
articular cartilage lesions, decreased GAG content in the cartilage
and an increase in lameness.”’ In addition, a single contusive
impact to the palmar aspect of the metacarpus has been
suggested as a model for metacarpophalageal joint OA.*
Although this model resulted in a decrease in GAG content
within the cartilage and an increase in cartilage oligomeric
matrix protein in the synovial fluid, macroscopic lesions were
variable and palmar osteochondral disease did not develop.* In
addition, arthroscopically created metacarpophalangeal osteo-
chondral fragments have been used to create a model of early
PTOA in the horse.” Furthermore, researchers at Cornell
University are currently investigating a new equine model of
human ankle PTOA using a single impact to the equine talus
(Dr Lisa Fortier, unpublished data). Impact models may provide
important insight into PTOA; however, these models are in their
infancy and researchers have yet to examine the efficacy of intra-
articular MSC administration in these models of OA.

Equine Models of Tendonitis

Models of tendonitis are characterized by their method of
lesion induction, as either enzymatically induced or mechan-
ically induced injury. Mechanical models of SDFT injury were
first involved in the surgical removal of a window of tendon,””
which has since been replaced by a model in which a central
column of tendon is removed.”' Other methods of tendon
injury have included transcutaneous radiofrequency cobla-
tion,”” or burr-induced mechanical injury.”” Lesions may still
be detected grossly, using MRI imaging, and with histopatho-
logic staining (Fig. 3, unpublished data) and ultrasonographic
imaging (Fig. 4, unpublished data) 12 months after mechanical
disruption of the SDFT. Models of enzymatic digestion are
dominated by direct injection of collagenolytic enzymes.”*”
To improve injury consistency, Watts et al”® recently used a
model of injectable collagenase gel that produced more
consistent lesions when compared with collagenase alone.

Most studies induce lesions in forelimb SDFTs. A recent
study by Estrada et al”’ demonstrated that forelimbs heal
differently than hind limbs, using a model in which SDFTs
were injured using a synovial resector. Therefore, consider-
ation must be given to the location of injury when assessing
experimental and clinical results.

MSCs have been tested in multiple equine models of
tendonitis and have also become a popular clinical treatment
for naturally occurring tendonitis and desmitis. Most
studies using experimentally induced lesions as well as those
using horses with naturally occurring tendonitis report
success.' "% In a study of enzymatic injury using collage-
nase gel, Carvalho et al”* found that adipose-derived MSCs in
platelet concentrate showed histologic and ultrasonographic
improvement compared with a saline control, including
superior collagen fiber organization and decreased inflamma-
tory infiltrate. In contrast, Canaglia et al " found no appreciable
difference in collagen fibril diameter after intratendon injection
of MSCs in a model of mechanical tendonitis created by a
synovial resector.

Five studies have sought to evaluate the effect of MSCs
in race horses with naturally occurring tendinop-
athy.' 77" These studies describe significant clinical
success with 77%-98.2% of horses returning to rac-
ing.”'”%”” However, perhaps, the most encouraging
statistic is a significant decrease in reinjury rate. A study
by Godwin et al’' administered MSCs to 141 horses with
chronic tendinopathy with a reinjury rate of only 27.4%,
representing a significant improvement when compared
to previous studies of medical management with reinjury
rates of 42.5%-53%.""°"°" Smith et al'” found improved
histologic scoring including GAG content, DNA content,
vascularity, and cellularity in tendons of chronically
injured horses when the animals were treated with
autologous bone marrow—derived MSCs. Lastly, Ricco
et al’’ administered allogeneic adipose-derived MSCs
concurrently with platelet-rich plasma to 19 horses with
naturally occurring SDFT injury, and found a reinjury rate
0f 10.5% with 89.5% of horses returning to their previous
level of competition.
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Figure 3 Mechanical model of superficial digital flexor tendinopathy. Samples of superficial digital flexor tendon (SDFT) 12
months after mechanical disruption. (A) The cross section of the superficial digital flexor tendon shows a gross lesion (white
arrow). (B) Magnetic resonance imaging (trans FSE PD) shows a corresponding area of increased signal (white arrow).
(O Stained histopathological sections of superficial digital flexor tendon (H&E, hemotoxylin and eosin; tol blue, toluidine
blue; Ag, aggrecan), demostrating the difference between normal tendon and 12 months after mechanical disruption
(equine tendinopathy). (Courtesy: Drs S. Johnson and D. Frisbie) (Color version of figure is available online.).

Localizing MISCs to Sites of
Musculoskeletal Injury

Although MSCs appear to aid in soft tissue and cartilage repair,
it is unclear how exactly these effects are mediated. As
researchers focus on paracrine secretion and the influence of
MSCs on the endogenous repair processes,” investigators have
sought to track MSCs after injection to determine the final
location of the cells and their overall survival in tissues.
Investigators have attempted to evaluate various routes of
administration, including intravenous, intralesional, intra-
arterial regional imb perfusion and intravenous regional limb
perfusion (under tourniquet application). In naturally occur-
ring tendon injuries, 24 hours after administration of MSCs,
not surprisingly injected MSCs are more likely to be found in
tendon tissues when the cells were administered

intralesionally, whereas few cells were found at the site of the
tendon lesion when the cells were administered
intravenously.”

To track MSCs, the cells can be labeled using technetium-
99m and tracked using nuclear scintigraphy or labeled with
superparamagnetic iron oxide (SPIO) nanoparticles for analysis
by MRL""°” In addition, Burk et al”® has described labeling of
cells with Molday ION Rhodamine B labeling, thereby allowing
the cells to be tracked both with MRI and flow cytometry.
Finally, cells may be marked with green flourescent protein
(GFP) for histologic ana\lysis.07

An initial study injected GFP-labeled MSCs into a lesion
created in the SDFT. The study found some GFP-labeled cells
at the lesion site 10 and 34 days postinjection within the
tendon lesion, demonstrating persistence of MSCs within the
lesion.”” Unfortunately, the use of GFP labeling requires
euthanasia of the horses for subsequent tissue collection;
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Figure 4 Longitudinal ultrasonographic evaluation of naturally occurring tendinopathy (A) and surgically induced
tendinopathy (B). Normal, uninjured tendon for comparison (C). Note the diffuse enlargement of the SDFT with dark
core-like lesions (arrows) in both types of injury. In both naturally and experimentally induced disease, the dark, core lesion
expands in size from 0-2 months, then is gradually filled with tissue in the later phases of repair. (Courtesy: Drs S. Johnson

and D. Frisbie).

therefore, quantitative measurement cannot be performed over
time. In contrast, newer methods of labeling allow MSC
tracking in live horses. A study using horses with naturally
occurring tendon disease and technetium-99m-labeled MSCs
reported only 24% of the injected cells present intralesionally at
24 hours.“” Studies using SPIO labeling in naturally occurring
tendinopathy were able to detect umbilical cord-derived MSCs
within lesions in 5 of 7 horses for 8 weeks,”® and adipose-
derived MSCs in 4 of 4 horses for 9 weeks.”” Although these
studies are focused on determining cell location and survival, it
is still unclear exactly how long MSCs need to survive within a
lesion or whether cells even need to remain at the site of injury
to stimulate joint or tendon healing.

Clinical Considerations

MSCs may be derived from several sources in horses, including
bone marrow, adipose tissues, and umbilical cord tissues.
Adipose-derived and bone marrow—derived MSCs are the
most thoroughly investigated in the horse.' 7"

Bone marrow can be easily procured in the horse, and may
be obtained in a standing, sedated animal from the sternum or
ilium. It has been shown that only a small volume (~ 5 mL) of
bone marrow is necessary to maximize the yield of MSCs
(compared with 50 mL), with additional bone marrow simply
diluting the sample.”” Isolation of bone marrow—derived MSCs

may be performed by ficoll-gradient emulsification or by
relying on the plastic-adherent properties of the cells.”*
Recently, several studies have compared MSCs derived from
ilial bone marrow vs sternal bone marrow; the harvest sites
produce minimal differences in growth potential in young
horses.”””® In addition, no differences were detected in
phenotype.”’ Chondrogenic potential has been reported to
be modestly higher for MSCs of ilial origin, or not significantly
different between the two sites of harvest.”””” However,
another study reported no differences in chondrogenic phe-
notype between the 2 sites of harvest.”” Finally, Delling et al””
found that as horses age, bone marrow aspirate harvested from
the ilial tuberosity has decreased proliferation compared with
sternal aspirates. Until additional studies provide further
insight into the importance of harvest site, clinician preference
may dictate the location of bone marrow harvest.

Clinically, adipose tissue is typically taken from the tail base
or head in the horse, although cosmetics or scarring is
suboptimal. Isolation of adipose-derived MSCs is possible
from 3-5 g of fat after mechanical and enzymatic digestion.”®
Adipose-derived MSCs, like bone marrow—derived MSCs are
known to express mesenchymal cluster of differentiation (CD)
markers CD90, CD44, and CD29 but lack major histocom-
patibility complex class IT and CD34.”"

After initial isolation, culture practices between bone mar-
row and adipose tissue are similar. Current practices most
commonly rely on tissue culture plastic as a substrate for
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proliferation. Once cells are 70%-90% confluent, cells can be
dissociated from plastic adherence and replated for further
expansion. In general, flow cytometric analysis of equine MSCs
reveals consistent positive expression of CD90 and CD44 and
the lack of CD34 expression.”*”” Cell phenotype and surface
marker expression is known to change after several passages,
potentially signaling a loss of “stemness.””"” Therefore, most
experimental studies use cells at the third or fourth passage.
Earlier passage cells may be less uniform, and may not provide
large enough numbers for experimental use.

In vitro, equine MSCs derived from bone marrow appear to
have greater chondrogenic potential when compared with
MSCs derived from adipose tissue.”” In addition, researchers
have found that bone marrow—derived MSCs appear superior
in their osteogenic potential compared with adipose-derived
MSCs in horses.”"** Furthermore, a study by Frisbie et al'’
found that bone marrow—derived MSCs produced a greater
reduction in PGE,, and adipose-derived stem cells caused an
increase in the inflammatory cytokine tumor necrosis factor
alpha when the cells were used in a model of PTOA.

In contrast, in an in vivo model of meniscal damage,
adipose-derived stem cells appeared to provide an equivocal
alternative to bone marrow—derived MSCs.”” Other cell
sources, such as synovial membrane—derived MSCs may
provide advantages for joint-based therapies, but are not yet
extensively studied in the horse.”” Burk et al** investigated the
gene expression of tendon markers from different MSC sources
including bone marrow—derived MSCs, adipose-derived
MSCs, umbilical cord tissue—derived MSCs, and MSCs from
umbilical cord blood; the study concluded that adipose-
derived MSCs may be more appropriate for the treatment of
tendon lesions as they demonstrate the highest expression of
collagen 1A2, collagen 3A1, and decorin. The earlier outlined
literature suggests bone marrow—derived MSCs may be more
appropriate for cartilage or bone healing, and adipose-derived
MSCs may be more phenotypically appropriate for tendon
lesions. However, further studies comparing the efficacy of
MSCs derived from different sources will be necessary to clarify
the best MSCs for various musculoskeletal conditions.

Regulation of Stem Cell
Therapeutics in Animals by the
Food and Drug Administration
and Center for Veterinary
Medicine

In 2015, the Food and Drug Administration issued a
guidance (Guidance 218) regarding the evaluation of cell-
based products in animals owned as pets or for show or
competition, including horses. This guidance excludes
animals reared intentionally for research purposes; there-
fore, the guidance specifically affects clinical research
scenarios (clinical trials). The guidance defines cell-based
products as “articles containing, consisting of, or derived
from cells that are intended for implantation, trans-
plantation, infusion, or transfer into an animal recipient.”

The Food and Drug Administration categorizes cell-based
therapies into 4 different groups—xenogenic, allogeneic,
autologous type I, and autologous type II. Autologous
stem cells owing to their processing requirements are
considered autologous type I; this group is defined by
greater than “minimal manipulation.”

An investigational new animal drug application (INADA) is
required for research in client-owned animals. Thus, clinical
investigation in animals with spontaneous diseases entails
significant organization and paperwork including record keep-
ing and monitoring. Before submission of an INADA, it is
recommended that investigators submit a fee waiver request.
A fee waiver can be granted if the fee is considered “a barrier to
innovation”. The INADA requires annual updates and renewal
of fee waivers. Further information may be found at http://
www.fda.gov/downloads/AnimalVeterinary/GuidanceCom
plianceEnforcement/GuidanceforIndustry/UCM405679.pdf.

Conclusions and
Recommendations

The use of cellular therapies involving MSCs for the treatment
of musculoskeletal diseases in humans has expanded rapidly in
recent years. However, there are a number of key unanswered
questions regarding the optimal application of MSCs for these
conditions. The equine model of musculoskeletal injury can,
therefore, play an important role in addressing some of these
questions. In particular, this model may be useful in determin-
ing the optimal cell delivery and scaffold material (treatment of
cartilage lesions), the most effective cell source and cell
numbers to inject (tendon and cartilage injuries), and the best
way to precondition MSCs before intra-articular or intratendon
injection. Controlled experimental trials are necessary to
further elucidate the mechanisms of MSCs action and to
further define their efficacy. Equine models of musculoskeletal
disease provide effective and realistic models for investigating
cellular therapies, and can play an important role in helping to
advance the field of regenerative medicine.
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