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SUMMARY

Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs) have proven difficult and ineffective. Here, we
present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method
enriches for adherent mouse basal PESCs with a Lin SCA-1*CD49f*TROP2M8" phenotype. Progesterone and sodium selenite are
additionally required for the growth of human Lin~CD49f*TROP2"&" PESCs. The gene-expression profiles of expanded basal PESCs
show similarities to ESCs, and NF-kB function is critical for epithelial differentiation of sphere-cultured PESCs. When transplanted in
combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules, demonstrating
their stem cell activity in vivo. This novel method will facilitate the molecular, genomic, and functional characterization of normal and

pathologic prostate glands of mouse and human origin.

INTRODUCTION

Several model systems have been developed to understand
the pathologically altered pathways observed during
benign prostatic enlargement and prostate cancer, the
latter being the most common type of cancer in men. It
has been suggested that epithelial stem/progenitor cells
(PESCs) are critical for the regulation and maintenance of
the prostatic gland and that they also play an important
role in prostate cancer development (Choi et al., 2012;
Goldstein et al.,, 2010; Lu et al.,, 2013; Visvader, 2011;
Wang et al., 2009). PESCs, like other somatic tissue stem
cells, are thought to be rare, with a frequency of 1%-5%
(Goldstein et al., 2011; Lukacs et al., 2010). Isolation and
ex vivo expansion of PESCs is further complicated by their
dependence on poorly understood factors supplied by a
prostate stem cell niche composed of smooth muscle cells,
fibroblasts, neuroendocrine cells, and differentiating and
mature prostate epithelial cells (Goldstein et al., 2010;
Morrison and Spradling, 2008; Wang et al., 2009).
Although significant progress has been made, current
culture techniques allow for only limited expansion of
prostate epithelial cells (PrECs), which rapidly cease to
proliferate (Chaproniere and McKeehan, 1986; Litvinov
et al., 2006; Rhim et al., 2011). Human telomerase reverse
transcriptase (WTERT)-mediated immortalization has been

used to optimize in vitro cultures of primary PrECs (Kogan
etal., 2006). Although hTERT-immortalized cells have pro-
longed in vitro lifespans, they show significant changes
compared with normal PrECs, limiting their value as a
model system (Klinger et al., 2006). Culture methods using
serum-free media conditions with or without additional
murine 3T3 feeder cells to grow murine and human PrECs
have been described, but serial passaging is limited and
these strategies allow neither significant enrichment nor
expansion of the stem/progenitor compartment (Kabalin
et al., 1989; Peehl and Stamey, 1986; Robinson et al.,
1998). In contrast, growing PrECs in semisolid medium
using Matrigel facilitates their growth as prostaspheres
that retain PESCs with self-renewal capacity in vitro.
However, prostaspheres are difficult to manipulate, and
the spheres consist of only few PESCs surrounded by a large
number of more differentiated PrECs (Xin et al., 2007).
More recently, dissociated murine and human PESCs
were isolated by flow cytometry (fluorescence-activated
cell sorting [FACS]). However, this method is limited by
the low frequency of PESCs in conjunction with the small
amount of material obtainable from human biopsies, as
well as the lack of a suitable culture systems for maintain-
ing or expanding undifferentiated PESCs (Goldstein et al.,
2010, 2011; Lukacs et al., 2010; Miki and Rhim, 2008).
Here, we report specific workflows and novel, robust,

Stem Cell Reports | Vol. 4 | 1-16 | March 10,2015 | ©2015 The Authors |

OPEN ACCESS


mailto:martin.sprick@hi-stem.de
mailto:a.trumpp@dkfz.de
http://dx.doi.org/10.1016/j.stemcr.2015.01.015
http://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite this article in press as: Hofner et al., Defined Conditions for the Isolation and Expansion of Basal Prostate Progenitor Cells of

Mouse and Human Origin, Stem Cell Reports (2015), http://dx.doi.org/10.1016/j.stemcr.2015.01.015

A .
Prostate microdissection 4000 ‘f‘ \
[
l 3000 “‘ \
Collagenase IV/DNAse | tissue digest , | \
l * 2000 f
Mechanic dissociation with /
1000 ‘
additional Accutase treatment i CD31/CD45/Ter1 1 9
'S 10° 1:1‘ 1:)2 1:13 10%
100 . SCA-17/CD49f~
E / Saa 'SCA-T1CD4SF"
E 1 5] Y INsCA-T/CD4gf
| 'g A IlsCA-TCD4of*
: 11
|
5 E 60 | | ‘l
< © 1IN
o Q1 4o 5
1
O S .’
S 20
[$]
—
y "80_"'1"2"3 '
10° 10" 102 10° 10“\ 10 10 10 10 10
SCA-1 TROP2
B
After digest/before MACS After magnetic EPCAM enrichment
4 A4 A
10 £ 10+
e[, |
1
=] o :
© )<< <
= = El ol =/0O O
< < % 202 (2] D | 798
O O + L +
o o D 407 = S
e L S < <
z | - O O
Q o
o Ll
T T T [0 0 T T T T
10 10? 10° 100 0 10° 10’ 10% 10° 113‘
SCA-1 f TROP2 .
c First passage 3 passages 30 passages
4
ot 3189 875 08 jo9 99 e 10.052 99.8
10° 4 10° 4
§ § 102 4 & 10?4
a <
5] [m)] 3 [a] |
(@) O
10" 4 10" 4
100 2042 . ree—r 037, 100 4247 r S
10° 10’ 10 103 a0 10° 10 10 10% 10*
TROP2 TROP2

2 Stem Cell Reports | Vol. 4 | 1-16 | March 10, 2015 | ©2015 The Authors

(legend on next page)




Please cite this article in press as: Hofner et al., Defined Conditions for the Isolation and Expansion of Basal Prostate Progenitor Cells of
Mouse and Human Origin, Stem Cell Reports (2015), http://dx.doi.org/10.1016/j.stemcr.2015.01.015

simple, serum- and feeder-free culture techniques to main-
tain and expand functional primary basal PESCs of mouse
and human origin.

RESULTS

Expansion and Maintenance of Primary Murine Basal
PESCs in Serum-free Cultures

To develop conditions that would allow us to maintain and
expand ex vivo isolated primary murine PESCs, we used
single-cell suspensions obtained from whole murine
prostates as the starting material. FACS analysis revealed
that these cell mixtures contained 4.5% + 1.5% of SCA-
1"CD49f*TROP2" cells, a phenotype previously used to
define basal PESCs (Figures 1A and S1A; Goldstein et al.,
2008, 2011; Lukacs et al., 2010). To identify which of the
three markers is most critical for further enrichment of
basal PESCs, we performed castration experiments. In
response to castration and the associated androgen decay,
a basal progenitor hyperplasia is commonly observed
(Evans and Chandler, 1987; Wu et al., 2007). As expected,
we found that TROP2 was robustly upregulated in the basal
progenitor cells of the hyperplastic epithelium of castrated
mice, confirming the previous finding that TROP2 is a
specific marker for basal PESCs (Stoyanova et al., 2012).
In contrast, both testosterone-treated castrated mice and
unmanipulated wild-type mice displayed the presence of
columnar luminal epithelial cells, with low TROP2 expres-
sion in both basal and luminal cells (Figure S1B and data
not shown).

FACS analysis was used to further characterize the PrEC
subpopulations. The pan-epithelial marker epithelial cell
adhesion molecule (EPCAM) was expressed in both the
TROP2!°"/1¢8 cells and TROP2M8" basal PESCs, whereas
EPCAM™ cells did not express TROP2, consistent with a
stromal phenotype (Figure S1D and data not shown).
Thus, magnetic-activated cell sorting (MACS) purification
was used to enrich for EPCAM™ cells to eliminate EPCAM ™
stromal cells and prevent fast overgrowth of the epithelial
cells (Figures 1B, S1C, and S1D). Standard medium for pri-
mary PrECs (PrEGM; Lonza) was used with addition of the
ROCK inhibitor Y-27632 in order to inhibit dissociation-
induced apoptosis of epithelial cells (Liu et al., 2012; Zhang

et al., 2011b). To further increase the specific plating effi-
ciency of PESCs, as monitored by expression of CD49f
and TROP2, we tested various culture surfaces. Although
primary PrECs did not form significant numbers of col-
onies on standard culture flasks, significantly better attach-
ment to hydrophobic surfaces was observed (Figures S1E
and S1F). However, those conditions did not support prolif-
eration, as cell numbers rapidly decreased within 5 days,
indicating suboptimal culture conditions. Therefore, we
next optimized the culture medium by including supple-
ments that were previously used to expand embryonic
stem cells (ESCs) and induced pluripotent stem cells (iPSCs)
(Chenetal., 2011). We used combinatorial analyses of stem
cell media components to design a novel “mouse prostate
medium” (MPM) that supports the growth of primary
murine PrECs. This medium contains Advanced Dulbecco’s
modified Eagle’s medium (DMEM)/F12 supplemented with
additional glutamine, glucose, EGF, bFGEF IGF-I, trans-
ferrin, and insulin (Figure S1G; Experimental Procedures).

After digestion of the murine prostate into single cells,
enrichment using EPCAM-MACS, and growth of cells on
hydrophobic surface flasks using MPM, the PrECs enriched
for SCA-1*CD49f*TROP2"#" basal PESCs and could be sta-
bly expanded for more than 30 passages ex vivo (Figure 1C).
To examine whether the fast dominance of SCA-1*
CD49f*TROP2"8" cells was caused by their superior sur-
vival in these culture conditions, we determined apoptosis
by staining for AnnexinV and propidium iodide (PI).
Indeed, differentiated TROP2!°" cells underwent cell death,
whereas TROP2"" basal epithelial PESCs survived and
proliferated (Figure S2A).

In summary, the method presented here is a feeder-free
culture method for the in vitro expansion and mainte-
nance of primary murine basal PESCs with an SCA-1*
CD49f"TROP2"8" phenotype.

Differentiation Capacity of Murine Basal PESCs

Most basal PESCs that are highly enriched for SCA-1*
CD49f"TROP2"" express the prostate basal cell markers
tumor protein p63 (TP63) and cytokeratin 5 (CKS), whereas
cytokeratin 8 (CK8) and androgen receptor (AR), which
are typically found on differentiated luminal cells, are
rarely expressed (Figure 2A). As all cells showed an

Figure 1. Isolation, Magnetic Separation, and Expansion of Primary Murine Basal PESCs In Vitro

(A) FACS characterization of murine prostate cells after primary dissociation into single cells and staining with SCA-1, CD49f, TROP2,
and lin cocktail (Ter119/CD31/CD45). Expression of TROP2 on lin~ cells was evaluated in relation to CD49f and SCA-1 expression.

(B) Epithelial enrichment using EPCAM-MACS. FACS analyses before and after enrichment; distribution of TROP2 in the EPCAM™,

EPCAM*/SCA-1~, and EPCAM*/SCA-1" populations.

(C) Polychromatic plot of Sca-1/CD49f/TROP2 expression on cultured murine cells after first passage. Comparison of CD49f/TROP2

expression after the third and 30th passages in vitro.
See also Figure S1 and Table S1.
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Figure 2. Characterization and Differentiation of Murine Basal PESCs

(A) IHC and immunofluorescence characterization of 2D cultured murine basal PESCs. Scale bar, 100 pum.

(B) Characterization of differentiated murine prostaspheres. Morphology in semisolid Matrigel; immunofluorescence and IHC of prosta-
spheres. Scale bar, 100 um. Forinternal validation of TP63/AR/NKX3-1 antibodies, see Supplemental Experimental Procedures. The sphere-
forming capacity of enriched PESCs was compared with bulk digested cells, n =5 independent PESC preparations, p <0.01 as determined by
Student’s two-tailed t test.

(C) In vitro self-renewal. Colonies derived from single-cell-sorted cultured PESCs retain their SCA-1*/CD49f*/TROP2"9" phenotype after
colony outgrowth. Amplification (cell numbers) of SCA-1*/CD49f*/TROP2M9" cells using the MPM culture method, n = 3.

See also Figure S2 and Table S1.
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almost uniform SCA-1*CD49f*TROP2"M8" PESC phenotype
(Figure 1C), we tested their capacity to differentiate and
self-renew in culture. For this purpose, the cells were trans-
ferred into semisolid growth conditions containing Matri-
gel and the formation of spheres was evaluated in compar-
ison with unselected bulk prostate cells. The results show
that 27% + 7.4% of these cells had sphere-forming capacity
(Figure 2B). Importantly, sphere formation was accompa-
nied by a morphologic transition into organized epithelial
tubule-like structures. The spheres resembled differentiated
structures that retained TP63* basal cells as well as transit-
amplifying cells, as indicated by co-expression of CKS
and CK8. In addition, spheres contained cells expressing
AR and NKX3-1, consistent with a more differentiated
luminal phenotype (Figure 2B). FACS analysis of spheres
demonstrated the switch of CD49f"/TROP2"8" to a
CD49f*/TROP2!°" phenotype, which is associated with
the transition from a stem/progenitor to a more differen-
tiated state (Goldstein et al., 2010). To address the capacity
of those cells to serially form spheres, we sorted single
CD49f*/TROP2"" and CD49f*/TROP2'°" cells out of
entire spheres and replated them in semisolid medium.
As expected, only the CD49f*/TROP2M8" cells were able
to serially form spheres and thus were the only cells with
self-renewal activity (Figure S2B).

To address the self-renewal activity and proliferation
of single sorted SCA-1*CD49f*TROP2"E" cells, we regrew
them in adherent cultures and evaluated their phenotype
after colony outgrowth was observed. Almost all of the cells
retained a SCA-1*/CD49f*/TROP2"" PESC phenotype.
Additionally, the cells could be expanded to up to 4 x 10®
cells in only ten passages (Figure 2C).

Human Basal PESCs Require Additional Progesterone
and Sodium Selenite

After we established the primary murine PESC culture, we
adapted the method to culture and expand PESCs isolated
from human prostate. Single-cell suspensions of primary
human prostate cells were obtained from patients with
benign prostatic hyperplasia (BPH; Figure S3A). Sub-
sequently, EPCAM™ cells were enriched by MACS and
cultured as described above for murine cells (MPM condi-
tions). Since human cells did not expand at first, different
culture surfaces were evaluated in conjunction with the
addition of multiple stem cell media components. In
contrast to mouse cells, human PrECs grew exclusively
on BD Primaria surfaces, and not on hydrophobic surfaces
(Figure 3A). Furthermore, addition of N2 supplement re-
sulted in a significantly higher cell yield as compared
with MPM alone (Figure 3B). Since the N2 supplement con-
tains various components, we sought to further define the
specific contribution of N2 ingredients. These experiments
revealed that the combination of MPM plus progesterone

and sodium selenite (termed human prostate medium
[HPM]) is optimal for the outgrowth of primary human
prostate epithelial colonies (Figure 3C). Cells that were
enriched for the described human CD49f*/TROP2"M&" basal
PESC phenotype showed a high cloning efficiency (18% +
2%) and expressed CKS and TP63 as basal cell markers
(Figures 3D and 3F). Similar to what was observed under
the murine conditions, human PESCs could be stably
expanded for more than 20 passages ex vivo, and cell
numbers of up to 2.0 x 10® could be achieved after only
eight passages (Figures 3E and S3B). Moreover, by transfer-
ring these cells into semisolid Matrigel, we were able to
induce differentiation at a defined time point, resulting in
ahigh sphere-forming capacity (20% + 4%) and also demon-
strating the capacity of a subset of cells to differentiate into
CD49f*/TROP2'°" cells (Figures 3F and 3G; Goldstein et al.,
2008). Using anti-human EPCAM*MACS enrichment
followed by growth in Primaria flasks and HPM (plus
ROCK inhibitor Y-27632), we were able to demonstrate
the ex vivo expansion and maintenance of primary human
basal PESCs in the absence of serum and feeder cells.

Primary Basal PESC Cultures Are Suitable

for Medium- to High-Throughput Assays

To determine the genetic stability of PESC cultures, we per-
formed karyotyping using multiplex fluorescence in situ
hybridization (M-FISH) of human PESCs ex vivo. Karyotyp-
ing was performed on cultures of three different passage
numbers, analyzing 15 individual metaphases each. This
analysis confirmed a normal male karyotype (46,XY)
(Figure 4A).

The establishment of primary basal PESC cultures grown
as 2D adherent cells allowed us to evaluate whether the
culture model is suitable for medium- to high-throughput
assays. We thus expanded murine and human PESCs to
150 x 10° cells and performed 96-well-based screens to
identify cell-surface markers for basal PESCs. Expression
of 176 murine and 242 human cell-surface markers was
tested on PESCs by flow cytometry (BD Lyoplate; data not
shown). The results demonstrated the expression of previ-
ously described markers for basal PESCs, including CD29*
and CD49f* (Goldstein et al., 2011). Moreover, all murine
and human basal PESCs expressed high levels of CD24
(Figure S4). Expression of integrin alpha V (ITGAV) and
integrin alpha-2 (ITGA2, CD49b) was validated by immu-
nohistochemistry (IHC) on normal prostates, revealing a
higher expression within the human prostate basal epithe-
lial layer (Figures 4B and 4C; Collins et al., 2001; Liu and
True, 2002). The screen also identified Syndecan-1 (SDC1)
as a protein that is exclusively expressed in the human
basal prostate compartment and not in differentiated
luminal cells (Figure 4D). The identified cell-surface pro-
teins may serve as a basis for future studies on basal PESCs
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and confirm that our culture methods are suitable for me-
dium- to high-throughput assays.

The Transcriptome of Murine and Human Basal PESCs
Is Similar to That of ESCs

To uncover specific differences between basal PESCs and
differentiated luminal cells, we compared the gene-expres-
sion profiles of mouse and human PESCs with profiles
obtained from differentiated sphere cells. As the cultured
cells were almost completely comprised of cells with
an epithelial phenotype, we were able to establish pure
expression profiles without contamination of profiles
derived from other, non-epithelial cells of the prostate
microenvironment (Figure 5A). Next, we performed gene
set enrichment analyses (GSEAs) focusing primarily on
gene sets enriched in both human and mouse basal PESCs
with a false-discovery rate (FDR) < 0.001 (Mootha et al.,
2003; Subramanian et al., 2005). This revealed distinct
enrichment of specific gene sets in PESCs that are represen-
tative of immature pluripotent cells, especially ESC profiles
(Figure S5B; Kesanakurti et al., 2013; Miiller et al., 2008;
Wong et al.,, 2008). Important regulators of stem cells
and organogenesis, such as SOX2, PRDX1, LMNBI, and
PAK1, showed a significantly higher mRNA expression in
the undifferentiated PESC cultures (data not shown)
(Kim et al., 2011; Yan et al.,, 2009; Zhang et al., 2011a;
Zhu et al., 2009). We tested the levels of expression of
human PRDX1 and PAK1 protein by IHC, which demon-
strated that both proteins are expressed in the basal epithe-
lial progenitor compartment (Figure SSA). Additionally,
we identified LMNB1 (Lamin B1) as a putative new marker
for PESCs, as we specifically detected expression within
the basal compartment of the normal prostate as well as
in cultured PESCs. In contrast, differentiated luminal cells
in the prostate as well as in differentiated spheres did not
express LMNB1 (Figure S5B).

GSEAs in Murine and Human PESCs Indicate
Regulatory Roles of c-Myc and the TNFa/NF-kB
Pathway

To identify potential signaling networks that maintain
the undifferentiated versus differentiated state of basal
PESCs, we performed GSEA focusing on gene sets that
predict distinct transcription factor activities. This re-
vealed upregulation of the MYC gene and multiple MYC
targets in undifferentiated basal PESCs compared with
differentiated sphere cells (Figure S6A). Moreover, during
the process of differentiation into spheres, the PrECs
showed a significant enrichment for TNFa- and NF-kB-
mediated signaling cascades (Figure 6A). Enrichment plots
of MYC targets and TNFa and NF-kB signaling suggest a
possible regulatory network between the undifferentiated
prostate basal stem cell state and more luminal differen-
tiated spheres (Figure S6B). These results further reveal
the upregulation of various signaling pathways in PESCs
as compared with the more-differentiated sphere cells
(Table S3).

Inhibition of NF-kB, but Not TNFa, Leads to Impaired
Differentiation of Human PESCs

To test whether our culture platform is suitable for func-
tional biological analyses, we focused on the postulated
regulation of PESC differentiation into spheres by NF-kB
or TNFa (Figure 6A). We transfected human PESCs of the
CD49f*/TROP2M8" phenotype with a reporter construct
to monitor the transcription factor NF-kB by expression
of Venus (pV2b-NF-kB). Compared with the PESCs, more
of the sphere cells expressed Venus. Moreover, Venus
expression in human PESCs (HPM conditions) increased
in response to stimulation by TNF-a (Figure 6B). This
increase in NF-kB activity cannot be explained by the
use of PrEGM and dihydrotestosterone (DHT), because
PrEGM/DHT caused no increase of NF-kB activity alone

Figure 3. Adherent Enrichment and Expansion of Primary Human Basal PESCs In Vitro

(A-C) Combinatorial testing of factors for optimal expansion and enrichment of human PESCs. Starting with the defined MPM composition,
the effect of different factors was determined by changes in the cell numbers after 120 hr (proliferation index 120 hr), n = 8 independent
PESC preparations each. Statistical significance was evaluated by one-way ANOVA followed by Bonferroni post hoc tests, p < 0.05.

(A) Initial cell population after EPCAM enrichment and plating with ROCK inhibitor; additional supplementation of trace elements A/B/C,
N2 supplement, BSA, BME, and lipid mix.

(B) Addition of N2 supplement to the MPM formulation is the main driver of proliferation for human basal PESCs.

(C) Progesterone and sodium selenite are the N2 constituents necessary for proliferation (HPM conditions).

(D) Micrographs, IHC, and immunofluorescence of cultured human basal PESCs, basal marker TP63, the luminal marker CK8, and the
prostate cancer marker AMACR. Scale bars, 20 um and 100 pM (for the immunofluorescence pictures). Flow-cytometric analyses of human
basal PESCs at passage 5 for expression of CD49f, TROP2, EPCAM, and CD31.

(E) Amplification (cell numbers) of CD49f*/TROP2M" cells using the HPM culture method; n = 3 independent PESC preparations.

(F) Cloning efficiency as determined by in vitro limiting dilution and Matrigel-sphere-forming capacity of human PESCs cultured under the
final optimal conditions (Primaria surface and HPM); n = 5 independent PESC preparations, p < 0.01 as determined by Student’s two-tailed
t test.

(G) Morphology and expression of TROP2 and CD49f of differentiated human prostaspheres.

See also Figure S3 and Tables S1, S2, and S3.
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(Figure 6B). Together, these results suggest that the ob-
served NF-KkB activation during the morphological transi-
tion into spheres is most likely due to the effect of differen-
tiation itself and is consistent with the transcriptional
activation of the NF-kB pathway during differentiation
(Figures 6A and 6B). To determine whether the NF-kB
pathway is important for differentiation into spheres, we
blocked the pathway by the small-molecule inhibitor
JSH-23, which inhibits NF-kB nuclear translocation, and
assessed the sphere-forming capacity (Shin et al., 2004).
JSH-23-treated cultures showed a significantly reduced
sphere-forming capacity, whereas blocking of TNFa using
the TNF-R2-Fc fusion protein Etanercept had no effect
(Figure 6C). These data suggest that a TNFa-independent
intrinsic or extrinsic mode of NF-kB activation is critically
involved during sphere formation.
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Cultured Basal PESCs Demonstrate Stem Cell Function
In Vivo

In vivo transplantation assays are among the most
commonly used methods for demonstrating stem cell
activity. Such methods test the capacity of transplanted
stem cells to generate and maintain entire tissue structures
comprised of various differentiated cell types. Xin et al.
(2003) previously demonstrated the regenerative capacity
of the adult prostate epithelium in classical sandwich graft-
ing experiments by co-transplanting prostate epithelium
with fetal urogenital sinus mesenchyme (UGSM). These
assays demonstrated that signals derived from the UGSM
are required for the epithelial cells to generate prostate-
gland-like structures in a transplant setting (Cunha and
Lung, 1978; Goldstein et al., 2011; Lukacs et al., 2010).
To test whether cultured cells retain functional stem cell
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Figure 5. Cultured and Enriched PESCs
Demonstrate Similarities to ESCs

(A) The top ten most differentially regu-
lated genes in comparison with basal PESCs
and the more differentiated sphere cells.
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activity, we lentivirally marked murine and human PESCs
by concurrently introducing two fluorescent proteins,
tdTomato and Venus (Weber et al., 2008, 2011; Figure S7A).
Subsequent subcutaneous (s.c.) transplantation of LeGO-
V2/T2 marked SCA-1*CD49f*TROP2"&" mouse PESCs,
which were mixed with unmarked E16 UGSM and revealed
prostatic tubules after 10-12 weeks. Their PESC origin was
confirmed by immunofluorescence imaging and anti-GFP
[HC (Venus). As few as 10* mouse SCA-1*CD49f*"TROP2P&8
PESCs were sufficient to induce growth of prostatic tubules
when transplanted subcutaneously. Although no engraft-

ment was observed when cells were transplanted intra-
prostatically (without UGSM), intermediate results were
obtained by transplanting cells under the kidney capsule
(with UGSM) (Figures 7A and 7B; Table S4). Importantly,
new prostatic tubules derived from cultured mouse basal
PESCs preserved TP63* basal cells and demonstrated
differentiated AR"-expressing cells encircling the lumina
of formed acini, confirming their typical 3D cellular struc-
ture at the molecular level.

As few as 100 cultured human basal PESCs were able
to regenerate prostate acini in nude mice (Figures 7D and
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Figure 6. GSEAs Indicate a Functional Role of NF-kB/TNFa in Undifferentiated and Differentiated States of Basal PESCs

(A) Significantly changed gene sets (GSEA) in undifferentiated basal PESCs as compared with differentiated prostasphere cells
(Subramanian et al., 2005; Zutter and Santoro, 1990).

(B) FACS analyses of NF-kB transcriptional reporter activity in human cells (left, n = 5 independent PESC preparations, statistical
significance was evaluated by one-way ANOVA followed by Bonferroni post hoc tests, p < 0.05), % NF-kB active = % Venus/BFP positivity
in FITC/Pacific blue cytometer channels and two corresponding FACS plots, demonstrating NF-kB activity in basal PESCs in HPM conditions
as compared with increased NF-kB activity in differentiated sphere cells (right).

(legend continued on next page)
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S7B; Table S4). For both human and mouse PESCs, nude
mice represented the more efficient recipients compared
with the more immune-compromised NOD/SCID mice.
Regenerated human prostate acini were built up of a single
TP63" basal cell layer and single or multiple layers of differ-
entiated AR" luminal cells, closely resembling the micro-
scopic anatomy of normal human prostate epithelium (Fig-
ures 7C and S7C). In summary, our results demonstrate that
cultured murine as well as human primary PESCs are able

Figure 7. Cultured and Enriched Basal
PESCs Preserve Functional Adult Stem
Cell Capacity In Vivo

(A) Formation of prostate gland-like acini
afters.c. transplantation of cultured Venus*
murine PESCs together with unmarked
E16 UGSM. Immunohistochemical staining
for TP63 and AR. Venus was detected with
an anti-GFP antibody.

(B) Frequency of murine prostate acini
regeneration in a limiting-dilution in vivo
transplantation assay.

(C) Prostate-gland-like acini formation
after s.c. transplantation of cultured Venus®
human PESCs together with unmarked
E16 UGSM. Immunohistochemical staining
for TP63, AR, and Venus (anti-GFP).

(D) Frequency of human prostate acini
regeneration in a limiting-dilution in vivo
transplantation assay.

See also Figure S7 and Table S4.

to regenerate entire prostatic acini, demonstrating that
these cells have adult prostate stem cell activity in vivo.

DISCUSSION

Here, we provide a novel method to expand and
study functional basal PESCs in adherent cultures. Simple
serum- and feeder-free conditions were established to

(C) Inhibition of NF-kB leads to impaired differentiation of human PESCs. Micrographs and corresponding sphere-forming-capacity results
of PESCs seeded into regular sphere conditions (PrEGM/Matrigel = sphere control) in comparison with sphere conditions with the addition
of NF-kB inhibitor JSH-23 or Etanercept to block soluble TNFa-mediated TNFR binding (n = 5 independent PESC preparations each;
statistical significance was evaluated by one-way ANOVA followed by Bonferroni post hoc tests, p < 0.05).

See also Figure S6 and Table S3.
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grow and expand murine Lin"*8CD49f*'SCA-1*TROP2"8"
and human Lin"*8CD49f*TROP2"&" PESCs. The reported
method represents a major advance from previous proto-
cols (Goldstein et al.,, 2011; Lukacs et al., 2010; Rhim
et al., 2011; Robinson et al., 1998) and complements the
protocol recently proposed by Karthaus et al. (2014) to
expand and maintain enriched prostate progenitor cells
ex vivo. The method also overcomes the presence of
undefined media and culture components such as bovine
pituitary extract (Peehl and Stamey, 1986). The ability to
significantly expand functional human basal PESCs, in
terms of both total number and frequency, will help inves-
tigators overcome the bottleneck related to the limited
availability of primary prostate patient tissue for cellular,
molecular, genomic, and pharmacological analyses.

A key element of the culture conditions is the balanced
combination of growth factors and signaling molecules
(e.g., EGFE, bFGF, IGF, insulin, transferrin, and Rock inhibi-
tor), which apparently generates an artificial androgen-
independent PESC microenvironment that promotes the
self-renewal and maintenance of 2prostate stem cell fate.
Although these factors have been known for a long time
in the cell-culture field, it was critical to discover the exact
composition of the media in combination with a hydro-
phobic surface that would allow significant expansion of
undifferentiated murine basal PESCs as compared with
the widely used standard method (PrEGM). The necessary
adaptations to enable human basal PESC amplification
included the switch to surface-treated flasks and the addi-
tion of sodium selenite and progesterone. Progesterone
has also been reported to induce mammary epithelial pro-
genitor cell expansion, indicating that it may promote hor-
mone-controlled epithelial stem cells in general (Joshi
et al., 2010). Expanded basal PESCs not only show expres-
sion signatures similar to those of pluripotent ESCs and
other somatic stem cells but also harbor functional stem
cell potential, as demonstrated by their capacity to generate
prostatic tubules in vivo. These results are comparable to
those obtained in transplantation experiments performed
with PESCs isolated from primary prostate biopsies (Gold-
stein et al., 2010, 2011; Lukacs et al., 2010). The method
described here now allows the robust expansion of such
primary cells and thus facilitates an in-depth analysis of
the molecular programs employed.

One can induce expanded PESCs to differentiate at any
desired time point by transferring the cells from adherent
conditions into previously described prostasphere culture
conditions (Xin et al., 2007). However, the described
method cannot be used to study the role of luminal PESCs,
which have also been reported to be a self-sustaining line-
age (Karthaus et al., 2014). In addition to basal PESCs,
luminal PESCs have also been suggested to be the putative
cell of origin for prostate cancer (Choi et al., 2012; Gold-
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stein et al.,, 2010; Wang et al.,, 2009). Furthermore,
in vitro differentiation into spheres can only a serve as a
model system and does not resemble the full luminal differ-
entiation program of prostate gland development in vivo.
This limitation and the putative presence of transit-ampli-
tying (intermediate) cells have to be considered when using
these methods (Ousset et al., 2012; Pastrana et al., 2011).
Additionally, the methods we have described for murine
cells cannot be used to replace lineage-tracing mouse
models—they can only complement the findings from
such models. In particular, work by Wang et al. (2013)
clearly shows that prostate basal cells develop a substantial
plasticity ex vivo when they are removed from their
normal environment. In line with this, our experiments
confirm the finding that a significant discrepancy exists
between the high in vitro sphere-forming capacity of basal
PESCs and their capacity to form glands in vivo. In vivo,
only a small proportion of basal cells were shown to have
a graft-regenerating capacity (Wang et al., 2013). Neverthe-
less, our methods additionally facilitate the analysis of
primary human cells, allowing such cells to be amplified,
manipulated, and studied in detail. Clearly, the direct anal-
ysis of human cells holds the potential to provide data that
are of more relevance to the biology of human develop-
ment and disease.

The culture method described here creates a novel plat-
form for studying prostate disease etiology and progres-
sion. PESCs grown as adherent feeder-free cultures are
easy to manipulate (e.g., for transfection and infection)
and can be induced to differentiate or transplanted to
form prostate tubules in vivo. Thus, this method will pro-
vide the basis for various in-depth analyses of epithelial
prostate stem cells. First, it provides the basis to selectively
expand and study murine basal PESCs isolated from
different genetically engineered mice, such as in the
PTEN prostate cancer model (Di Cristofano et al., 2001).
This may help to identify molecular mechanisms during
differentiation and the progression from normal prostate
basal stem cells to hyperplastic and possibly even
neoplastic epithelium (Carver et al., 2011). However, one
has to keep in mind that prostate cancers that arise from
basal stem cells may have a different phenotype and clin-
ical outcome compared with those derived from luminal
prostate stem cells (Choi et al., 2012; Lu et al., 2013). Sec-
ond, using co-culture techniques that combine basal PESCs
with cellular prostate stromal components (e.g., associated
fibroblasts and smooth muscle cells), one can dissect and
study important cross regulations between primary PESCs
and their corresponding microenvironmental niche to
better understand prostate-gland regulation at a more
global level. Third, human basal PESCs isolated from pa-
tients with BPH can be isolated and studied at the mole-
cular and genomic levels, and subsequently linked to their
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biologic behavior in vitro and in vivo. An estimated 50% of
men show histologic evidence of BPH by the age of 50
years, and 40%-50% of these men become clinically signif-
icant, demonstrating the clinical relevance of this novel
method. Finally, mouse- or patient-derived and expanded
PESCs can be used for high-throughput screens using
knockdown or chemical compound libraries. This novel
mouse and human method to expand functional PESCs
may boost research on normal prostate gland biology and
may open up new possibilities for studying the etiology
of prostatic diseases.

EXPERIMENTAL PROCEDURES

Prostate Cell Preparation and Identification of Basal/
Luminal Prostate Epithelial Cells by Flow Cytometry
Microdissection, enzymatic digestion, and preparation of single
cells from male C57Bl/6 mice prostate primary human prostate
were performed as described previously (Goldstein et al., 2011; Lu-
kacs etal., 2010). We changed the described enzymatic digestion of
the human prostate into a 4 hr routine to obtain higher cell yields
(specific steps are provided in Supplemental Experimental Proce-
dures). For isolation of primary human cells from surgical prostate
tissues, we obtained informed consent according to the principles
of the Declaration of Helsinki. Procedures were approved by the
responsible ethics committee of Heidelberg University (permit
S-479/2009). For detailed information regarding patient tissues,
see Table S2. Identification of basal stem cells by the lineage"®®
(Ter119-/CD317/CD457) SCA-1*CD49f*TROP2™8" phenotype in
the murine prostate, as well as the CD49f"TROP2M&" phenotype
in the human prostate, was performed as described previously
(Goldstein et al., 2008, 2010; Lukacs et al., 2010; Xin et al.,
2005). CD49f*TROP2'°" cells have been identified and character-
ized before as more differentiated epithelial phenotype cells
(Goldstein et al., 2008, 2010, 2011). Please see Table S5 for specific
antibody information. We began our new enrichment and culture
methods after enzymatic digestion of the primary murine or
human prostate into single cells.

Adherent Expansion of Primary Murine and Human
Basal PESCs

As a combined first step in establishing the murine and human cell
cultures, we performed MACS enrichment for EPCAM®* cells after
primary preparation of single-cell suspensions from murine and
human prostates (Figure 1). For this purpose, we stained digested
murine cell suspensions with anti-mouse CD326 (EPCAM)-phyco-
erythrin (PE) (Clone 8.8; eBioscience) followed by indirect mag-
netic bead labeling using anti-PE microbeads (Miltenyi Biotec).
For human cells, we directly used anti-human EPCAM microbeads
(Miltenyi Biotec) according to the manufacturer’s instructions.
Magnetic enrichment was performed using the autoMACS Pro
Separator (Miltenyi Biotec). We altered the tissue culture flask
surfaces by comparing negatively charged standard plastic
culture flasks (TPP) with hydrophobic (suspension) culture flasks
(Cellstar; Greiner Bio-One) or net-negative pretreated surface flasks
(Primaria; BD). After evaluating the appropriate culture surface,

we tested different combinations of stem cell media components
(described in detail in Figures 1, 2, 3, and S1 and Table S1). Cells
were plated in either hydrophobic CellStar (Greiner) 24-well plates
(murine) or 24-well Primaria (BD) plates (human) with individual
combinations of media components (n = 8). We evaluated the
proliferation index by evaluating the cell number at a specific
time point divided by the number of input cells at time zero. The
best media for the expansion of murine prostate basal epithelial
progenitor cells, MPM, consists of Advanced DMEM/F12 supple-
mented with additional glutamine, glucose, EGF, bFGE, LONG R?
IGF-], holo-transferrin, and insulin. The best media for the expan-
sion of human prostate basal epithelial progenitor cells, HPM, is
the MPM formulation plus additional progesterone and sodium
selenite.

Prostasphere Assay and Analysis/Sorting of
Sphere-Derived Single Cells

The semisolid prostasphere assay used for in vitro differentiation
analyses has been described elsewhere (Xin et al., 2007). Briefly,
cultured murine or human prostate basal epithelial cells were re-
suspended in a 50:50 mixture of Matrigel (BD) and PrEGM (Lonza)
and plated around the rim of a well of a 12-well tissue culture plate.
The Matrigel mix was allowed to solidify at 37°C and then 800 ul
PrEGM was added. To recover the sphere cells for subsequent
flow-cytometry analysis/cell sorting, we used Cell Retrieval
Solution (BD) followed by sphere digestion into single cells using
StemPro-Accutase (GIBCO) in combination with mechanical
trituration using a 27-gauge needle and 40-um filters.

Flow Cytometry and Single-Cell-Sorting Experiments

All cell sortings were performed on BD FACS Aria II or Aria III cell
sorters. To minimize loss of cell viability, we performed experi-
ments on fresh cell suspensions out of our culture, prepared shortly
before flow cytometry, detaching the cells using StemPro-Accutase
(GIBCO). Antibody staining was performed in PBS supplemented
with 5 mM EDTA. Please see Table S5 for specific antibody infor-
mation. Prior to flow cytometry or sorting, cells were filtered using
40-pm filters. The sorting buffer included PBS, 5 mM EDTA and
10 uM Y-27632 ROCK inhibitor (Tocris Bioscience). Forward-
scatter height (FSC-H) versus forward-scatter width (FSC-W), and
side-scatter height (SSC-H) versus side-scatter width (SSC-W) pro-
files were used to eliminate cell doublets. Dead cells were elimi-
nated by excluding PI* cells, whereas contaminating human
or mouse Lin™ cells were eliminated by gating on Ter119/CD31/
CD45-FITC™ for mouse and CD45/CD3-FITC™ for human cells.
Gates for FACS experiments were determined by using isotype
controls for the respective specific antibodies used. Gates were
then set to exclude the respective population in the isotype control
experiment. In single-cell-sorting experiments, each cell was indi-
vidually sorted into a different well of a 96-well plate, using a built-
in protocol in the FACS Aria II and III software packages, with
appropriate adjustments (device: 96-well plate, precision: single-
cell). For sorting, we used a 100-um nozzle. Sorted single cells
were additionally evaluated by microscopy. We assessed the true
clonogenicity of single basal progenitor cell-derived colonies
quantitatively by performing a limiting-dilution analysis in vitro
using 96-well plates and L-Calc software (Stem-Cell Technologies)
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after observing colony outgrowth and confirming a stable SCA-1*/
CD49f*/TROP2"" phenotype.

Lentiviral Vectors and Lentiviral Gene Transfer
LeGO-V2 (Venus) and LeGO-T2 (tdTomato) were previously
described (Weber et al., 2011) and kindly provided by Kristoffer
Weber and Boris Fehse. Lentiviral particles were generated as previ-
ously described (Kutner et al., 2009). For transduction, prostate
cells were cultured in MPM or HPM for 24 hr at a fixed cell number.
Target cells were incubated in the presence of 8 pg ml~! polybrene
for 12 hr at 37°C with viral supernatant at a multiplicity of
infection (moi) of 50-60 per vector. Transduction efficiency was
validated 48-72 hr after transduction using FACS.

Mouse Experiments and Evaluation of In Vivo Stem
Cell Capability

All mouse experiments were approved by the animal-protection
officers of the German Cancer Research Center (DKFZ) and the
state of Baden-Wiirttemberg in accordance with German law
(Tierschutzgesetz, G18-12). Male NOD-SCID and nude mice were
bred at the animal facility of the DKFZ and maintained under
pathogen-free, individual ventilated-cage conditions. E16 UGSM
was used for co-injections with culture-derived prostate progenitor
cells to provide the necessary growth signals to promote in vivo
prostate gland regeneration. Before performing the co-injections,
we prepared the UGSM according to previously described proto-
cols (Lukacs et al., 2010). First, we set up timed pregnancies in
C57Bl/6 mice and harvested the fetuses at day 16 of pregnancy.
We cut the fetus in half below the liver and microdissected the
pelvic UGSM under the stereomicroscope while placing the bot-
tom half of the fetus in a supine position and holding the hind
legs apart with forceps (Cunha and Lung, 1978). The UGSM was
removed and separated intact by gently pulling up on the bladder.
To prove the in vivo stem cell capability of our culture-derived
cells, we co-injected our LeGO-V2/T2 marked cultured murine or
human cells together with E16 UGSM and Matrigel into male
nude or NOD/SCID mice subcutaneously into the renal capsule,
as well as intraprostatically (without UGSM). For detailed informa-
tion, see Figure 7 and Table S4. Experimental results were obtained
using passage 5 (early) cultured cells, though engraftment could
also be observed using late passage numbers (data not shown).
To support differentiation, we subcutaneously implanted testos-
terone pellets (12.5 mg/90-day release; Innovative Research of
America). After 10-12 weeks, we harvested the regenerated s.c.
grafts for subsequent analyses. Before conducting histological ana-
lyses on fixed tissue, we visualized direct Venus fluorescence in
freshly dissected s.c. grafts under the fluorescent stereomicroscope.

IHC and Immunofluorescence

For IHC of differentiated spheres, we retrieved prostaspheres from
the Matrigel using Cell Retrieval Solution (BD). The spheres were
then fixed in 10% buffered formalin and transferred into HistoGel
(Thermo Scientific) for subsequent sectioning and staining with
various antibodies according to the manufacturer’s instructions.
Antibodies for basal epithelial TP63 and differentiated luminal
epithelial markers (AR, NKX3-1) were validated on primary pros-
tate tissue before use (for detailed analyses, see Supplemental
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Experimental Procedures). For immunofluorescence, cells were
grown in Cellstar (Greiner Bio-One) or BD Primaria six-well plates,
fixed within the wells using BD Cytofix for 30 min at 4°C, and
stained overnight with primary antibodies. The next day, staining
was done with secondary anti-IgG-Alexa 488 (Invitrogen) and anti-
IgG-Alexa 546 (Invitrogen). Finally, cells were counterstained with
ProLong antifade reagent (Invitrogen) and visualized with a stan-
dard fluorescence microscope. Please see Table S5 for specific IHC
and immunofluorescence antibody information. Regenerated s.c.
tissue grafts were fixed in 10% buffered formalin and placed in
70% ethanol. Sections (4 pm) were stained with hematoxylin
and eosin (H&E) or rabbit polyclonal anti-GFP/Venus antibody
(ab290; Abcam). We previously validated the antibody for detec-
tion of Venus to prove the in vivo stem cell capability of our
culture-derived cells as compared with coinjected untransduced
cells of the fetal urogenital sinus.
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