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Focused on antibodies for 40 years. 
Not on advertising. 



Bethyl Laboratories, Inc. has been dedicated to supporting scientific discovery through 
its qualified antibody products and custom antibody services since its founding in 1972.

Every antibody that Bethyl sells has been manufactured to exacting standards at its sole 
location in Montgomery, Texas, and has been validated in-house by Bethyl’s team of 
scientists. Antibodies are tested across a range of applications including western blot, 
immunoprecipitation, immunohistochemistry, immunocytochemistry, ChIP, proximity 
ligation assay and ELISA. 

Currently, Bethyl’s portfolio consists of over 7,150 catalog products; offering close to 
5,700 primary antibodies targeting over 2,700 proteins and 1,450 secondary antibodies 
raised against immunoglobulins from over 25 species. Trial sizes are available for over 
4,000 antibodies targeting more than 2,350 protein targets. They are conveniently 
priced at $50 and serve as an opportunity to discover for yourself why our antibodies 
are really good. 

For really good antibodies, visit bethyl.com/trialsize

Terms & Conditions: $50 pricing for US customers only; international customers please 

contact your distributor for details. Trial sizes (catalog # ending in “-T”) are not available 

for all antibodies and existing promotions or discounts do not apply.

© 2015 Bethyl Laboratories, Inc. All rights reserved.



SAY GOOD-BYE
TO THE DARKROOM

Introducing the ZOE™ Fluorescent Cell Imager.

No darkroom, no training, no overwhelming user interface.

Combining brightfield capabilities with multichannel fluorescence, this cell 

imager is both affordable and easy to use — your perfect solution for routine 

cell culture and imaging applications. 

Learn more at bio-rad.com/info/newzoe





Welcome to the 4th annual Best of Cell compendia, which highlights a great year at l Cell.

We have selected the papers presented here based on a number of criteria. We began by looking at the most highly read 

papers based on article downloads and html usage. Within this list, we sought papers that best represent the scope and 

breadth of Cell. We’ve included papers that we were exceptionally excited about when they first came in, papers that we

found ourselves talking about in the hallways of the office and at the proverbial water cooler, and papers that the reviewers

were extremely enthusiastic about. Additionally, we’ve considered the altmetric rankings of all papers published in 2015 to give 

perspective and depth to our collection.

Looking at the papers with the greatest numbers of downloads gives a sense of which papers caught the eye of a large swath of 

the scientific community. Of course, this measure is heavily slanted towards articles published in the beginning of the year, so we 

took efforts to control for that. 

In addition to Reviews and Articles, we’ve also included a selection of SnapShots that we hope will pique your interest and help

your research. New for 2015 is the Timeline short format, and we’ve included the first two of those as well.

Cell was conceived of as and continues to be a journal representing the broad interests of the biology community. Over the years,l

the boundaries of this community have expanded to welcome chemists, physicists, clinicians, and a host of other researchers in 

the spirit of collaboration and cross-pollination of ideas. Cell’s scope has grown with the community, and you’ll see that reflected 

in this collection.

Clearly, any list like this must also omit many important and valuable papers, but hopefully this collection gives you a flavor of some

of the standout moments of the year. Additionally, we are limited by page space and encourage you to visit www.cell.com/cell to

see some of the exciting science we are privileged to publish, including our new Stories format, Selects, and other highlight pieces

such as our new Bench to Bedside articles. Beyond what we can print on these pages, we continue to offer compelling podcasts,

video abstracts, and Cell PaperFlicks to widen the ways in which we present exciting science to our readers.

Of course, all of this great science would not be featured in Cell if it were not for the support of the scientists who submit their l

best work for consideration, provide expertise as advisors and peer reviewers, serve on our editorial board, and read the journal 

and share our enthusiasm for exciting biology. Cell is first and foremost a journal of, by, and for scientists. Thank you all for l

your contributions.

We hope that you will enjoy reading this special collection, and we welcome your feedback on how we are doing at the journal 

(you can also access this collection online at www.cell.com/bestof, where you can see freely available digital editions of other Cell

Press Best of… collections). Please feel free to leave a comment at Cell.com on a paper that has caught your interest, drop us a 

line at celleditor@cell.com, or email one of the editors directly. We are always happy to hear from you.

We hope that you have had a fruitful 2015, and we look forward to working with you in 2016 and beyond.

Finally, we are grateful for the generosity of our sponsors, who helped to make this reprint collection possible.

Emilie, Elena, Karen, Robert, Lara, Steve, Sri, Jiaying, Mirna, Joao, Marta, and Cindy

Foreword
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08-0052-23

The MojoSort™ Magnetic Cell Separation System is designed for the 

separation of target populations using positive or negative selection. 

MojoSort™ nanoparticles deliver excellent purity and yield at an 

unmatched, aff ordable price. Magnetically sorted cells can be used 

for multiple downstream applications.

A suspension of single cells from pooled C57BL/6 mouse spleen and lymph nodes was prepared to isolate CD4+ T cells using 

the MojoSort™ Mouse CD4 T Cell Isolation Kit. Cells were stained with PE anti-mouse CD4 (clone RM4-4), APC anti-mouse CD3ε 

(145-2C11), and 7-AAD. Grateful Dead cells were excluded from the analysis.

Before Isolation After MojoSort™ Isolation After Competitor Isolation

MojoSort™ advantages:
• Small and large test size formats to meet research needs

• Robust performance

• Preserved cell functionality after sorting

• Excellent price

Add some Mojo to your experiment and explore the possibilities!

To learn more, visit: biolegend.com/mojosort
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SnapShot: Renal Cell Carcinoma
Samra Turajlic,1,2 James Larkin,2 and Charles Swanton1

1The Francis Crick Institute,k  44 Lincoln’s Inn Fields, London WC2A 3LY,A UK
2Renal Unit, The Royal Marsden Hospital, London SW3 6JJ, UK
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IN VIVO
IMAGING
PROBES

In vivo imaging probes bring greater insight to your
preclinical research. CAS-MAP™ imaging probes
allow you to distinguish between apoptotic and
healthy cells in vivo.

In vivo imaging probes are injected IV. The probes
are cell-permeant and bind to active caspases while
unbound probe is removed via the circulatory sys-
tem. Visualize using live animal imaging or harvest
tissue for ex vivox  analysis by microscopy or FACS.

Translate from cell to animal
using in vivo imaging probes.

Detect apoptosis & caspase activity in cancer,
embryonic development & ischemic conditions.

Download application note:
vergentbio.com/invivo
844.803.0346
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SnapShot: Spliceosome Dynamics I
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pumps provide continuous and precise administration, 
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SnapShot: Origins of DNA Replication

Histone PTM Enzyme Function Organism

H4K20me1 PR-Set7 Promotes pre-RC assembly Human, mouse

H4K20me2 Suv4-20h1/2 ORC recruitment via ORC1 BAH domain Metazoa

H3K4me2 COMPASS complex Origin activation Yeast

H3K27me ATXR5, ATRX6 Represses re-replication of heterochromaticf origins Arabidopsis

H3K36me Set2 Regulates Cdc45 association with origins Yeast

H3K79me2 DOT1L Enriched at origins, loss of DOT1Lf  leads to re-replication Human

H3K4me3 demethylation KDM5C/JARID1C Promotes early-origin activation Human

H4Ac Hbo1 Promotes pre-RC assembly Human, xenopus, fl yfl

Bulk H3 and H4 acetylation Multiple HATs Regulates developmentally programmed origin of thef -globin locus Human

H4K5Ac/H4K12Ac Hat1p/Hat2p Hat1/Hat2 interact with and enhance the function of ORCf Yeast

H4K16Ac MOF Promotes male-specificfi early-origin activation on the X chromosomeX Fly

H3,H4 deacetylation Rpd3 Delays late-origin activation, developmental transition in origin specifi cityfi Yeast, fl yfl

H3,H4 deacetylation Sir2p Inhibits pre-RC assembly at a subset of originsf Yeast

H4K5Ac deacetylation Sum1/Rfm1/Hst1 Enhances effi ciencyfi  of replicationf  initiation at a subset of originsf Yeast

H2B Ub Bre1 Enriched at origins, impacts fork elongation Yeast
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Adult tissue-derived epithelial organoids Human pluripotent stem cells (hPSC)-derived organoids

Patient-derived epithelial organoids

Stomach Small intestine Colon Pancreas Liver

Crypt CryptFundic or pyoric gland Pancreas duct Bile duct

SnapShot: Growing Organoids from 
Stem Cells

Type of tissue Source Stem cell culture condition (niche factors) Differentiation culture condition

Stomach

Adult mouse EGF, Noggin, R-spondin, Wnt-3A, FGF10 EGF, R-spondin

Adult human EGF, Noggin, R-spondin, Wnt-3A, FGF10 EGF, R-spondin

hPSC EGF EGF

Small intestine

Adult mouse EGF, Noggin, R-spondin EGF, Noggin, R-spondin

Adult human EGF, Noggin, R-spondin, Wnt-3A TGF-bA  inhibitor, p38 inhibitor EGF, Noggin, R-spondin, TGF-b inhibitor

hPSC EGF EGF

Colon
Adult mouse EGF, Noggin, R-spondin, Wnt-3A EGF, Noggin, R-spondin

Adult human EGF, Noggin, R-Spondin, Wnt-3A, TGF-b inhibitor, p38 inhibitor EGF, Noggin, R-spondin, TGF-b inhibitor

Pancreas
Adult mouse EGF, Noggin, R-spondin, Wnt-3A, FGF10, Nicotinamide EGF, Noggin, R-spondin, Wnt-3A

Adult human EGF, Noggin, R-spondin, Wnt-3A, FGF10, TGF-b inhibition, Nicotinamide Not reported

Liver

Adult mouse EGF, Noggin, R-spondin, Wnt-3A, FGF10, HGF, Nicotinamide EGF, Noggin, FGF10, TGF-b inhibition, Notch inhibition

Adult human
EGF, Noggin, R-spondin, Wnt-3A, FGF10, HGF, Nicotinamide, TGF-b inhibi-
tor, Forskolin

EGF, Noggin, FGF10, TGF-b inhibition, Notch inhibition,
BMP7
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SnapShot: Sensing and
Signaling by Cilia
Kurt Zimmerman and Bradley K. Yoder

Department of Cell,f  Developmental, and Integrative Biology, University of Alabamaf  at Birmingham, Birmingham, AL 35294, USA
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SnapShot: Genetics of Parkinson’s
Disease

See online version for legend and references.Cell 160, January 29, 2015 ©2015 Elsevier Inc. DOI http://dx.doi.org/10.1016/j.cell.2015.01.019

Gene offi cial symbol Gene name Location Possible pathways / pathological biological processes

MENDELIAN GENES

SNCA Synuclein, alpha 4q21 Synaptic function; mitochondrial function; autophagy/lysosomal degradation

  PARK2 Parkin RBR E3 ubiquitin protein ligase 6q25.2-q27 Mitochondrial function/mitophagy; ubiquitination; synaptic function

PINK1 PTEN -induced putative kinase 1 1p36 Mitochondrial function/mitophagy

PARK7/DJ-1 Parkinson protein 7 1p36.23 Infl ammation/immune system; mitochondrial function

LRRK2 Leucine-rich repeat kinase 2 12q12 Synaptic function; infl ammation/immune system; autophagy/lysosomal degradation

  PLA2G6 Phospholipase A2, group VI 22q13.1 Mitochondrial function

  FBXO7X F-box protein 7 22q12.3 Ubiquitination; mitochondrial function/mitophagy

  VPS35 Vacuolar protein sorting 35 homolog (S. cerevisiae) 16q12 Autophagy/lysosomal degradation; endocytosis

ATP13A2 ATPase type 13A2 1p36 Mitochondrial function; autophagy/lysosomal degradation

DNAJC6 DnaJ (Hsp40) homolog, subfamily C, member 6 1p31.3 Synaptic function; endocytosis

SYNJ1 Synaptojanin 1 21q22.2 Synaptic function; endocytosis

RISK GENES

GBA Glucosidase, beta, acid 1q21 Infl ammation/  immune system; autophagy/lysosomal degradation; metabolic pathways

RISK LOCI

MAPT Microtubule-associated protein tau 17q21.1 Microtubule stabilization and axonal transport

RAB7L1 RAB7, member RAS oncogene family-like 1  1q32 Autophagy/lysosomal degradation

   BST1 Bone marrow stromal cell antigen 1 4p15 Immune system

HLA-DRB5 Major histocompatibility complex, class II, DR beta 5 6p21.3 Infl ammation/immune system

  GAK/ Cyclin-G-associated kinase  4p16 Autophagy/lysosomal degradation; synaptic function; endocytosis

    ACMSD Aminocarboxymuconate semialdehyde decarboxylase 2q21.3 Tryptophan metabolism; metal ion binding; metabolic pathways

STK39 Serine threonine kinase 39 2q24.3 Infl ammation/immune system; protein kinase binding; cellular stress response

    SYT11 Synaptotagmin XI 1q21.2 Synaptic function; transporter activity; metal ion binding; substrate for PARK2

   FGF20 Fibroblast growth factor 20 8p22 Growth factor activity; FGF receptor binding

   STX1BT Syntaxin 1B 16p11.2 Synaptic function; SNAP receptor activity; protein domain-specificfi  binding

   GPNMB Glycoprotein (transmembrane) nmb 7p15 Integrin binding; heparin binding; cancer pathways

   SIPA1L2 Signal-induced proliferation-associated 1 like 2 1q42.2 GTPase activator activity

   INPP5F Inositol polyphosphate-5-phosphatase F 10q26.11 Phosphoric ester hydrolase activity

   MIR4697HG MIR4697 host gene (non-protein coding) 11q25

   GCH1 GTP cyclohydrolase 1 14q22.1-q22.2 GTP binding; calcium ion binding; BH4 metab; metabolic pathways

   VPS13C Vacuolar protein sorting 13 homolog C (S. cerevisiae) 15q22.2 Endocytosis

   DDRGK1 DDRGK domainK containing 1 20p13 Protein binding

   MCCC1 Methylcrotonoyl-CoA carboxylaseA  1 (alpha) 3q27 Biotin carboxylase activity; methylcrotonoyl-CoA carboxylaseA  activity; metabolic pathways

    SCARB2C Scavenger receptor class B, member 2 4q21.1 Autophagy/lysosomal degradation; receptor activity ( lysosomal(  receptor for GBA targeting);A

enzyme binding

     CCDC62 Coiled-coil domain containing 62 12q24.31 Nuclear receptor coactivator; cancer pathways

   RIT2 Ras-like without CAAX 2X 18q12.3 Synaptic function; calmodulin binding; GTP binding

SREBF1 Sterol regulatory element binding transcription factor 1 17p11.2 Chromatin binding; cholesterol and steroid metabolic processes
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SnapShot: Motile Cilia
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Biological Safety Cabinets  •  Clean Benches  •  Fume Hoods  •  CO
2
 Incubators  •  Hypoxia & Anaerobic Workstations

From the moment when 

the pieces fell into place, 

and you saw the big picture,

through late nights reviewing literature, 

designing procedures, 

testing hypotheses —

nothing fell through the cracks, 

because too much was at stake.

The work you did then 

advanced your field, 

and your career.

We are proud to have been there, 

protecting your work, and you, 

with the very best in air containment, 

contamination control, and 

controlled environment technology.

Now, as your work gives rise 

to new discoveries —

bakerco.com

We can’t wait to see 
what you do next.
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DNA N6-methyladenine (6mA) protects against restriction enzymes in bacteria. However, isolated
reports have suggested additional activities and its presence in other organisms, such as unicellular
eukaryotes. New data now find that 6mA may have a gene regulatory function in green alga, worm,
and fly, suggesting m6A as a potential ‘‘epigenetic’’ mark.

The Origins of Adenine Methylation
Genetic constraints hamper the response of cells to the changing

environment and represent a hurdle to adaptations that charac-

terize living organisms. Thus, dynamic modifications that expand

thegenetic codebeyondA,G,C, andT are necessary. Among the

most studied, 5-methylcytosine (5mC) exerts a predominant role

due to its important activities in mammals to establish the epige-

netic setting and its relevance in human disorders, particularly

cancer (Heyn and Esteller, 2012). 5mC has been named the fifth

base of DNA, and only lately has a second modification in DNA,

5-hydromethylcytosine (5hmC), emerged as a contender for

human cells (Kohli and Zhang, 2013). Other derivatives, such as

5-formylcytosine and 5-carboxylcytosine, are so far considered

transitory byproducts of oxidative demethylation (Kohli and

Zhang, 2013). However, this can be an anthropocentric view.

N4-methylcytosine (4mC) is very common in bacteria but absent

in mammals. There is an even more intriguing DNA modification:

N6-methyladenine (6mA) (Figure 1A).

6mA represents a dominant modification in bacteria, while

5mC is absent in many prokaryotic genomes (Fang et al.,

2012). In bacteria, 6mAwas initially reported to be part of restric-

tion-modification (R-M) systems—bacterial defense mecha-

nisms against phages and plasmids that are able to distinguish

between host and invader DNA (Arber and Dussoix, 1962).

Specifically, the presence of 6mA in the host prevents the diges-

tion of its genome by DNA methylation-sensitive restriction

enzymes. In contrast, foreign unmethylated DNA lacks the pro-

tection and is readily degradedwhen entering the cells. R-M sys-

tem-positive strains are equipped with DNA methyl-transferase

and endonuclease counterparts with common sequence recog-

nition motifs.

However, the fact that other methyl-transferases lack a

restriction enzyme counterpart and that m6A is important

for viability in specific bacterial strains suggests a defense-in-

dependent function. Specifically, adenine methylation is estab-

lished as a bacterial epigenetic mark. Exemplary, solitary

adenine methylases, such as Dam in E. coli, are involved in

DNA replication, wherein sister-strand synthesis can only be

initiated in the presence of methylated adenine at replication

origin (Wion and Casadesús, 2006). Dam-mediated methylation

also regulates replication initiator factors.

6mA guides the discrimination between original and newly

synthesized DNA strand after replication. As de novo adenine

methylation is delayed during the cell cycle, the newly synthe-

sized strand is recognized by repair enzymes and the Dammotif

enables endonuclease processing with subsequent repair pro-

cesses (Wion and Casadesús, 2006). Adenine methylation has

further functional implication in the cell cycle, repression of

transposable elements, and gene regulatory processes (Fang

et al., 2012). 6mA also reduces the stability of base pairings,

hence favoring transcriptional initiation by lowering the energy

to open DNA duplexes. Dam activity can be hindered by binding

of competing proteins, resulting in the formation of non-methyl-

ated sites. Strikingly, the protection from methylation is an in-

herited state that, however, can be modified by environmental

conditions (Wion and Casadesús, 2006). Thus, adenine methyl-

ation displays similar characteristics in prokaryotes as cytosine

methylation does in eukaryotes, further underscoring its impor-

tance throughout generations.

Adenine Methylation: An Evolutionary Conserved
Mechanism
Although some studies hypothesized the presence of 6mA

in eukaryotic genomesdecadesago, its implication in epigenetics

in eukaryotes remains elusive (Ratel et al., 2006).Compared to the

highly abundant 5mC in the eukaryotic kingdom, levels of 6mA

were suggested to be minimal and thus only detectable by highly

sensitive technologies.Nevertheless, several studies reported the

presence of 6mA in eukaryotic genomes, particularly in ciliates,

chlorophyte algae, and dinoflagellates (Achwal et al., 1983; Gom-

mers-Ampt and Borst, 1995; Ratel et al., 2006). In certain cases,

6mA exists in substantial amounts, with 0.5%–10% of adenines

being methylated.

Sequence analysis predicted the presence of adenine methyl-

transferases and demethylases in several eukaryotic organisms

(Iyer et al., 2011) (Figure 1A). The presence of methyl-transferase
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orthologswithin transposable elements led to the hypothesis of a

cis-acting control mechanism to secure host genome integrity.

Consistently, such a mechanism was identified in E. coli, sug-

gesting a conserved function of 6mA as safeguard of the genome

(Roberts et al., 1985).

Now, three studies in this issue of Cell report the presence of

6mA in three different eukaryotic genomes—Chlamydomonas

reinhardtii, Caenorhabditis elegans, and Drosophila mela-

nogaster—with putative epigenetic function (Zhang et al.,

2015; Greer et al., 2015; Fu et al., 2015). The authors present ev-

idence for spatiotemporal-regulated 6mA modifications during

development. Moreover, 6mA is associated to gene regulatory

events.

The green alga C. reinhardtii has long been reported to harbor

substantial levels of 6mA, but its spatial distribution and function

Figure 1. Processing and Detection of

N6-Methyladenine
(A) Adenine bases of DNA are modified by
N6-methyladenine (6mA) methyl-transferases
and 6mA demethylases. The modifying enzymes
are conserved in all super-kingdoms of life, with
putative activity also in Homo sapiens (TET1–3
proteins have so far proven activities as 5mC
oxidases).
(B) Methyladenine is detectable by chromatog-
raphy-based technologies, such as the ultra-
high performance liquid chromatography-triple
quadrupole mass spectrometry coupled with
multiple-reaction monitoring (UHPLC-MRM-MS/
MS) method or sequencing approaches. For
the specific quantification of methyladenine, next-
generation sequencing (NGS)-based strategies
are coupled with immunoprecipitation of 6mA
(6mA-IPseq) or restriction enzyme guidance
(6mA-REseq). Direct quantification at base-pair
resolution is enabled by third-generation seq-
uencing methods, such as the single-molecule
real-time (SMRT) technology, wherein variant
enzyme kinetics identify modified DNA bases.

had yet to be identified (Hattman et al.,

1978). Using sequencing-based mapping

strategies, Fu et al. produce the first

genome-wide reference map for methyla-

denine in C. reinhardtii (Fu et al., 2015).

Moreover, the authors provide evidence

for an epigenetic function in transcrip-

tional regulation. After confirming abun-

dant 6mA levels by highly sensitive

liquid-chromatography and mass-spec-

trometry methodologies (Figure 1B), they

show that 6mA levels are stable and in-

herited duringmultiple replication phases.

Immunoprecipitation-based sequencing

strategies (Figure 1B) identify sequence

motifs susceptible to undergo adenine

methylation, which are different from the

prokaryotic consensus sequences. Sub-

sequently, restriction enzyme-guided re-

sequencing produces a 6mA reference

methylome of C. reinhardtii at base-pair

resolution (Figure 1B). Intriguingly, although the methyl-trans-

ferase consensus sequence is equally distributed in the genome,

6mA ishighly enrichedat genepromotersbutdepletedat the tran-

scription start sites. Consistently, 6mA profiles reveal periodic

patterns of 130–140 bp distances and hence a potential associa-

tion tonucleosomepositioningatpromoter regions. Thepresence

of 6mA at gene promoters is positively correlated with increased

transcriptional activity.

While adenine methylation has been previously described

in C. reinhardtii, its presence in 6mA C. elegans has not been re-

ported despite the presence of putatively active methyl-transfer-

ases in the worm genome. Greer et al. now report 6mA to be

present in C. elegans and functionally involved in epigenetic

transgenerational inheritance (Greer et al., 2015). In C. elegans,

mutants lacking histone demethylase spr-5, responsible for
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dimethylation of the histone H3 at lysine 4, represent a paradigm

of inheritance. Although no phenotype is detectable in early

generations, the mutant worms become progressively infertile

in later generations, accompanied by increasing histone H3

methylation levels. Surprisingly, Greer et al. now describe that

spr-5mutants reveal elevated levels of 6mA, accumulating during

generations. 6mA inC.elegans is shown tobeaddedby the newly

identified DNA N6-adenine methyl-transferase 1 (DAMT-1) and

dynamically removed by the N6-methyladenine demethylase 1

(NMAD-1). Strikingly, mutations in NMAD-1 lead to accelerated

accumulation of 6mA and, moreover, speed up the sterility

phenotype in nmad-1 and spr-5 double-knockout worms.

Overall, 6mA in C. elegans is rather low in wild-type animals

(0.025%) but is increased 10-fold in spr-5 mutant animals. It is

noteworthy that, unlike in flies (see below), adenine methylation

in C. elegans is ubiquitously present in all cell types. Technically,

6mA is determined by different technologies, ranging from global

to base-pair resolution profiles using single-molecule real-time

(SMRT) sequencing (Figure 1B). Particularly, the latter approach

leads to the identification of specific sequence motifs, suggest-

ing a locally regulated deposition of 6mA. However, its functional

role remains elusive. Future functional genomics approaches,

including a systematic integration of transcriptional profiles,

are needed.

The absence of conclusive evidence for cytosine or adenine

methylation in D. melanogaster has led to the hypothesis that

gene regulation takes place without DNA modifications. How-

ever, as 6mA is present in eukaryotes at very low levels, Zhang

et al. speculate that an impaired function of the putative DNA de-

methylase DMAD (DNA 6mA demethylase) leads to detectable

6mA inD. melanogaster (Zhang et al., 2015). Indeed, using highly

sensitive methods (Figure 1B), the authors identify adenine

methylation, predominantly in very early developmental stages

of the fly embryos (0.07%), but also in somatic cell types.

The late-embryo extracts also exhibit elevated demethylating

activity compared with early stages.

Demethylation dynamics could be associated with the TET-

like protein DMAD, which is dynamically regulated during devel-

opment. Moreover, DMAD modifies 6mA levels in vitro and

in vivo, and altered demethylase activity leads to increased em-

bryo lethality. 6mA is also detectable in somatic tissue, particu-

larly in ovary and brain cells. Here, 6mA is restricted to certain

cell types, being highly abundant in germarium cells while losing

intensities during germ cell differentiation. In line with these

results, DMAD levels increase during egg differentiation, and

DMAD mutants present elevated 6mA levels in their ovaries,

accompanied by a higher number of undifferentiated cells.

Furthermore, high levels of DMAD in brain suggest an antago-

nistic function in methyl-transferase activities and a dominant

suppression of 6mA levels in neurons. 6mA is determined to be

enriched in transposon gene bodies, with a putative function in

transcriptional activation during early embryonic stages and in

undifferentiated cell types.

From the current 6mA knowledge, C. elegans and

D. melanogaster do not present methylcytosine in their ge-

nomes. Although the existence of 5mC in Drosophila was under

controversial discussion for years, recent studies using whole-

genome bisulfite sequencing mostly excluded the presence of

5mC in D. melanogaster DNA sequence (Raddatz et al., 2013).

Hence, the studies by Greer et al. and Zhang et al. suggest

6mA as the unique DNAmethylation modification and potentially

functional epigenetic mark in C. elegans and D. melanogaster,

respectively. Although the global levels of 6mA are rather low,

its local enrichment and sequence specificity point to regulated

processing throughout development and differentiation. Future

studies need to further establish its role as epigenetic mark

and its function in gene regulation.

However, 6mA and 5mC have been described to co-exist

in the C. reinhardtii genome. Consistently, methyl-transferases

and demethylases are conserved in the green alga (Iyer et al.,

2011) (Figure 1A). Now, base-pair resolution landscapes of

both DNA modifications in C. reinhardtii reveal a likely com-

plementary function of 6mA and 5mC, indicated by their spatial

separation in the genome (Fu et al., 2015). While 5mC is enriched

at the gene bodies of lowly expressed transcripts, 6mA accumu-

lates at the promoter region of highly active genes. It is remark-

able that 5mC in Chlamydomonas exists at lower levels than

observed in higher eukaryotes and is not restricted to CpGmotifs

(Feng et al., 2010). Taken together, the evidence suggests 6mA

to represent an active epigenetic mark in C. reinhardtii, while

5mC is likely to be involved in processes downstream of tran-

scriptional initiation.

Intriguingly, although cytosine methylation represents by far

the dominant DNA modification in Homo sapiens, the machinery

to modify adenine nucleotides is conserved during evolution.

In this regard, the methyl-transferase-like 4 (METTL4) is similar

to DAMT-1 in C. elegans (Greer et al., 2015) (Figure 1A). More-

over, active demethylases of the TET family proteins, such as

DMAD in D. melanosgaster, exhibit specificity for methyl

adenines and thus might also be implicated in 6mA dynamics

in higher eukaryotes (Iyer et al., 2011). In this regard, early studies

also reported 6mA in human tissue, specifically placenta (Achwal

et al., 1983). However, the presence and function of the adenine

code in mammals need to be confirmed by applying novel ultra-

sensitive detection technologies (Figure 1B). These technologies

will play a key role in improving our understanding on the

complexity of DNA modifications in the biology of eukaryotic

life and will be discussed below.

The detection of 6mA in human placenta encourages specula-

tions of a specialized function of adenine methylation in specific

cell types. Taking into account the mutagenic nature of 5mC,

continuously dividing cell types, such as adult stem cells, might

have conserved an epigenetic mechanism that better supports

the integrity of the DNA template. 6mA presents a potential alter-

native to 5mC to avoid the accumulation of de novo mutations in

the immortal DNA strand. In line, 6mA is determined to be highly

abundant in early stages of development and undifferentiated

reproductive tissue in D. melanogaster, supporting the hypothe-

sis of an epigenetic mark with restricted function in pluripotent

cell types (Zhang et al., 2015).

Sensitive Detection of Adenine Methylation of DNA
Many of the questions that we have now for 6mA remained open

not so long ago for 5mC and 5hmC. For these two cases, the

development of bisulfite sequencing and other genome-scale

analyses has provided many of the requested answers. Though
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the same user-friendly powerful technologies does not exist for

6mA, there are already promising tools to entangle the presence

and role of this enigmatic modification in eukaryotes (Figure 1B).

Let’s briefly summarize them.

Ultra-High Performance Liquid Chromatography-Triple

Quadrupole Mass Spectrometry

This approach allows the sensitive detection of nucleotide mod-

ifications, such as 5mC and 6mA, at very low abundance (Ito

et al., 2011). Briefly, the digested DNA is separated by reverse-

phase ultra-high performance liquid chromatography (UHPLC)

coupled with mass spectrometry detection using tandem mass

spectrometers (MS/MS). Following detection of specific nucleo-

tide modifications, quantification is achieved using a standard

curve that is simultaneously analyzed in the sample of interest.

It is important to discard any potential contamination fromMyco-

plasma or bacterial DNA.

6mA-Immunoprecipitation Sequencing

Immunoprecipitation coupled with next-generation sequencing

was previously established for 5mC detection in mammalian

genomes (Weber et al., 2005). 6mA-immunoprecipitatoin seq-

uencing (6mA-IPseq) utilizes a specific antibody for methylade-

nine to enrich modified fragments from the sequencing library.

Following the alignment of sequencing reads to the reference

genome, 6mA-modified regions present enriched mapping fre-

quencies. 6mA-IPseq allows charting the spatial distribution of

the epigenetic mark. Subsequent sequence enrichment analysis

can also point to consensus recognition motifs for the adenine

methyl-transferases.

Restriction Enzyme-Based 6mA Sequencing

Restriction enzyme-based 6mA sequencing (6mA-REseq) relies

on the determination of consensus target sequences of adenine

methylation, followed by the identification of restriction enzymes

with respective recognition sites and sensitivity for the DNA

modification (Fu et al., 2015). Technically, genomic DNA is frag-

mented with a 6mA-sensitive enzyme, followed by random

shearing of the template. It results in an enrichment of unmethy-

lated (digested) sequence motifs at the ends of the sequencing

reads. Conversely, methylated adenine prevents digestion and

is enriched in inner fractions of the reads. Consequently, 6mA

levels are readily inferred from the relative position of the restric-

tion enzyme consensus sequence.

Single-Molecule Real-Time Sequencing

Initial genome-wide methyladenine maps at base-pair resolution

were obtained in E. coli genomes using single-molecule real-

time (SMRT) sequencing (Clark et al., 2012; Fang et al., 2012;

Murray et al., 2012). SMRT, a third-generation sequencing

technique, is based on the processing of fluorescence-labeled

nucleotides by DNA polymerases. The fluorescence label is not

incorporated in the de novo synthesized strand but is cleaved

away during the process. Meanwhile, the label emits light that

is captured in the nanophotonic visualization chamber. High-fi-

delity polymerases are capable of synthesizing long continuous

strands at a high speed, allowing a fast sequencing process and

high read lengths. Importantly, the incorporation of a modified

nucleotide, such as 6mA, presents different kinetics compared

with unmodified adenine, allowing the direct inference of the

modification status of each base.

Conclusions
m6A is a covalent modification of DNA that exerts an essential

role in bacteria, where it is associated with genome protection

via R-M systems. Furthermore, formation of m6A plays roles

in bacterial DNA replication, mismatch repair, and gene tran-

scription. Its presence in the genomes of several eukaryotes

reinforces the notion that m6A is widespread and suggests its

still unknown activities. The accompanying articles in this issue

of Cell describe a transcriptional regulatory role for m6A in

Chlamydomonas, and its detection, although at low levels, in

D. melanogaster and C. elegans indicates an expanded function

for 6mA. The development of improved technologies to unam-

biguously quantify and characterize 6mA in different biological

contexts will be a necessary step in this exciting journey.

REFERENCES

Achwal, C.W., Iyer, C.A., and Chandra, H.S. (1983). FEBS Lett. 158, 353–358.

Arber, W., and Dussoix, D. (1962). J. Mol. Biol. 5, 18–36.

Clark, T.A., Murray, I.A., Morgan, R.D., Kislyuk, A.O., Spittle, K.E., Boitano,

M., Fomenkov, A., Roberts, R.J., and Korlach, J. (2012). Nucleic Acids

Res. 40, e29.

Fang, G., Munera, D., Friedman, D.I., Mandlik, A., Chao, M.C., Banerjee, O.,

Feng, Z., Losic, B., Mahajan, M.C., Jabado, O.J., et al. (2012). Nat. Biotechnol.

30, 1232–1239.

Feng, S., Cokus, S.J., Zhang, X., Chen, P.-Y., Bostick, M., Goll, M.G., Hetzel,

J., Jain, J., Strauss, S.H., Halpern, M.E., et al. (2010). Proc. Natl. Acad. Sci.

USA 107, 8689–8694.

Fu, Y., Luo, G.-Z., Chen, K., Deng, X., Yu, M., Han, D., Hao, Z., Liu, J., Lu, X.,

Dore, L.C., et al. (2015). Cell 161, this issue, 879–892.

Gommers-Ampt, J.H., and Borst, P. (1995). FASEB J. Off. 9, 1034–1042.

Greer, E.L., Blanco, M.A., Gu, L., Sendinc, E., Liu, J., Aristizabal-Corrales, D.,

Hsu, C.-H., Aravind, L., He, C., and Shi, Y. (2015). Cell 161, this issue, 868–878.

Hattman, S., Kenny, C., Berger, L., and Pratt, K. (1978). J. Bacteriol. 135, 1156–

1157.

Heyn, H., and Esteller, M. (2012). Nat. Rev. Genet. 13, 679–692.

Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C., and

Zhang, Y. (2011). Science 333, 1300–1303.

Iyer, L.M., Abhiman, S., and Aravind, L. (2011). Prog.Mol. Biol. Transl. Sci. 101,

25–104.

Kohli, R.M., and Zhang, Y. (2013). Nature 502, 472–479.

Murray, I.A., Clark, T.A., Morgan, R.D., Boitano, M., Anton, B.P., Luong, K.,

Fomenkov, A., Turner, S.W., Korlach, J., and Roberts, R.J. (2012). Nucleic

Acids Res. 40, 11450–11462.

Raddatz, G., Guzzardo, P.M., Olova, N., Fantappié, M.R., Rampp, M., Schae-
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The global rise in the prevalence of obesity and associated co-morbidities such as type 2 diabetes,
cardiovascular disease, and cancer represents a major public health concern. The biological
response to increased consumption of palatable foods or a reduction in energy expenditure is highly
variable between individuals. A more detailed mechanistic understanding of the molecular, physio-
logical, andbehavioral pathways involved in the development of obesity in susceptible individuals is
critical for identifying effective mechanism-based preventative and therapeutic interventions.

Introduction

adversely affect health (Sperrin et al., 2014; Whitlock et al.,

2009). While the absolute quantification of fat mass is usually

only performed in the research setting, body mass index (BMI;

weight in kg/height in meters2) is a useful surrogate marker. Us-

ing the World Health Organization (WHO) definition of a BMI

more than 30 kg/m2 to define obesity, 30% of Americans and

10%–20% of Europeans are classified as obese, with the preva-

lence rising in many developing countries (http://www.who.int).

As body mass index increases, so does the relative risk of type

2 diabetes, hypertension, and cardiovascular disease (Berring-

ton de Gonzalez et al., 2010). Furthermore, an increase in the

prevalence of childhood obesity (11%–17% in Europe and the

US) has driven an increase in medical problems such as type 2

diabetes mellitus in adolescents (Fagot-Campagna, 2000). At a

societal level, obesity is associated with disability, mortality,

and substantial health costs. At an individual level, severe

obesity is often associated with a multitude of clinical problems,

including sleep disturbance and respiratory difficulties, joint and

mobility issues, as well as considerable social stigma, which can

affect quality of life as well as educational attainment and job

opportunities (Puhl and Brownell, 2001).

In this Review, we provide a perspective on the contribution of

environmental, genetic, and other factors to the development of

obesity. We discuss how these factors impact the molecular and

physiological mechanisms that regulate energy intake and en-

ergy expenditure in humans and highlight ongoing strategies to

dissect the complex neural circuits and pathways that modulate

energy homeostasis and their potential to be targeted by preven-

tative and therapeutic interventions.

Obesity as a Disorder of Energy Homeostasis
Humans, like other mammals, are able to regulate their body

weight over long periods of time despite day-to-day variation

in the number of calories consumed and in levels of energy

expenditure, irrespective of the level of adiposity. Fundamen-

tally, factors that influence changes in body weight must

ultimately disrupt the balance between energy intake and expen-

diture over time, the utilization of substrates (fat, protein, carbo-

hydrate), and/or nutrient partitioning (storage of excess calories).

Physiological studies in healthy normal weight individuals have

shown that total energy expenditure decreases by an average

of 10% with acute caloric restriction and increases with caloric

excess (Ravussin et al., 2014). However, in humans, the homeo-

static regulation of energy balance is easily overwhelmed by

external stimuli. For example, in a study in which people were

given free access to food, the average daily intake exceeded

150% of energy requirements. In such experimental settings,

and potentially in the free-living environment, some individuals

seem more readily able to resist weight change with overeating,

possibly due to inter-individual variation in the energy costs of

weight gain (Ravussin et al., 2014).

Environmental Factors Drive the Rise in Obesity
Prevalence
The increasing prevalence of obesity worldwide (an approximate

doubling in the last 30 years), the inverse relationship between

obesity and socioeconomic class, and the secular trend toward

increasing obesity in developing countries associated with

urbanization provide clear evidence of the environmental influ-

ences on weight gain (Ogden et al., 2014; Popkin, 2006). The

adoption of relatively sedentary lifestyles due to reduced

physical activity at work and in leisure time coupled with an

abundance of easily available, energy-rich, highly palatable

foods represents a nutrition transition that, according to the

World Health Organization, is now one of the greatest risk

factors for ill health worldwide (http://www.hsph.harvard.edu)

(Figure 1). Interestingly, some recent analyses of trends in

obesity prevalence have suggested a decline or stabilization of

obesity prevalence, especially in children in the US and some

European countries, findings that are consistent with dynamic

models using prevalence data and birth and death rates (Ogden

et al., 2014; Thomas et al., 2014). However, many countries have

either increasing (China) or decreasing (European countries)

birth rates, so the potential global impact of these estimations

is not readily predictable. Recent studies show that second-

generation migrants to the US from all ethnic groups are heavier

than their parents who migrated but that people from some

ethnic groups are more likely to gain weight than others upon
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transitioning to a more obesogenic environment (Singh and

Lin, 2013), suggesting that, in addition to strong environmental

drivers, genetic factors play a role in influencing obesity

susceptibility.

Individual Susceptibility to Weight Gain Is Highly
Variable—Role of Genetic Factors
In any environment, whether energy rich or energy lacking, there

is considerable individual variation in body weight and fat mass,

suggesting that human adiposity is influenced by complex

interactions between genetic, developmental, behavioral, and

environmental influences. Evidence for genetic contributions

to body weight comes from family, twin, and adoption studies,

which cumulatively demonstrate that the heritability (fraction

of the total phenotypic variance of a quantitative trait attribut-

able to genes in a specified environment) of BMI is between

0.71 and 0.86 (Silventoinen et al., 2008). Heritability estimates

can change over time and can differ between populations.

Recent studies in a UK sample of 5,092 twin pairs aged 8–11

years growing up during a time of dramatic rises in obesity

confirmed substantial heritability for BMI and waist circumfer-

ence (77% for both), while there was a very modest shared-

environment effect, and the remaining environmental variance

was unshared (Wardle et al., 2008b). Interestingly, similar herita-

bility estimates have been found when studying monozygotic

and dizygotic twins who were reared together and apart (Allison

et al., 1996) and in adoption studies in which adopted children

were discovered to have body sizes that were more similar to

those of their biological parents than their adopted parents

(Sørensen et al., 1989).

The high heritability of phenotypes related to obesity supports

the contribution of genetic factors but does not indicate the num-

ber of genes or how those genes interact with environmental

factors. The ‘‘thrifty gene hypothesis’’ suggests that we harbor

genetic variants that favor efficient food collection and fat depo-

sition to survive periods of famine and that, in the face of the easy

availability of food, these genes/variants are disadvantageous.

However, an alternative hypothesis is that obesity is selected

against by the risk of predation. This hypothesis suggests that

random mutations and genetic drift, rather than directed selec-

tion, have influenced changes in the population distribution of

fat mass that may be more readily reconcilable with the findings

that, even in Western societies, most people are not obese

(Speakman, 2007).

Evidence for the interaction of inherited factors with changes

in energy intake and expenditure was provided by landmark

experimental overfeeding studies by Bouchard and colleagues,

who showed that weight gain induced by overfeeding mono-

and dizygous twin pairs under direct supervision was highly

correlated within twin pairs but varied widely among pairs of

twins (Bouchard et al., 1990). Similarly, the response to negative

energy balance via an exercise regime was also heritable (Bou-

chard et al., 1996). Notably, the inter-twin correlations were

greater for weight loss than for weight gain, suggesting tighter

biological control of the response to negative energy balance.

Hypothalamic Circuits Regulating Energy Homeostasis
Ultimately, signals from cumulative genetic and environmental

influences that reflect changing energy status have to be de-

tected and integrated by brain circuits that can, through their

projections, regulate energy balance. In the early 1900s, clinical

reports of patients with tumors involving hypothalamo-pituitary

structures associated with food-seeking behavior and obesity

suggested that the hypothalamus may be involved in the regu-

lation of body weight. Chemical and electrolytic lesioning ex-

periments in animals in the 1930s and 1940s established the

key role of the hypothalamus in the regulation of energy homeo-

stasis. The degree of weight gain/weight loss seen in these ex-

periments was, in part, determined by the size and precise

location of the lesions, which suggested that there were spe-

cific hypothalamic circuits that promote or suppress feeding

behavior (Anand and Brobeck, 1951; Hetherington and Ranson,

1940).

The hypothalamus is essentially a hub for key circuits that

integrate sensory inputs; compare those inputs to basic ‘‘set

points,’’ or parameters for body temperature, electrolyte

balance, sleep-wake cycle, circadian rhythms, and energy ho-

meostasis; and then initiate a set of responses by activating

autonomic, endocrine, and behavioral outputs that aim to main-

tain these set points (homeostasis). The hypothalamus regulates

autonomic nervous system activation via neurons that directly

innervate parasympathetic and sympathetic preganglionic neu-

rons, as well as neurons in the brainstem that control autonomic

reflexes. Individual pre-autonomic neurons project to multiple

levels of the spinal cord, where they selectively innervate end

organs such as the heart, kidney, and adipose tissue. Autonomic

innervation of the pancreas contributes to the regulation of insu-

lin and glucagon secretion.

Figure 1. Contribution of Genes and Environmental Factors to

Weight Gain
Human adiposity is influenced by complex interactions between genetic and
environmental influences. The current environment potently facilitates the
development of obesity. Abundance of highly processed food has a major
impact on energy intake, whereas numerous other environmental factors, such
as television watching, leisure activities, and transport, negatively affect
energy expenditure. In any environment, there is a variation in body fat andBMI
in large part influenced by genetic variation disrupting energy homeostasis by
either decreasing energy expenditure or increasing energy intake.
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Molecular Characterization of the Circuits Involved in
Energy Homeostasis
While the location of the neural circuits regulating energy homeo-

stasis was apparent from the early 1930s, a critical advance

came as a result of parabiosis experiments in inbred strains of

mice with severe obesity (ob/ob and db/db), which suggested

the existence of a circulating factor that regulated weight (Cole-

man, 1973; Coleman and Hummel, 1969). The identification of

this hormone, leptin, through positional cloning of the ob gene

that was mutated in severely obese ob/ob mice (Zhang et al.,

1994) paved the way for the identification and characterization

of the neural circuits regulating energy homeostasis. Normaliza-

tion of the phenotype of severely obese leptin-deficient ob/

ob mice (characterized by increased food intake, reduced

energy expenditure, hypogonadism, low thyroid hormone levels,

elevated levels of corticosterone, and low blood pressure), by

central leptin administration proved that leptin is a key regulator

of energy homeostasis (Campfield et al., 1995; Halaas et al.,

1995; Pelleymounter et al., 1995).

Leptin—A Master Regulator of Human Energy
Homeostasis
Early human studies showing that leptin mRNA concentrations in

adipose tissue and serum leptin concentrations correlated posi-

tively and very closely with the amount of fat mass (Considine

et al., 1996; Maffei et al., 1995) led to the notion that leptin’s

primary role was to signal increasing energy stores. However,

it rapidly became clear that most people are relatively resistant

to rising endogenous or exogenously administered leptin

(Heymsfield et al., 1999). Instead, leptin’s physiological role in

humans, as in mice (Ahima et al., 1996), appears to be to signal

nutritional depletion, such that fasting or weight loss results in a

Figure 2. Leptin: A Master Regulator of Hu-

man Energy Homeostasis
The adipocyte-derived hormone leptin signals
nutritional depletion and initiates a series of
changes in energy intake, energy expenditure,
autonomic nervous system tone, and neuroendo-
crine function in order to maintain energy homeo-
stasis. The hypothalamus primarily coordinates
many of these processes and also regulates
circadian rhythms, temperature, and sleep.
Through neuronal connections to the amygdala
and periaquaductal gray (PAG) the hypothalamus
also modulates a range of behaviors and moods
such as stress, anger, anxiety, and aggression. Via
its connections to the brainstem—direct and indi-
rect via the cortex—neurons in the hypothalamus
modulate autonomic nervous system tone which,
in turn, influences many metabolic processes in
peripheral tissues, such as the liver, pancreas,
heart, and gut. Beyond energy homeostasis, leptin
also has important effects on immune function and
puberty.

fall in leptin levels (Chan et al., 2003),

which then triggers a series of changes

in energy intake, energy expenditure,

and neuroendocrine function in order to

maintain energy homeostasis.

Evidence supporting leptin’s role in human physiology

emerged from the identification and characterization of severely

obese people with homozygous loss-of-function mutations that

reduce the production, secretion, or biological activity of leptin

(Montague et al., 1997; Strobel et al., 1998; Wabitsch et al.,

2015) or disrupt signaling through the leptin receptor (Clément

et al., 1998; Farooqi et al., 2007b). While these disorders are

rare, being found in 1%–5%of patients with severe obesity, their

characterization has demonstrated that leptin regulates energy

balance, neuroendocrine pathways, and the autonomic nervous

system (Figure 2). These genetic findings have been supported

and extended by elegant studies bymany investigators in normal

weight in the context of fasting or the weight-reduced state

(Rosenbaum et al., 2002, 2005; Welt et al., 2004) and in patients

with lipodystrophic syndromes characterized by relative leptin

deficiency due to a loss of adipose tissuemass (Oral et al., 2002).

Impaired leptin signaling in humans is characterized by an

intense drive to eat (hyperphagia), reduced sympathetic tone,

mild hypothyroidism, hypogonadism, and impaired T-cell-medi-

ated immunity, features that are reversed with the administration

of recombinant human leptin in people with mutations in the lep-

tin gene (Farooqi et al., 1999, 2002; Licinio et al., 2004; Ozata

et al., 1999). Leptin also appears to be a major driver of the in-

crease in blood pressure seen with weight gain, as blood pres-

sure is low in obese mice and humans with disrupted leptin

signaling (in contrast to diet-induced obesity in rodents/more

common forms of obesity in humans) (Simonds et al., 2014).

Leptin mediates its effects by binding to the long form of the

leptin receptor expressed on hypothalamic neuronal populations

in the arcuate nucleus of the hypothalamus and other brain re-

gions (Munzberg and Myers, 2005). While homozygous muta-

tions that disrupt the expression, binding activity, and signaling
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of the LEPR have been reported (Clément et al., 1998; Farooqi

et al., 2007b), mutations that disrupt the downstream signaling

cascade have not as yet been clearly associated with obesity.

One possible exception is the adaptor molecule, Src homology

2 (SH2) B adaptor protein 1 (SH2B1), which is a key endogenous

positive regulator of leptin sensitivity (Maures et al., 2007).

However, SH2B1mutations have not been shown to disrupt lep-

tin sensitivity, and SH2B1 modulates signaling by a variety of

receptor tyrosine kinases, which may explain the additional phe-

notypes, including severe insulin resistance and behavioral ab-

normalities, reported in mutation carriers (Doche et al., 2012).

Leptin as a Therapeutic Agent
Recombinant human leptin (metreleptin) is highly effective in pa-

tients with no circulating or bioinactive leptin and in those with

low endogenous levels with exercise-induced amenorrhea and

lipodystrophy. Recombinant leptin has been administered suc-

cessfully to patients with congenital leptin deficiency for more

than 15 years on a named patient basis and was recently

approved by the Food and Drug Administration (FDA) for the

treatment of generalized lipodystrophy. In contrast, metreleptin

has minimal efficacy for more common forms of obesity, which

may represent a leptin-tolerant or leptin-resistant state (Heyms-

field et al., 1999). In a recent clinical trial, leptin administered in

combination with another weight loss agent, pramlintide, a syn-

thetic analog of the pancreatic peptide amylin, had beneficial

effects on weight loss, although the precise mechanisms under-

lying these effects are not entirely clear (Smith et al., 2007). A

number of intervention studies have shown that some of the

counter-regulatory responses to caloric restriction can be modi-

fied by leptin administration, including changes in skeletal mus-

cle and autonomic and neuroendocrine adaptation (Rosenbaum

et al., 2002, 2005). This form of intervention could be a useful

adjunct in weight-loss maintenance, an area that merits further

exploration.

Melanocortin Peptides and Their Receptors
Leptin stimulates primary neurons in the arcuate nucleus of the

hypothalamus, which express pro-opiomelanocortin (POMC),

which is posttranslationally processed to yield the melanocortin

peptides (alpha, beta, and gamma MSH), which are agonists

at melanocortin 3 and 4 receptors (Mc3r and Mc4r) expressed

on second-order neurons. Leptin signaling modulates energy

balance through a combination of melanocortin-dependent/

independent pathways. These hypothalamic pathways interact

with other brain centers to coordinate energy intake and energy

expenditure (Morton et al., 2014).

Several lines of evidence support the critical role of melano-

cortin signaling in human energy balance. Homozygous null

mutations in POMC result in severe obesity (Krude et al.,

1998), while heterozygous loss-of-function mutations in a- and

b-melanocyte-stimulating hormone (a- and b-MSH) significantly

increase obesity risk (Biebermann et al., 2006; Lee et al., 2006).

Targeted genetic disruption of Mc4r in mice leads to increased

food intake, increased lean mass, and linear growth (Huszar

et al., 1997), phenotypes that overlap entirely with those seen

in humans with loss-of-function mutations in MC4R (Farooqi

et al., 2003). Heterozygous MC4R mutations are found in 2%–

5% of people with childhood-onset obesity, making this the

commonest gene in which highly penetrant variants contribute

to obesity (Farooqi et al., 2000; Vaisse et al., 2000). Most dis-

ease-causing MC4R mutations disrupt the expression and traf-

ficking of MC4R to the cell surface (Lubrano-Berthelier et al.,

2006; Xiang et al., 2006). In cells, pharmacological chaperones

can increase cell surface expression and signaling of mutant

GPCRs, which represents a potentially rational therapeutic

approach for this condition (René et al., 2010).

As complete loss-of-functionMC4Rmutations are associated

with a more severe form of obesity than partial loss-of-function

mutations (Farooqi et al., 2003), modulation of melanocortinergic

tone has been the focus of drug development strategies for

some time. However, despite promising pre-clinical studies,

the first generation of MC4R agonists were small molecules

that failed primarily due to safety issues (Van der Ploeg et al.,

2002), particularly increases in blood pressure. Loss-of-function

MC4R mutations are associated with a reduced prevalence

of hypertension, low systolic blood pressure, lower urinary

noradrenaline excretion, and reduced peripheral nerve sympa-

thetic nervous system activation, revealing that MC4R-express-

ing neurons represent a key circuit linking changes in weight with

changes in blood pressure (Greenfield et al., 2009; Sayk et al.,

2010). More recently, a potent melanocortin receptor agonist,

RM-493, has been administered as part of a Phase 1B proof-

of-concept clinical trial in obese patients, including one cohort

of patients with heterozygous loss-of-function mutations in

MC4R, in whom there was promising weight loss after 4 weeks.

If this compound moves forward, this may be one of the first ex-

amples of a personalized medicine approach for treating obesity

in people with a genetically characterized subtype of obesity.

Processing and Trafficking of Melanocortin Peptides
and Receptors
Melanocortin peptides are processed by enzymes including

prohormone convertase 1 (PCSK1), which is involved in the

cleavage of the precursor peptide POMC into ACTH, which is

then further cleaved to generate a-MSH by carboxypeptidase

E (Pritchard et al., 2002). Impaired POMC processing may

contribute to the obesity seen in people with homozygous/

compound heterozygous mutations in PCSK1 who also have

glucocorticoid deficiency, hypogonadotropic hypogonadism,

and postprandial hypoglycaemia (as a result of impaired pro-

cessing of proinsulin to insulin) (Jackson et al., 1997; O’Rahilly

et al., 1995). Impaired processing of gut-derived peptides may

contribute to the neonatal enteropathy seen in PCSK1 deficiency

(Jackson et al., 2003; Martı́nı et al., 2013). Intriguingly, common

variants that affect the enzymatic activity of PCSK1 have

been associated with obesity in multiple European, Asian, and

Mexican populations, providing a clear example where both

common and rare variants in the same gene can influence a

spectrum of variation in body weight (Benzinou et al., 2008;

Choquet et al., 2013; Rouskas et al., 2012).

Several human obesity disorders (e.g., Alstrom syndrome and

Bardet-Beidl syndrome) disrupt genes involved in ciliary function

(Ansley et al., 2003). The role of neuronal cilia in protein traf-

ficking—in particular, of GPCRs involved in energy homeostasis

as well as in leptin signaling (Ainsworth, 2007)—is beginning to
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emerge. Furthermore, conditional postnatal knockout of proteins

involved in intraflagellar transport in neurons and specifically

when targeted to pomc neurons in mice results in hyperphagia

and obesity (Davenport et al., 2007).

Additionally, there is currently a great deal of interest in identi-

fying chaperones and accessory proteins that might modulate

melanocortin signaling and melanocortin-dependent pathways.

Mrap2, an accessory protein that interacts withMc4r (and poten-

tially other GPCRs) (Sebag et al., 2013) leads to obesity when

disrupted in mice (Asai et al., 2013). Rare variants in MRAP2

have been associated with severe obesity in humans, although

the detailed molecular mechanisms underlying this association

are not known (Asai et al., 2013).

Development and Maintenance of Neural Circuits
Involved in Eating Behavior
Functional dissection of the neuronal circuits involved in the

regulation of energy balance has until recently been limited

to dissecting relatively simple linear relationships between

neuronal populations that, in reality, are likely to be overlapping

and interconnected. Peripheral signals such as leptin can modu-

late the development and maintenance of these neural circuits

(Bouret et al., 2004) and their ability to adapt signaling by altering

synaptic inputs (Pinto et al., 2004). While our current understand-

ing of the dynamic and integrated nature of these neuronal

networks is still at an early stage, optogenetic tools and other

methodologies that permit the manipulation of gene expression

in specific populations of neurons are paving the way for major

advances in our understanding of the neural circuits connecting

Figure 3. Neural Circuits Involved in Eating

Behavior
Neural control of essential behaviors like eating
requires the integration of multiple neural signals
from different nodes in the brain. Dopaminergic
circuits in regions such as the striatum (2), ventral
tegmental area (5), and amygdala (7) encode
motivational salience and wanting. Opioidergic
circuits in regions such as the nucleus accumbens
and the ventral pallidum (4) encode hedonic liking.
These brain areas and others are integrated with
the hypothalamus, cortical areas, and brainstem
areas in the regulation of appetite and food
intake. Brain regions: (1) prefrontal cortex, (2)
dorsal striatum, (3) hippocampus, (4) nucleus ac-
cumbens/ventral pallidum, (5) ventral tegmental
area, (6) hypothalamus, (7) amygdala, (8) nucleus
of solitary tract, (9) gustatory/somatosensory
cortex.

brain regions that contribute to the modu-

lation of eating behavior (Betley et al.,

2013; Wu et al., 2009) (Figure 3).

Several lines of evidence suggest

that brain-derived neurotrophic factor

(BDNF), a nerve growth factor that signals

via the tyrosine kinase receptor tropomy-

cin-related kinase B (TrkB), is important

not only in energy balance, but also

in anxiety and aggression. Haplo-insuffi-

cient mice and mice in which BDNF has

been deleted postnatally are obese with hyperphagia and hyper-

activity (Lyons et al., 1999; Xu et al., 2003); this unusual combi-

nation of phenotypes is also seen in individuals with genetic

disruption of BDNF and TrkB (Gray et al., 2006; Yeo et al.,

2004). While a Trkb agonist results in weight loss in mice (Tsao

et al., 2008), central administration had no effect on food intake

in primates (Perreault et al., 2013). Its potential utility in the treat-

ment of a number of neurodegenerative diseases is still being

explored (Yang et al., 2014).

Sim1 is a transcription factor involved in the development of

the paraventricular and supraoptic nuclei of the hypothalamus

and additionally may mediate signaling downstream of Mc4r

(Michaud et al., 1998). Sim1 haplo-insufficiency in mice and de-

letions, balanced translocations, and loss-of-function mutations

in humans cause severe obesity (Bonnefond et al., 2013; Holder

et al., 2000; Ramachandrappa et al., 2013). Oxytocin mRNA

levels are reduced in mouse models of Sim1 deficiency, and

oxytocin administration reduces food intake in Sim1-haploinsuf-

ficient animals (Kublaoui et al., 2008). Impaired oxytocinergic

signaling has also been implicated in the hyperphagia and

obesity seen in Prader-Willi Syndrome (PWS) (Swaab et al.,

1995), caused by lack of expression of a cluster of maternally im-

printed snoRNAs on chromosome 15 (Sahoo et al., 2008). Peo-

ple with PWS and with SIM1 mutations exhibit a spectrum of

behavioral abnormalities that overlap with autism-like features

and could be related to reduced oxytocinergic signaling (Rama-

chandrappa et al., 2013), although this has not been tested.

Central administration of oxytocin in rodents is anorexigenic,

and rodents that lack oxytocin or the oxytocin receptor become
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obese (Olson et al., 1991). The exact sites of action of locally

released oxytocin are unknown but likely involve areas with

high oxytocin receptor expression, such as the VMH and amyg-

dala. a-MSH, through its effects on MC4R, induces dendritic

release of oxytocin, and this locally released oxytocin may be

involved in the regulation of appetite (Sabatier et al., 2003). Mod-

ulation of central oxytocin signaling therefore forms another

potential target in the treatment of obesity (Morton et al., 2014).

Neural Circuits Involved in Eating Behavior
The most consistent phenotype associated with genetic disrup-

tion of leptin-melanocortin signaling in humans is hyperphagia,

an increased drive to eat (O’Rahilly and Farooqi, 2008). Addition-

ally, detailed characterization of eating behavior in large

numbers of twins suggests that eating behavior phenotypes

such as satiety responsiveness, eating in the absence of hunger,

reinforcing value of food, and the capacity to voluntarily inhibit

eating are potentially heritable components of eating behavior

(Carnell et al., 2008).This is not surprising, as one of the primary

functions of the brain during periods of negative energy balance

is to reprioritize behavioral outputs to obtain and consume food,

thereby replenishing depleted energy stores. Ensuring sufficient

energy stores is critical for survival of the species and, based on

our understanding in other mammalian species, multiple pro-

cesses that defend against starvation and fasting are hardwired.

In addition to this homeostatic regulation of eating behavior,

which is driven by energy demands, hedonic food intake (i.e.,

beyond the need for energy repletion) in response to the

rewarding properties of food (Kenny, 2011) is an important

contributor to overeating. The palatability of a particular food

source is assumed to be related to the flavor and taste of that

food; high-fat diets are generally considered more palatable

than low-fat diets and are preferentially overconsumed. Neural

circuits involving the amygdala, the striatonigral pathway, orbito-

and prefrontal cortex, and hippocampus have been implicated

in transposing motivational aspects of stimuli into motor re-

sponses, as well as in hedonic evaluation of the stimulus and

associative learning about the hedonic properties of food

(Figure 3). Food reward has been considered to be encoded by

distinct neural substrates, opioidergic brain pathways mediating

liking (pleasure/palatability), whereas the wanting of food (incen-

tive motivation) appears to be mediated by dopaminergic cir-

cuits (Berridge, 1996; Pecina et al., 2003). The overarching role

of these responses is to shift attention and effort toward obtain-

ing food reward.

Hormonal regulators of energy homeostasis can also act on

brain reward circuits, most notably on the mesoaccumbens

dopamine system, to increase or decrease the incentive value

of food depending on energy requirements. This suggests that

obtaining the pleasurable effects of food is a powerful moti-

vating force that can override homeostatic satiety signals, and

in agreement with this, meals that consist of palatable food

are generally consumed with greater frequency and in greater

portion size than those consisting of less palatable food. As a

single meal of increased portion size can trigger increased

food intake over several days, such hedonic overeating is likely

to be an important contributor to weight gain and the develop-

ment of obesity.

Human Brain Imaging Studies—Insights into Food
Reward
Neural processes such as food reward can be challenging to

measure in humans. Imaging studies using functional MRI

(fMRI) permit the measurement of blood-oxygen-level depen-

dent (BOLD) signals that reflect neural activity in specific regions

involved in the response to food cues (Selvarajah et al., 2014).

Pictures of food activate dopaminergic regions such as ventral

striatum, and these effects are modulated by homeostatic state

(Ziauddeen et al., 2012). In leptin-deficient humans, images of

food (compared to non-food images) are associated with a

marked increase in neuronal activation in the ventral striatum

(Farooqi et al., 2007a). This response was normalized by

7 days of leptin treatment before significant weight loss had

occurred, consistent with the view that activation in the ventral

striatum does not directly encode the ‘‘liking’’ but, rather, the

motivational salience, or ‘‘wanting,’’ of food. Studies in obese

volunteers in an energy-restricted, partially leptin-deficient state

are consistent with the view that these responses are part of the

physiological response to energy restriction (Rosenbaum et al.,

2008) and are in keeping with findings in experimental studies

in rodents (Fulton et al., 2006; Hommel et al., 2006).

Compared to obese controls, obese people withMC4Rmuta-

tions have a preserved pattern of activation of the reward system

to visual food cues, suggesting involvement of MC4R in the

dopaminergic reward circuitry in humans (van der Klaauw

et al., 2014). These findings are supported by evidence in ro-

dents, which suggests that melanocortin signaling modulates

food reward. Of note, fMRI studies in Prader-Willi Syndrome

have also shown higher neural activity to food cues in reward

areas compared to matched obese controls such as accum-

bens, amygdala, and ventromedial prefrontal cortex (Hinton

et al., 2006).

The m-opioid receptor system that subserves the neural sub-

strates of ‘‘liking of food’’ is a key mediator in the hedonic valu-

ation process of food intake. In addition, m-opioid receptors

were found to mediate the autoinhibition of b-endorphin on hy-

pothalamic pomc neurons (Cowley et al., 2003). Antagonism of

m-opioid receptors thus likely results in alterations of hedonic

valuation of food as well as potentially attenuates downregula-

tion of pomc neuronal activity. Indeed, in humans, the m-opioid

receptor antagonist naloxone reduces the hedonic responses

to, and consumption of, palatable foods. In clinical trials, the

m-opioid receptor antagonist GSK1521498 reduces the hedonic

response to and motivation for high-fat foods (Ziauddeen et al.,

2013). Recently, the combination of naltrexone, an opioid recep-

tor antagonist with high affinity for the m-opioid receptor, and

bupropion, an atypical antidepressant that inhibits reuptake of

dopamine and norepinephrine and increases activity of POMC

neurons (Contrave) was approved for treatment of obesity by

the FDA.

Taste and Food Preference
The orosensory properties of foods are perceived through a

combination of taste, texture, and olfaction. The heritability of

taste is well established in twin and family studies, with heritabil-

ity estimates of 30%–50% for pleasantness, consumption, and

cravings for sweet foods (Keskitalo et al., 2008). The central
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sensing mechanisms for nutrients and quality of food have only

recently become the subject of studies. Fat provides twice as

many calories per gram as protein or carbohydrate. It is well

established that palatable food that is rich in fat and refined

sugars promotes larger meal sizes, less postprandial satiety,

and greater caloric intake than diets that are high in carbohy-

drates but low in fat (Salbe et al., 2004). Traditionally, there

have been contrasting perspectives on the mechanisms under-

lying food palatability. The homeostatic view of palatability sug-

gests that palatability reflects the underlying biological need for

nutrients, while the hedonic view of palatability suggests that

certain foods engage reward processing and are therefore palat-

able. Studies in rodents have suggested that specific neural

pathways, for example, involving the melanocortin-4 receptor

(Mc4r(( ), play a role in the preference for dietary fat and against di-r

etary sucrose (Panaro andCone, 2013). To date, very few studies

have addressed the preference for specific nutrients in humans,

although twin studies have found heritability estimates of 53%–

62% for the intake of/preference for foods that are high fat/

sucrose. There is considerable research being performed within

the food industry focusing on the development of foods that offer

some of the sensory properties of fat (fat mimetics) but do not

have a high fat content. The potential to modify foods for health

benefits is an area of considerable development; such work will

need to take into consideration an understanding of the funda-

mental biology that underpins aspects of eating behavior.

Gut-Derived Satiety Signals
Peptides such as ghrelin, peptide YY (PYY), and glucagon-like

peptide 1 (GLP-1) are secreted from gut entero-endocrine cells

in response to meal ingestion and the presence of nutrients in

the intestinal lumen (Batterham et al., 2002; Turton et al.,

1996). Pioneering human infusion studies have demonstrated

that a number of gut peptidesmodulate food intake when admin-

istered acutely in humans (Tan and Bloom, 2013), suggesting

that modulating satiety signals could be a useful therapeutic

strategy in obesity (Finan et al., 2015). The synthetic GLP-I re-

ceptor agonist liraglutide has recently been approved for the

treatment of obesity alone by the FDA. Several other gut peptide

analogs, as well as gut hormone receptor agonists, are currently

being studied in clinical trials (Tan and Bloom, 2013).

Satiation, the sensation of fullness that results in meal termina-

tion and satiety, the persistence of fullness that determines the

timing to the next meal, are heritable traits that influence weight

gain (Carnell et al., 2008). Although common obesity seems to

be associated with low circulating PYY levels (Batterham et al.,

2006), rare genetic variants in PYY or its receptors have not

been associated with obesity. Fasting ghrelin levels have been

found to be increased in children (Haqq et al., 2003) and adults

with PWS (Cummings et al., 2002), potentially contributing to the

hyperphagia and impaired satiety associated with this syndrome,

although the potential mechanisms involved are not known.

Additionally, there is a growing literature on changes in the

composition of the gut microbiome in response to acute/short-

term changes in the diet, chronic states such as obesity and bar-

iatric surgery (Turnbaugh et al., 2006), and the impact of specific

organisms on nutrient absorption and on metabolic parameters

in mice and humans (Cox et al., 2014).

Targeting Energy Expenditure
A number of large family-based population studies, most notably

the Quebec family study, have addressed the contribution

of genetic versus environmental factors to energy expenditure,

including physical activity (Pérusse et al., 1989). For example,

the heritability of exercise participation is entirely accounted

for by common familial environment, while for physical activity

level, the heritability is �20%. As such, promotion of increased

levels of physical activity is a useful strategy for weight loss

and, in particular, for weight maintenance.

In contrast, basal metabolic rate (BMR) and respiratory

quotient (ratio of carbohydrate versus fat oxidation; a marker of

substrate utilization) are highly heritable (47% and 36%, respec-

tively) (Bouchard and Tremblay, 1990). Very few genes have

been shown to modulate BMR in humans, although the reduced

basal metabolic rate reported in obese people harboring loss-

of-function mutations in the cellular scaffolding protein KSR2

(kinase suppressor of Ras2) suggests that genetic variation in

energy expenditure phenotypes may contribute to weight gain

in some individuals (Pearce et al., 2013). In this study, almost

all of the KSR2 variants identified in obese individuals impaired

glucose oxidation and fatty acid oxidation in cells, suggesting

a defect in substrate utilization, which was rescued by the addi-

tion of metformin. Further work will be needed to see whether

these observations can be replicated in experimental clinical

studies and to investigate the cellular mechanisms underlying

these effects which, in part, may be mediated by the interaction

of KSR2 with the cellular fuel sensor, AMP-kinase (Brommage

et al., 2008; Costanzo-Garvey et al., 2009).

The development of compounds that might increase energy

expenditure is being explored as a possible therapeutic strategy.

One potential route is to activate brown adipose tissue, thereby

generating heat through uncoupling protein 1 (UCP1) (Lowell and

Spiegelman, 2000). UCP1-positive cells in white adipose tissue

depots in rodents (often called beige/brite cells) can be stimu-

lated to dissipate energy by thermogenesis and pharmacological

stimulation of these processes, potentially through circulating

myokines that drive brown-fat-like development (Wu et al.,

1999), has attracted the interest of a number of pharmaceutical

companies. Although UCP1-positive cells that show similarity

tomurine beige adipocytes have been found in human fat depots

(Wu et al., 1999), the translation of these findings in rodents to

therapies that can be administered safely in humans presents

some challenges. For example, what influences the exact

amount of brown fat and/or beige fat available in adult humans,

and can this be increased? To what extent do sex steroids (or

other gender-specific factors) influence the activity/quantity of

brown/beige fat, as women seem to have more than men (Cyp-

ess et al., 2009)? How much extra energy would be expended

through the stimulation/overstimulation of such processes, and

would this be clinically relevant? Would an increase in energy

expenditure lead to a compensatory increase in food intake,

and how might such an effect be managed?

Building an Integrated View of the Pathways that
Regulate Energy Homeostasis
Given the complexity of neurobiological processes underlying

body weight homeostasis, it is likely that future drugs will need
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to be directed at highly specific targets and may consist of com-

binations of compounds that target different mechanisms, as

illustrated by recent studies demonstrating the efficacy of dual

melanocortin-4 receptor and GLP-1 receptor agonism (Clem-

mensen et al., 2015). The central and peripheral regulation of

food intake, energy expenditure, physical activity, fat absorption,

and oxidation are all being explored as potential mechanisms

that can be targeted in rodent studies. In parallel, genetic ap-

proaches into human eating behavior and obesity may inform

the focus of experimental approaches in rodents and might

generate new potential drug targets in which the potential

relevance to humans may be established at an earlier stage

than has previously been the case.

Common Genetic Variants and Genome-wide
Association Studies
Genetic influences are likely to operate across the weight spec-

trum but may bemore penetrant when studying childhood-onset

obesity and at both extremes of the BMI distribution—thinness

and severe obesity. Genetic variance depends on the nature

and amount of mutational variance in a population, the segrega-

tion and frequency of the alleles that influence a trait in a partic-

ular population, the effect sizes of the variants (which may be

additive or non-additive), the mode of gene action, and the

degree of genetic control of phenotypic variance of the trait in

question (Figure 4).

Genome-wide association studies (GWAS) seek to identify the

common variants (minor allele frequency [MAF] of more than 5%)

that contribute to the heritability of common diseases. High-

throughput arrays have facilitated the genotyping of thousands

of common variants (directly or by imputation) in large popula-

tion-based cohorts on whom BMI data is available. The first

GWAS-derived loci to be reported were intronic variants in

FTO (fat mass and obesity associated) and a variant �200 kb

downstream of MC4R (Dina et al., 2007; Frayling et al., 2007;

Loos et al., 2008). To date, more than 80 genetic loci associated

with BMI and body fat distribution (often measured by waist-to-

hip ratio) have been identified by GWAS approaches, and many

of these have been replicated in different populations and ethnic-

ities (Locke et al., 2015). GWAS in childhood-onset obesity and

in severely obese children and adults have shown that there is

some overlap between the common variants that contribute to

early-onset and adult-onset weight gain, but also that both of

these approaches can identify novel variants (Bradfield et al.,

2012; Wheeler et al., 2013). Cumulatively, the common variants

identified in GWAS are characterized by modest effect sizes

(per allele odds ratios between 1.1 and 1.5), and the proportion

of variability of BMI explained by GWAS-identified loci to date

remains relatively modest (< 5%). Nevertheless, variants that

explain a small proportion of phenotypic variance may provide

substantial biological or therapeutic insights, although the road

to establishing causal variants and their functional relevance is

often a challenging one.

GWAS-associated loci are often identified by the name of the

nearest gene; this may or may not be the gene in which variation

contributes to variation in BMI. Some of the GWAS loci encom-

pass genes previously appreciated to play a role in energy

homeostasis (e.g., LEPR, SH2B1, MC4R, BDNF),FF and in some

cases, specific variants have been associated with changes in

expression based on eQTL data (Wheeler et al., 2013). Other

loci contain genes that seem to be plausible biological candi-

dates or can suggest genes for which there was no previous

evidence (Locke et al., 2015). Many of the signals identified to

date map to non-coding regions of the genome that may poten-

tially be involved in gene regulation.

The strongest association signal for BMI has consistently

been found with variants in the first intron of FTO, which have

been associated with increased BMI and eating behavior in a

number of studies (Cecil et al., 2008; Wardle et al., 2008a).

Deletion or overexpression of fto and other genes in this region

(IRX3(( , RPGRIP1L) in rodents (Church et al., 2010; Fischer

et al., 2009; Gerken et al., 2007; Stratigopoulos et al., 2008)

(Smemo et al., 2014) can impact energy homeostasis. Despite

these obvious challenges, these studies have demonstrated

progress toward identifying new biology based on GWAS

(Tung et al., 2014).

Is there yet more common variation to find? Newly developed

statistical methods that assess the contribution of common

genetic variation across the genome (Zhu et al., 2015) support

the growing consensus that there is a long tail of common

Figure 4. Types of Genetic Variation Contributing to Body Weight Regulation
Genetic effects on body weight are mediated by different types of variants, their frequency in the population, and the effect of the variant on the phenotype.
Variants include single-nucleotide variations in which only one nucleotide is changed, copy number variations in which a stretch of DNA is repeated or deleted
(often containing many genes), or small insertions and deletions of a few base pairs. Common variants are found at a minor allele frequency (MAF) of more than
5% in a population, whereas intermediate (1%–5%) and rare variants (< 1%) are found at lower frequencies. Generally, the effect size of common obesity-
associated variants on body weight is modest. Several rare variants have been associated with severe obesity.
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variation. As such, meta-analyses of even larger population-

based data sets are currently underway. The available evidence

suggests that BMI is highly polygenic (high number of contrib-

uting genes) (Gusev et al., 2014). One of the challenges of

such studies is how to capture the full spectrum of genetic vari-

ation (Figure 4), including complex multi-allelic CNVs, which

show lower linkage disequilibrium with surrounding SNPs and

are consequently less detectable by conventional SNP-based

genome-wide association studies. For example, in a large fam-

ily-based association study of Swedish families ascertained

through the identification of siblings who were discordant for

obesity, integrating data from CNV analysis with transcriptomic

data from adipose tissue revealed an association with copies of

AMY1 with obesity (Falchi et al., 2014).

Finding New Rare Highly Penetrant Variants
Rare variants, which outnumber common variants in the human

genome, may explain a proportion of the heritability of obesity

and may be more readily identified at the extremes of the

phenotypic distribution. The earliest studies were performed in

children with clinically identifiable syndromes often associated

with developmental delay or dysmorphic features as well as

obesity. Rare CNVs that often disrupt a number of genes have

recently been implicated in highly penetrant forms of obesity

(Bochukova et al., 2010; Walters et al., 2010). Candidate gene

studies based on the molecules known to cause severe obesity

in experimental animals have shown that these genes also

contribute to childhood-onset human obesity, often in the

absence of developmental delay. The functional and physiolog-

ical characterization of these mutations and of the mutation

carriers has illustrated a high degree of convergence of the

mechanisms that regulate energy balance across mammalian

species.

Exome sequencing of cohorts with severe childhood-onset

and adult-onset obesity, as well as those at the extremes of

the BMI distribution in population-based cohorts, is well under-

way and may lead to the identification of new genes whose

functions will need to be explored in cells, model organisms,

and humans. Whole-genome sequencing provides the ‘‘most

complete’’ view of genomic variation but poses challenges in

terms of proving causality, but these are beginning to be ad-

dressed. Recent studies have now shown that human inducible

pluripotent stem cell (iPSC)-derived neurons may facilitate a

mechanistic understanding of how specific genes disrupt

cellular and neuronal mechanisms that may be involved in the

pathogenesis of obesity (Wang et al., 2015).

Therapeutics Opportunities in Obesity
Lifestyle modification remains the first step in weight manage-

ment.While intervention programs that focus on supporting peo-

ple to change their diet and/or levels of physical activity can be

effective in inducing weight loss in the short to medium term in

some people, they lose efficacy in the long term. As such, in

addition to the focus on prevention of obesity, treatment of

obese patients, preferably at a stage before complications

have emerged, is an important priority (Gray et al., 2012). How-

ever, current therapeutic options in obesity are very limited; the

only currently approved anti-obesity drug for long-term use in

the US and Europe is Orlistat, which reduces intestinal lipid ab-

sorption by inhibiting pancreatic lipase and often has limiting

adverse effects that preclude its long term use.

Previously available anti-obesity drugs targeted cannabinoid

signaling (rimonabant), noradrenergic (phentermine) and seroto-

ninergic signaling (fenfluramine, dexfenfluramine), and reuptake

(sibutramine). These compounds were moderately effective

but, as with many centrally acting agents, at the expense of

many off-target effects, reflecting lack of specificity of the neural

targets. Lorcaserin, a selective 5HT2cR agonist with limited ac-

tivity at the other serotonin receptors, has been approved for

use in the US (Smith et al., 2010), although concerns about

potential cardiac valvulopathy and cancer risk have prevented

European approval of the drug to date. The combination of the

anticonvulsant topiramate and phentermine, which increases

central noradrenaline levels (Qsymia), is also approved in some

countries.

Finally, development of personalized medicine by selecting

the optimal pharmacological intervention for particular people

through genetics or other molecular/cellular analyses is an

exciting and evolving area. Synthetic-biology-inspired therapeu-

tic systems that integrate sensor and effector devices into cells

have been developed to monitor disease-relevant metabolites,

process on/off level control, and coordinate adjusted therapeutic

responses. These systems have the potential to restore metab-

olite homeostasis in a seamless, automatic, and self-sufficient

manner, which is particularly attractive for future gene- and

cell-based therapies. As an example, a closed-loop synthetic

intracellular lipid-sensing receptor (LSR)-pramlintide circuit rep-

resents a potential prototype for such a cell-based therapy. The

LSR sensor captures a wide range of lipids within their physio-

logic concentration range, becomes dose-dependently acti-

vated by peak fatty acid levels, and is turned off at physiological

concentrations (Rossger et al., 2013). Such emerging methodol-

ogies offer fresh perspectives for drug delivery and potentially

personalized medicine in the future.
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The genomemust be highly compacted to fit within eukaryotic nuclei but must be accessible to the
transcriptional machinery to allow appropriate expression of genes in different cell types and
throughout developmental pathways. A growing body of work has shown that the genome, analo-
gously to proteins, forms an ordered, hierarchical structure that closely correlates andmay even be
causally linked with regulation of functions such as transcription. This review describes our current
understanding of how these functional genomic ‘‘secondary and tertiary structures’’ form a blue-
print for global nuclear architecture and the potential they hold for understanding andmanipulating
genomic regulation.

Eukaryotic genomes must be tightly folded and packaged to be

contained within cell nuclei. Since initial observations of hetero-

chromatin by Emil Heitz in the 1930s, it has become more and

more appreciated that this packaging is highly organized and

may be closely linked to transcriptional control. Over the last

two decades, many studies have assessed the spatial proximity

and nuclear organization of specific genomic loci, using micro-

scopic techniques, such as fluorescent in situ hybridization

(FISH), or molecular biology techniques, such as chromosome

conformation capture (3C). Collectively, these studies demon-

strated a correlation between chromatin topology and underly-

ing gene activity, without resolving whether chromosome folding

is a cause or consequence of genomic functions (Cavalli and

Misteli, 2013; de Laat and Duboule, 2013).

Topology and activity appear linked at different scales within

the nucleus. At the kilobase-to-megabase scale, distal regula-

tory elements such as enhancers were found to come into direct

contact with their target genes via chromatin loops (Palstra et al.,

2003). At the megabase scale, genes were observed to signifi-

cantly co-occupy functional sites within the nucleus, such as

foci of Polycomb proteins (Bantignies et al., 2011) or of active

RNA polymerase (Schoenfelder et al., 2010), specifically in cells

where the genes have the same activity. At the scale of the whole

nucleus, chromosomes occupy discrete territories, which are

non-randomly organized to place gene-poor chromosomes in

the predominantly heterochromatic periphery and gene-rich re-

gions in the euchromatic interior. The transcriptional activity of

specific genes has been correlated with their nuclear positioning

relative to the periphery, and more specifically the repressive

nuclear lamina (Peric-Hupkes et al., 2010), as well as to their

position relative to the bulk of the chromosome territory (Chau-

meil et al., 2006). Intriguing recent work has even decoupled

chromatin decondensation from transcriptional activation,

showing that opening chromatin without concomitant gene

activation is sufficient for relocalization of genes to the nuclear

interior (Therizols et al., 2014). Overall, these case studies sup-

port a hierarchical, multi-scale model where expression of a

gene may influence or be influenced by its local chromatin inter-

actions, its associations with other potentially coordinately

controlled genes and the regulatory environment provided by

its nuclear location.

Average conformations of chromatin have been more sys-

tematically characterized by coupling 3C to high-throughput

sequencing (Hi-C) to derive large catalogs of pairwise chromatin

interactions within populations of nuclei (Lieberman-Aiden et al.,

2009). Initial, lower-resolution Hi-C studies demonstrated that

active chromatin predominantly associates with other active re-

gions, and repressed chromatin associates with other silent re-

gions with little inter-mixing of the two types (Lieberman-Aiden

et al., 2009). More recently, high-resolution chromatin interaction

maps revealed thatmetazoangenomes fold intodistinctmodules

called physical domains or topologically associated domains

(TADs), whereby genomic interactions are strongwithin a domain

but are sharply depleted on crossing the boundary between two

TADs (Dixon et al., 2012; Nora et al., 2012; Sexton et al., 2012).

The presence of TADs is less clear for non-animal species.

AlthoughHi-C is unable to give any information on TADdynamics

or cell-to-cell variability, thedomains identified correlatewell with

many markers of chromatin activity, such as histone modifica-

tions and replication timing (Dixon et al., 2012; Sexton et al.,

2012). TADs can also contain coordinately regulated genes (Le

Dily et al., 2014; Nora et al., 2012). The described organization

of the genome into functional domains containing different types

of chromatin (Ernst et al., 2011; Ho et al., 2014) thus reflects the

average folded state of the chromosome.

TADs appear to form the modular basis for higher-order chro-

mosomal structures (Sexton et al., 2012), which in themselves

may be built up from key stabilizing interactions between regula-

tory elements (Giorgetti et al., 2014). Such an arrangement is

reminiscent of protein folding, whereby hierarchical stabilization
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of secondary structures such as alpha-helices leads to the final

tertiary structure, whose conformation is crucial to protein func-

tion (Figure 1). Genome folding is not as rigidly or thermodynam-

ically defined as protein structure—single-cell experiments

reveal a high variability of adopted genomic configurations

(Nagano et al., 2013; Noordermeer et al., 2011a). Further, it

has not been shown that a specific chromosome structure is

essential for genomic functions. However, considering chromo-

some topology as a principle of folding, and TADs as chromo-

somal secondary structures, is a useful starting analogy. Here,

we discuss the relationship between DNA sequence (primary

structure), genomic sub-structures such as TADs (secondary

structure), overall chromosome folding (tertiary structure), and

genome function, positing that TADs and other localized struc-

tures form a blueprint for coordinated genome control.

Chromatin Loops in Gene Regulation
Seminal studies of the beta-globin locus showed that the globin

gene promoter more frequently interacted with distal enhancers

than intervening sequence, specifically in erythroid tissue where

the gene was transcribed (Palstra et al., 2003). Such results were

confirmed for other enhancer-promoter combinations (Kieffer-

Kwon et al., 2013; Li et al., 2012; Sanyal et al., 2012) and suggest

that chromatin looping brings genes and their regulatory ele-

ments in close proximity. For simplicity, wewill also refer to these

phenomena as loops, although in many cases they are more

likely to represent a statistical ensemble of transient contacts

than true stable structures (Giorgetti et al., 2014). Many

enhancer-promoter combinations share binding of common

transcription factors, and enhancers are also frequently tran-

scribed, especially when involved in interactions with target

genes (Sanyal et al., 2012). Such chromatin loops are thus pro-

posed to set up an ‘‘active chromatin hub,’’ providing a chromatin

environmentmore permissive to transcription than factors bound

directly to the promoter alone (Mousavi et al., 2013; Palstra et al.,

2003). In support of this model, enhancer-promoter interactions

within the human OCT4 locus, a gene encoding a key pluripo-

tency transcription factor, distinguish induced pluripotent stem

cells from non-reprogrammed cells (Zhang et al., 2013). The

non-reprogrammed cells had equivalent binding of the inducing

factors at the promoter and enhancer but no OCT4 expression.

However, it remains an openquestionwhether chromatin looping

is a cause or consequence of transcriptional activation. Recent

elegant experiments have engineered chromatin loops within

themousebeta-globin locusbyexogenously targeting thedimer-

ization domain of the transcription factor Ldb1, which is naturally

present at the enhancers of the globin locus control region (Deng

et al., 2012; Deng et al., 2014). These induced chromatin loops

could partially rescue adult beta-globin expression in mutants

for erythroid transcription factors (Deng et al., 2012) or stimulate

fetal globin expression out of its normal developmental context

(Deng et al., 2014). Chromatin topology can thus be causally

linked to transcriptional regulation. As the globin genes are very

highly expressed in erythroid tissues, it will be interesting to see

the functional consequences of induced chromatin loops in

less transcriptionally permissive genomic and cell-type contexts.

The beta-globin active chromatin hub is progressively formed

during hematopoiesis (Palstra et al., 2003) and involves binding

sites for erythroid-specific transcription factors (Drissen et al.,

2004 for example), so enhancer-promoter contacts were pro-

posed to occur exclusively in cells where the target gene is being

transcribed. Although many cell-type-specific chromatin loops

have been characterized from more systematic approaches

(Heidari et al., 2014; Sanyal et al., 2012), evidence is also

emerging that chromatin topology and transcriptional regulation

can be temporally uncoupled. A recent analysis of the interaction

profiles of a hundred Drosophila mesodermal enhancers found

that more than 90% of the interactions were detectable before

mesoderm specification and were commonly linked to genes

with paused RNA polymerase (Ghavi-Helm et al., 2014). This

result suggests that chromatin loops may commonly poise a

gene for expression but that another signal is required for com-

plete transcriptional firing. In support of this model, induced

looping within the beta-globin locus rescued transcription

Figure 1. Analogous Hierarchical Organization of Protein and

Genome Structure
(A and B) Primary structures comprising the amino acid or nucleotide
sequence (packaged into a nucleosomal fiber in eukaryotic chromatin) on a
single polymeric chain form locally stabilized interactions to fold into sec-
ondary structures, such as polypeptide alpha-helices or beta-sheets, or
chromatin TADs. These domains in turn hierarchically co-associate to form a
tertiary structure of a protein or chromosome. The co-associations of multiple,
separately encoded subunits forms the final quaternary structure of a protein
complex or entire genome. Protein structures taken or derived from the RCSB
database (PDB 2KVQ, or 4BBR for quaternary structure).
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initiation, but not efficient elongation when the essential tran-

scription factor GATA-1 was lacking (Deng et al., 2012). Further-

more, Hi-C analysis of a human fibroblast cell line showed

conservation of enhancer-promoter interactions around respon-

sive genes before and after treatment with the cytokine TNF-a

(Jin et al., 2013).

These seemingly opposing views of enhancer-promoter chro-

matin loop dynamics may be reconciled by a Waddington

landscape model of chromatin architecture (Figure 2). Non-ex-

pressed genes form more promiscuous contacts in pluripotent

cells than in differentiated cells (de Wit et al., 2013; Splinter

et al., 2011). Repertoires of tissue-specific interactions may

then be set up in precursor cells as their differentiation potential

is restricted, effectively limiting the sets of genes with a permis-

sive chromatin environment for further induction. Fully differenti-

ated cells may then benefit from their pre-formed active chro-

matin hubs for rapid transcriptional responses to appropriate

signals. Although this model has yet to be formally assessed,

chromatin states themselves exhibit a similar progressive devel-

opmental restriction (Zhu et al., 2013). Furthermore, there is

more tissue-type variation in the chromatin states of enhancers

than of promoters (Ernst et al., 2011). Finally, a recent analysis

has suggested that enhancer-promoter interactions are variable

in different cell types (He et al., 2014). Together, these data sug-

gest that enhancers carry a large regulatory potential, and

although the mechanistic details ofwhen and how they stimulate

transcription are not yet clarified, chromatin loops appear a ubiq-

uitous means of relaying enhancer-promoter communication.

Architectural Chromatin Loops—Building up the
Secondary Structures
In addition to specific transcription factors, ubiquitous proteins

have also been linked to chromatin loops, in particular the insu-

lator protein CTCF (Splinter et al., 2006), the cohesin complex

(Hadjur et al., 2009), and the general co-activating Mediator

complex (Kagey et al., 2010). Mediator is predominantly found

at loops between promoters and enhancers and between pro-

moters, in agreement with its general activation role (Conaway

and Conaway, 2011). Consistently, Mediator-linked interactions

are more cell-type-specific (Phillips-Cremins et al., 2013). In

contrast, CTCF tends not to be present at enhancer-promoter

loops. It is more commonly associated with constitutive,

longer-range chromatin interactions (Phillips-Cremins et al.,

2013; Sanyal et al., 2012), although some cell-type-specific

CTCF-mediated interactions have been reported (Hou et al.,

2010). CTCF is enriched at TAD borders (Dixon et al., 2012;

Hou et al., 2012; Sexton et al., 2012), and CTCF-mediated loops

are implicated in maintenance of TAD structure (Giorgetti et al.,

2014) and are thus believed to play amore fundamental architec-

tural role in chromosome folding. Various case studies have

implicated CTCF-mediated loops in insulator function, prevent-

ing communication between distal regulatory elements (Kurukuti

et al., 2006 for example). However, many CTCF sites have

recently been shown not to be a barrier to enhancer-promoter in-

teractions (Sanyal et al., 2012). The functional consequences of

these more developmentally stable chromatin architectures are

thus likely to be complex and context-dependent. Similarly,

CTCF binding alone cannot account for TAD border function

(discussed in more detail in later sections). Cohesins are associ-

ated with both cell-type-specific enhancer-based loops and

constitutive, CTCF-mediated loops, although both types of

loops can also be cohesin-independent (DeMare et al., 2013;

Phillips-Cremins et al., 2013). In agreement, cohesin has been

shown to interact with CTCF (Rubio et al., 2008) and forms direct

complexes with Mediator (Kagey et al., 2010) and certain tran-

scription factors (Wei et al., 2013). The cohesin complex com-

prises a ring structure that physically maintains sister chromatid

attachment after DNA replication (Nasmyth and Haering, 2009).

Though yet to be demonstrated, a similar structure could be en-

visioned to stabilize chromatin loops on cohesin recruitment.

Abrogation of cohesin causes perturbation of chromatin loops

with subsequent effects on transcriptional control (Hadjur

et al., 2009; Seitan et al., 2013; Sofueva et al., 2013; Zuin et al.,

2014). Overall, chromatin loops appear important for the

possibly inter-linked functions of transcriptional regulation and

maintenance of higher-order chromosome folding. A full proteo-

mic appraisal of the factors present at chromatin loops may help

us better understand how they are recruited to their specific sites

in a developmental context and how and when they are able to

effect looping.

Chromosomal Secondary Structures—‘‘Facultative’’ and
‘‘Constitutive’’ TADs
The three-dimensional organization of manymetazoan genomes

into discretely folded kilobase-to-megabase sized TADs is

particularly striking due to their agreement with many linear (or

one-dimensional) measurements of chromatin activity; for

example, histone modifications (Dixon et al., 2012; Sexton

et al., 2012), coordinated gene expression (Le Dily et al., 2014;

Nora et al., 2012), lamina association (Dixon et al., 2012), and

DNA replication timing (Dixon et al., 2012; Pope et al., 2014).

Figure 2. Waddington Landscape of Chromatin LoopConfigurations

throughout Development
Pluripotent cells able to form any lineage (top) have largely unstructured local
chromatin topologies. Progressive lineage restriction throughout develop-
ment, tracing paths through the landscape from top to bottom, may be
accompanied by progressive constraint of the specific chromatin loop topol-
ogies as only a limited repertoire of enhancer-promoter contacts are permitted
and fixed.
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TADs thus appear to be chromosomal secondary structures that

reflect a tendency to divide the genome into distinct, autono-

mously regulated regions. This model is supported by the finding

that TADs determine the scope of most enhancers’ activities

(Ghavi-Helm et al., 2014; Shen et al., 2012; Symmons et al.,

2014). The mechanisms of TAD establishment and maintenance

are largely unknown. In particular, a critical issue to be resolved

is whether TADs constitute a structural blueprint that defines

chromosome architecture within which gene regulatory changes

are overlaid, or are themselves dynamically built by transcrip-

tional silencing or activation machineries. A case in point for

TAD organization by transcription arises from studies aimed at

understanding the spatial and temporal collinearity of mouse

Hox gene expression. These genes are sequentially activated

during development, and according to anterior-posterior body

position, in order along the chromosomal fiber. The active genes

are marked by trimethylation of lysine-4 of histone H3

(H3K4me3) and the silent regions are coated with trimethylation

of lysine-27 of histone H3 (H3K27me3). Hox gene activation is

accompanied by a transition in the chromatin modification

(Soshnikova and Duboule, 2009). Strikingly, the Hox gene loci

form distinct topological domains which mirror these chromatin

domains precisely, with the active domain expanding and the

silent domain shrinking according to collinear gene activation

(Noordermeer et al., 2011b). Such a dynamic model of chromo-

some topology implies that ‘‘facultative TADs’’ spatially confine

co-regulated genomic regions but may actually be defined by

the underlying transcriptional activity and/or chromatin state

(Figure 3A). However, ablation of H3K27me3 in mouse ES cells

by knockout of the Polycomb group gene Eed had no effect on

TAD structures around the X-inactivation locus (Nora et al.,

2012). Further, genome-wide comparisons of TADs in disparate

mouse and human cell lines and tissues revealed that most TADs

seem invariant with cell type (Dixon et al., 2012). Although many

TADs at gene deserts or clusters of ubiquitously expressed

housekeeping genes would not necessarily be expected to

change in these different cell types, the large number of ‘‘consti-

tutive TADs’’ suggests that many are genuine chromosomal sec-

ondary structures. These may thus represent a ground state

spatial configuration on which subsequent regulatory features

are overlaid (Figure 3B). In support of this view, entire TADs con-

taining coordinately responsive genes to progesterone treat-

ment can be structurally re-modeled while their borders remain

unchanged (Le Dily et al., 2014). In between these extreme views

of chromosome topology, high-resolution analysis of a handful of

TADs during ES cell differentiation identified them to be predom-

inantly stable but noted developmental dynamics of smaller

‘‘sub-TADs’’ within them (Phillips-Cremins et al., 2013). As the

resolution of genome-wide chromatin interaction maps im-

proves, so will our appreciation of the interplay between devel-

opmentally stable and dynamic chromosomal secondary

structures and of the cause-effect relationships between TADs

and genome function.

Establishing, Maintaining, and Re-Building
Chromosomal Secondary Structures
Despite (or perhaps because of) their many correlations with

different epigenomic features, unravelling the causal factors in

TAD establishment and maintenance remains a challenge. TAD

borders inDrosophila are very significantly associated with bind-

ing of various insulator proteins (Hou et al., 2012; Sexton et al.,

2012); CTCF is the only one of these factors conserved in mam-

mals and is also enriched at constitutive TAD borders (Dixon

et al., 2012). However, the full link between insulators and chro-

mosome topology remains unclear—in one genome-wide study

around a quarter of TAD borders did not contain CTCF and only

15% of CTCF binding sites were present at TAD boundaries

(Dixon et al., 2012). Further, knockdown of CTCF in a human

cell line caused an increase in the chromatin interactions span-

ning TAD borders but did not completely disrupt TAD organiza-

tion (Zuin et al., 2014). This result is consistent with the persistent

demarcation of H3K27me3 domains in Drosophila on CTCF

knockdown (Van Bortle et al., 2012). In mammals, but not

Drosophila, cohesin is also significantly found at TAD borders,

although again the majority of binding sites are not at borders

(Nora et al., 2012; Phillips-Cremins et al., 2013). Furthermore,

cohesin abrogation in post-mitotic cells has no (Seitan et al.,

2013; Zuin et al., 2014) or weak (Sofueva et al., 2013) effects

on TAD border function. Although the effects of persisting levels

of functional CTCF or cohesin cannot be ruled out in these

studies, collectively it appears that these so-called ‘‘architectural

proteins’’ contribute to the functional organization of the genome

but that chromosomal secondary structures are largely epistatic

to them.

TAD borders are also highly enriched in transcriptionally active

genes (Dixon et al., 2012; Hou et al., 2012; Sexton et al., 2012),

although the presence of borders at silent domains and the

majority of transcribed genes residing inside domains mean

that transcription alone cannot account for TAD organization.

However, the known effects of RNA polymerase binding and

Figure 3. Facultative and Constitutive TAD Models of Regulated

Developmental Gene Expression Programs
(A) Active (red) and repressed (blue) chromatin domains form separate facul-
tative TADs which spatially segregate their regulatory environments. During
development, some genes are activated and leave the repressive TAD to enter
the growing facultative active TAD by a shift in the boundary between TADs.
(B) Boundary positions do not change in constitutive TADs. Gene expression
changes are effected via altered intra-TAD chromatin interactions; for example
by developmental stage-specific presence of enhancer-promoter chromatin
loops (asterisk; positions of sequences participating in this loop in both cell
types are highlighted in yellow and pink).
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elongation on local DNA topology (Lavelle, 2014) suggest that

gene expression programs and chromatin organization could

have a profound effect on higher-order chromosome folding. In

active chromatin, not only do enhancers contact promoters,

but the promoters of expressed genes also contact each other

(Li et al., 2012; Sanyal et al., 2012), and these interactions could

favor TAD formation. Furthermore, active yeast genes form loops

between their start and end sites to coordinate initiation and

termination events, and this phenomenon appears to be

conserved for at least some mammalian genes (Grzechnik

et al., 2014). Transcription units could conceivably form a type

of facultative mini-TAD. In support of this, active topological

domains are smaller and more structurally complex than silent

domains (Hou et al., 2012; Sexton et al., 2012; Sofueva et al.,

2013). TAD borders are also enriched in housekeeping genes

(Dixon et al., 2012). Evidence is mounting that housekeeping or

widely expressed genes have fundamentally different regulatory

sequences and chromatin states than developmentally regu-

lated genes (Rach et al., 2011; Schauer et al., 2013; Zabidi

et al., 2014). It will be interesting to see if these features, rather

than maintained transcription per se, could contribute to TAD

organization.

The tendency of chromatin domains of the same type to

establish strong interactions is not limited to active chromatin

domains. Polycomb domains are formed by clusters of

Polycomb-bound sites that form preferential interactions, both

intra-TAD (Lanzuolo et al., 2007; Schuettengruber et al., 2014)

and inter-TAD (Bantignies et al., 2011; Sexton et al., 2012). Like-

wise, HP1-bound heterochromatin is involved in specific interac-

tions (Csink and Henikoff, 1996; Sexton et al., 2012). Recent

polymer physics-based modeling showed that the simple

assumption of the existence of homotypic interactions between

domains formed of these chromatin types is sufficient to

generate polymer structures mimicking those shown in Hi-C

contact maps (Jost et al., 2014). This result suggests that chro-

matin components of each type of chromatin domain may

contribute to establish TADs. The role of boundary factors

such as CTCF could thus be to strengthen the stability of the

boundaries between domains of different chromatin types or to

sharpen their localization.

One experimental test that has appreciably disrupted topolog-

ical domain structure was the deletion of a 58-kb region

spanning a TAD border within the X-inactivation locus. This

perturbation resulted in complete loss of border function and

the establishment of a new TAD border approximately 50 kb

downstream of the deletion site (Nora et al., 2012). Interestingly,

the de novo creation of a TAD boundary near to the deleted one

was predicted from physical models and suggests that the chro-

mosomes of many genomes have an intrinsic tendency to fold

into topological domains (Giorgetti et al., 2014). Thus, at least

some topological domain boundaries have a genetic compo-

nent. Although it has yet to be demonstrated experimentally, dis-

ease phenotype association studies have also suggested that

around one tenth of human pathologies caused by genomic

deletions could involve perturbed topological domain function

(Ibn-Salem et al., 2014). Finer dissection of the cis-sequence re-

quirements of TAD borders and testing their function outside of

their usual genomic contexts, should be fruitful in explaining

the mechanistic basis of chromosome organization and in

enabling chromosome domain engineering.

Global chromosome structure is regulated throughout the cell

cycle. Hi-C experiments have further shown that, whereas TAD

organization is largely conserved throughout interphase, the do-

mains are lost during mitosis (Naumova et al., 2013). The robust

detection of conserved TADs in early G1 cells suggests that they

can be efficiently re-built. Characterization of the proteins and

chromatin marks that persist on mitotic chromosomes, the so-

called ‘‘bookmarking’’ factors, is an area of current intense

study, whichmay yield some clues as to how TADs can be estab-

lished at each cell cycle (Zaret, 2014). For example, it has been

shown in Drosophila that the Polycomb group protein PSC per-

sists on only a subset of binding sites during mitosis and that

these are predominantly interphase TAD boundaries (Follmer

et al., 2012). However, it is unclear how this bookmarking is regu-

lated, if or how it controls TAD organization, or how the many

TADs that are not mitotically bound by PSC are regulated.

DNA damage and the chromatin remodeling accompanying its

repair are also likely to affect the organization of the associated

TADs. Although previous results have shown that heterochro-

matin domains have different induced mobility and/or repair

mechanisms in response to double-stranded breaks (Chiolo

et al., 2011; Lemaı̂tre et al., 2014), it is still unknownˆ how TADs

are maintained or restored in different nuclear environments.

Overall, genetic elements, transcription, and the binding of archi-

tectural proteins have all been correlated with TAD borders.

Future research should tease out whether they are causes or

consequences of TAD folding, how these factors interplay in

such organization, and their roles in re-building TADs after

mitosis.

Chromosomal Secondary Structures in Genome
Evolution
TAD organization appears to be a conserved, but not universal

phenomenon (Table 1); TADs are readily observed in Drosophila

(Hou et al., 2012; Sexton et al., 2012) and mammalian (Dixon

et al., 2012; Nora et al., 2012) genomes but are less clearly

defined in Arabidopsis (Feng et al., 2014; Grob et al., 2014), Plas-

modium falciparum (Ay et al., 2014), and yeasts (Duan et al.,

2010; Tanizawa et al., 2010). Although more systematic chro-

matin interaction maps of different organisms are required to

make further conclusions, it is interesting that species with clear

TAD genomic organization match those with conservation of the

insulator protein CTCF (Heger et al., 2012), further supporting its

role as a genomic architectural protein. However, closer analysis

of chromatin interaction maps of non-metazoan species reveals

some topological domain-like organizations, such as the very

large ‘‘structural domains’’ in Arabidopsis (Grob et al., 2014), or

the tens of kilobase-sized ‘‘globules’’ in Schizosaccharomyces

pombe, which correlate with the organization of convergent

genes and cohesin binding sites (Mizuguchi et al., 2014). More

strikingly, the chromosome of the bacterium Caulobacter cres-

centus also adopts TAD-like domains, which are highly sensitive

to transcriptional activity and negative supercoiling (Le et al.,

2013). Thus, genomic folding into potentially self-organized

modules appears to be a common strategy for very diverse types

of chromatin, perhaps reflecting an intrinsic ability for chromatin
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to be compacted in a way that can be easily opened and re-

condensed without entangling of chromosome fibers (Lieber-

man-Aiden et al., 2009). Until very recently, the TAD size of an

organism appeared to scale with the average gene or chromo-

some length (Table 1). However, Hi-C coupled to extremely

deep sequencing has identified human domains at a similar

scale to that observed in Drosophila (Rao et al., 2014). Caution

with respect to the resolutions afforded by different studies is

thus required when trying to make cross-species comparisons

of chromosome folding.

Comparison of mouse and human chromatin interaction

maps revealed a high degree of TAD organization conservation

around syntenic regions (Dixon et al., 2012). If these domains

truly represent autonomously functional units of the genome,

then rearrangements of whole TADs may be favored over

ones that split TADs apart. Although such selection has not

been formally proven, random P element insertions are highly

enriched at TAD boundaries (Hou et al., 2012), suggesting

that they may be genetic loci particularly susceptible or permis-

sive to rearrangement events. It is also curious that distal

human sequences which are syntenic in the mouse genome

retain long-range chromatin interactions, tens of millions of

years after the synteny break (Véron et al., 2011). This is not

an isolated observation as Polycomb-dependent long-range

contacts between Hox loci are conserved among fly species

that diverged around 40 million years ago (Bantignies et al.,

2011). Genome evolution could thus potentially be driven by

re-arranging their secondary structures, analogous to the evo-

lution of proteins by shuffling domain-coding exons (Liu and

Grigoriev, 2004). Conversely, the spatial organization of TADs

may also influence the sequence divergence within them. A

recent comparative genomics study in Drosophilid species

found that the dual transcription factor/Polycomb recruiter pro-

tein PHO bound only to consensus motif sequences outside of

a Polycomb context but was able to bind far weaker motifs

within TADs marked by H3K27me3 (a hallmark of Polycomb-

mediated repression) (Schuettengruber et al., 2014). Of note,

these Polycomb-linked PHO sites participated in stronger chro-

matin interactions, consistent with known looped interactions

between Polycomb group response elements (Lanzuolo et al.,

2007). Such co-operative interactions within specific TADs

were proposed to stabilize PHO binding, allowing a greater

tolerance of motif sequence divergence (Schuettengruber

et al., 2014). Thus DNA sequence appears to influence chromo-

some folding, and 3D chromosome structure in turn may influ-

ence sequence evolution (Figures 4A and 4B). These data call

for more work in order to understand whether this principle

may apply to the binding of a wide variety of transcription fac-

tors in eukaryotes.

Toward Tertiary Chromosomal Structures
At current sequencing depths, Hi-C experiments are able to give

fairly detailed views of TAD organization, but the resolution of

longer-range (and interchromosomal) contacts is more limited.

Although there is evidence to suggest that TADs hierarchically

co-associate to build up larger chromosomal structures (Sexton

et al., 2012), the precise nature of such spatial configurations re-

mains mysterious. FISH studies of long-range gene co-associa-

tions in mouse erythroid cells or Drosophila embryos detected

specific long-range interactions in only a few percent of cells,

despite their robust detection by 4C (a 3C variant detecting all in-

teractions with a specific bait sequence), suggesting that many

chromosomal configurations are present within a population of

cells (Bantignies et al., 2011; Noordermeer et al., 2011a; Schoen-

felder et al., 2010). Despite this apparent diversity in global chro-

mosome structure, several groups have attempted to model the

average conformation (or conformations), which best globally fit

the underlying interaction maps (for example Duan et al., 2010;

Nagano et al., 2013; Figure 4C), whereas others have used

more precise physical models to try and explain either the gen-

eral features of Hi-C maps (Barbieri et al., 2012; Jost et al.,

2014; Lieberman-Aiden et al., 2009) or obtain higher-resolution

views of smaller genomic regions (Giorgetti et al., 2014; Le Dily

et al., 2014). More and higher-resolution interaction maps will

allow the validity of these models to be tested, but already

they have been able to provide testable hypotheses as to which

genomic regions are the most crucial for structural integrity

(Giorgetti et al., 2014).

Table 1. Overview of the Absence or Presence of Chromosome Topological Domains, as Well as Their Observed Sizes, Based on

Current Studies

O ga sOrganism

Evidence for TADs

or Similar Domainso S a o a sor Similar Domains Domain Sizeo a S eDomain Size Methods Usede ods UsedMethods Used Referencese e e cesReferences

C. crescentus Yes 30–420 kb Hi-C and a sub-genome-wide

derivative (5C)de a e (5C)derivative (5C)derivative (5C)derivative (5C)

Le et al., 2013

S cerevisiaeS ce e s aeS. cerevisiaeS. cerevisiae NooNoNo NANANA A genome-wide 4C derivativege o e de C de a eA genome wide 4C derivativeA genome wide 4C derivative Duan et al 2010ua e a , 0 0Duan et al., 2010Duan et al., 2010

S pombeS po beS. pombeS. pombe YesesYesYes 50–100 kb50 00 b50 100 kb50 100 kb Hi-CCHi CHi C Mizuguchi et al 2014uguc e a , 0Mizuguchi et al., 2014Mizuguchi et al., 2014

P. fulciparum Only around a specific

group of genesg oup o ge esgroup of genesgroup of genes

10–50 kb Hi-C Ay et al., 2014

AA. thaliana Controversial > 1 Mb in one study;

no TADs in anothero s a o eno TADs in anotherno TADs in another

Hi-C Feng et al., 2014; Grob et al., 2014

D melanogastere a ogas eD. melanogasterD. melanogaster YesesYesYes 10–980 kb0 980 b10 980 kb10 980 kb Hi-CCHi CHi C Sexton et al 2012Se o e a , 0Sexton et al., 2012Sexton et al., 2012

M musculususcu usM. musculusM. musculus YesesYesYes 100 kb–5 Mb00 b 5 b100 kb 5 Mb100 kb 5 Mb Hi-C 5CC, 5CHi C, 5CHi C, 5C Dixon et al 2012; Nora et al 2012o e a , 0 ; o a e a , 0Dixon et al., 2012; Nora et al., 2012Dixon et al., 2012; Nora et al., 2012

H. sapiens Yes 100 kb–5 Mb in one study,

40 kb–3 Mb in another0 b 3 b a o e40 kb 3 Mb in another40 kb 3 Mb in another

Hi-C Dixon et al., 2012; Rao et al., 2014
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Comparisons of the chromatin interaction maps derived from

multiple single-cell Hi-C experiments consistently revealed a

high diversity in long-range contact repertoires but found that

TADs were surprisingly persistent, suggesting that they are

genuinely more stable sub-structures of the chromosome

(Nagano et al., 2013; Figure 4C). What is currently unclear is

howmuch of the structural heterogeneity is due to stable alterna-

tive genomic configurations and how much can be explained by

chromosomal dynamics. Taggingmammalian DNA loci withmul-

tiple copies of binding sites for fluorescently labeled lac or tet

repressors has revealed that chromatin is highly mobile but con-

strained within a restricted subnuclear volume (Lucas et al.,

2014; Masui et al., 2011). This constrained diffusion is affected

by developmental stage and attachment to nuclear landmarks

such as the periphery or nucleoli. On a larger scale, photobleach-

ing studies of fluorescently labeled histones revealed that arrays

of chromatin domains can undergo coordinated long-range

movements (Cheutin and Cavalli, 2012). It is interesting to spec-

ulate that these domains could correlate with TADs (or groups of

adjacent TADs), which have also been proposed to form the

physical limit for the observed rapid sub-diffusion of chromatin

(Lucas et al., 2014). Therefore, TADs may constitute the physical

microenvironment in which neighboring functional elements

interact, while occasional movements of strings of adjacent

TADs may allow for large-scale rearrangement of chromosome

structure and for the formation of new contacts among distant

chromatin loci. A fascinating research area is to investigate

whether these long-range movements might be specifically

induced and regulated.

Moreover, very little is known about the conservation of chro-

mosome structures across cell cycles; initial photobleaching

experiments gave conflicting results for global chromosome

positioning after mitosis (Gerlich et al., 2003; Walter et al.,

2003). However, an elegant recent study suggests that at least

some chromosome configurations can be remodeled during

cell division. Lamina-associated chromatin was tagged during

a short time period, and then its nuclear location(s) were traced

through subsequent cell cycles (Kind et al., 2013). Only around

one third of the lamina-associated chromatin called from popu-

lation-average studies contacted the lamina at any given point in

a single cell and, more strikingly, these regions were reshuffled

during mitosis. Recent advances allow fluorescent DNA tagging

without the insertion of large exogenous sequences (Chen et al.,

2013; Miyanari et al., 2013; Saad et al., 2014). Their systematic

application is likely to shedmore light on the dynamics underpin-

ning enhancer-promoter contacts, TAD stability and long-range

interactions, and ultimately address whether they can be in-

herited across interphase and through subsequent cell cycles.

Overall, whereas chromosomes are organized arrangements of

seemingly stable secondary structures, they may adopt many

different ‘‘tertiary structures’’ within a population, with as yet un-

clear dynamics of how these variants may interchange.

Long-Range Interactions—Non-Opposites Attract
Focused 3C variants and FISH studies have uncovered a

plethora of co-associations between genes separated by mega-

bases, or occupying different chromosomes, usually occurring

at frequencies that are low but much higher than expected by

chance. Such long-range interactions are commonly between

genes sharing regulation by a common factor, such as

Polycomb-mediated repression (Bantignies et al., 2011; Den-

holtz et al., 2013), or activation by tissue-specific (Papantonis

et al., 2012; Schoenfelder et al., 2010), or pluripotency-linked

transcription factors (Apostolou et al., 2013; de Wit et al., 2013;

Denholtz et al., 2013; Wei et al., 2013), occurring specifically in

cell types where the regulation is mediated. Many groups have

proposed the existence of functional spatial gene networks,

whereby the clustering of genes at nuclear foci enriched in

their regulatory factors facilitates their coordinate expression

(Bantignies et al., 2011; Papantonis et al., 2012; Schoenfelder

et al., 2010). Support for this model has come from detailed anal-

ysis of the acute co-association of three human TNF-alpha

Figure 4. TAD-Dependent Enhancement of Chromatin Factor Tar-

geting and Chromosome Conformation Heterogeneity
(A) Top: A hypothetical TAD that contains three binding sites (in blue) for a
chromatin factor is represented. Bottom: Intra-TAD contacts bring the chro-
matin binding sites in close proximity and form a 3D compartment where the
chromatin factor is concentrated via formation of either homodimers or of self-
interacting chromatin complexes. This architecture favors the maintenance of
factor binding since, once the factor dissociates from a target site, the high
relative concentration of other binding sites present in the same TAD favors
rebinding.
(B) A genomic region with isolated binding sites for a chromatin factor (green) is
shown. In the isolated context, the factor is rapidly lost in the nucleoplasm after
dissociation from its target and therefore its replenishment from nucleoplasmic
regions with lower relative concentration is less efficient. In this model, pro-
posed by (Schuettengruber et al., 2014), 3D association of factor binding sites
via intra-TAD contacts can favor the maintenance of robust chromatin tar-
geting compared to non-TAD isolated factor binding sites.
(C) The tertiary structures of twomousemale TH1 cell X chromosomes, inferred
from two separate single-cell Hi-C experiments, showing that single cells of a
population can have diverse chromosome structures (Nagano et al., 2013).
The chromosomal position of the fiber is shown as a color scale, going from red
(centromeric end) to blue (telomeric end). The gray line represents regions with
low constraints due to lowmappability in the Hi-C experiment. Image provided
by Csilla Varnai and Peter Fraser.
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stimulated genes: an induced double-stranded DNA break in

one gene completely abolishes its transcription but also severely

impairs expression of the other target genes, concomitant with

loss of co-association (Fanucchi et al., 2013). Most strikingly,

this network is hierarchical, as break formation in the gene

SAMD4A perturbs expression of both the genes TNFAIP2 and

SLC6A5, but SAMD4A is unaffected by breaks in either of the

other genes. Similarly, a break in TNFAIP2 perturbs SLC6A5

expression but not vice versa. These examples of spatial co-

regulated gene networks are very evocative; however in general,

many combinations of genes sharingmodes of regulation are not

uncovered as interacting partners in 4C experiments. Further-

more, some gene co-associations linked to embryonic stem

cell differentiation and formation of induced pluripotent cells

precede the transcriptional changes by several days (Apostolou

et al., 2013; Wei et al., 2013). It is also noteworthy that

the observed spatial association of co-regulated genes in

S. cerevisiae (Duan et al., 2010) was completely recapitulated

when chromosomal structures were modeled from a few basic

physical principles (Tjong et al., 2012). Thus, seemingly regu-

lated spatial gene networks may actually be an indirect effect

of chromosome folding mechanics, although the principles

behind any potential direct regulation are even less clear than

those determining enhancer-promoter communication or TAD

organization at this stage.

Over multiple scales of chromosome organization, a recurring

theme is the prevalence of homotypic or ‘‘like-with-like’’ interac-

tions,whether this is thedimerization of proteinswithin chromatin

loops (Deng et al., 2012), potential spatial networks of co-regu-

lated genes (Schoenfelder et al., 2010) or a tendency for active

and repressed chromatin to segregate (Lieberman-Aiden et al.,

2009). Such configurations are the expected outcomes of self-

organizing systems: a chance encounter between two loci bound

by common regulatory factors increases the factors’ local con-

centrations, so that when a factor dissociates it is more likely to

be re-trapped by the cluster of binding sites within its locale

than to diffuse away to another location (Kang et al., 2011; Raja-

pakse et al., 2009). As association of the majority of DNA-bound

factors with their cognate sites is transient (Phair and Misteli,

2000), self-organized spatial clustering of related genetic loci

may be important for their efficient regulation. This model is

consistent with the maintenance of active chromatin hubs at ex-

pressed genes (Palstra et al., 2003), the formation of Polycomb

repressive domains (Lanzuolo et al., 2007), and perhaps their

evolutionary robustness to motif mutations (Schuettengruber

et al., 2014), and heterochromatic clustering (Taddei et al.,

2009). As TAD organization mirrors underlying functional chro-

matin domains so well, we posit that TADs may be similarly

self-organized structures that increase the local concentrations

of diffusible regulatory factors around their sites of activity (Fig-

ures 4A and 4B). TADs may thus not only be an effective manner

of preventing aberrant communication between genetic loci, but

theymayalsoallow for genes tobemore efficiently boundby their

effectors for stronger or more rapid transcriptional responses.

Furthermore, the surprising finding that large-scale chromosome

structures are actually more compact on perturbation of intra-

TAD loops also suggests that TADs may be important for global

chromosome structure maintenance (Tark-Dame et al., 2014).

Perspectives
Mounting evidence shows that the genome is a dynamic yet

highly organized hierarchical structure, built up from progressive

stabilization of homotypic, potentially functional contacts be-

tween genes and regulatory elements. TADs present some con-

ceptual analogy to secondary structures of proteins. These

structures clearly have dynamics and cell-to-cell variability but

also show a surprising developmental and evolutionary robust-

ness, suggesting that they may be chromosome building blocks

required for appropriate genome function. However, hypotheses

about how TADs are organized and their functions are difficult to

directly assess for two main reasons. First, up till now they have

only been detected by population-average studies in fixed cells;

TADs have yet to be visualized in single cells or followed in real

time. Clearly, the way in which TADs may impinge on gene

expression depends on whether they are genuinely stable struc-

tures or more a reflection of a ground state of inherent chromatin

dynamics. Second, TADs appear robust to the initial perturbation

studies that have been tried (for example, CTCF or cohesin abro-

gation), so it has been difficult to pinpoint any ‘‘causative’’ factor.

Major advances in the future will tackle these two issues with live

imaging of chromatin interactions in single cells (and following

such interaction dynamics over the cell cycle), proteomic studies

of which factors (if any) distinguish interacting loci from non-

interacting ones and finer genetic dissection of the elements

contributing to TAD borders or key architectural loops.

Returning to the protein folding analogy, genomes appear to

be built up from the stabilization of progressively higher-order

conformations, from TAD secondary structures to chromosomal

tertiary structures, to the organized arrangement of chromo-

some territories into a final quaternary structure.With few excep-

tions, the structure of a protein cannot be predicted solely from

its amino acid sequence. However, once the structure is

resolved, the key residues contributing to the protein’s function

can be readily identified and engineered. As our knowledge of

TADs and specific chromatin loops increases, we posit that

similar structure-informed reverse genetic engineering will

allow us to manipulate the genome, with myriad applications.

For example, de novo creation of autonomously regulated

TADs would reduce any side effects of linked transgenes, and

the engineering of switchable chromatin loops may allow for

fine manipulation of gene expression. In summary, we are

entering an exciting time in the field of nuclear organization.

Mechanistic links are beginning to be assigned to what were

previously only correlations between chromatin conformations

and transcriptional regulation. Combined with the revolution in

genome engineering tools such as CRISPR, we are in an unprec-

edented position to not only model, but also modulate, genome

structure.
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Research in two fronts has enabled the development of therapies that provide significant benefit to
cancer patients. One area stems from a detailed knowledge of mutations that activate or inactivate
signaling pathways that drive cancer development. This work triggered the development of tar-
geted therapies that lead to clinical responses in the majority of patients bearing the targeted
mutation, although responses are often of limited duration. In the second front are the advances
in molecular immunology that unveiled the complexity of the mechanisms regulating cellular im-
mune responses. These developments led to the successful targeting of immune checkpoints to
unleash anti-tumor T cell responses, resulting in durable long-lasting responses but only in a frac-
tion of patients. In this Review, we discuss the evolution of research in these two areas and propose
that intercrossing them and increasing funding to guide research of combination of agents repre-
sent a path forward for the development of curative therapies for the majority of cancer patients.

Introduction
The scientific community united against a common enemy in

1971 when President Nixon signed a bill initiating the ‘‘War on

Cancer,’’ which provided funding for scientific research focused

on improving our understanding and treatment of cancer.

Without doubt, the intervening years were followed by great

advances in the elucidation of the molecular mechanisms that

regulate growth and death of normal cells, including a deep

understanding of how these pathways progressively go awry

during the development of cancer. This understanding led to

the era of genomically targeted therapies and ‘‘precision medi-

cine’’ in the treatment of cancer. Genomically targeted therapies

can result in remarkable clinical responses. The ability of cancer

cells to adapt to these agents by virtue of their genomic insta-

bility and other resistance mechanisms eventually leads to

disease progression in the majority of patients nonetheless.

Unraveling themechanisms bywhich cancer cells become resis-

tant to drugs and developing new agents to target the relevant

pathways have become logical next steps in this approach for

cancer treatment. However, given the genetic and epigenetic

instability of cancer cells, it is likely that each new drug or com-

bination of drugs targeting the tumor cells will meet with more

complex mechanisms of acquired resistance. Recent findings

suggest that T cells, bearing antigen receptors that are gener-

ated by random rearrangement of gene segments, followed by

selective processes that result in a vast repertoire of T cell

clones, provide sufficient diversity and adaptability to match

the complexity of tumors. Discoveries regarding regulation of

T cell responses have provided key principles regarding immune

checkpoints that are being translated into clinical success, with

durable responses and long-term survival greater than 10 years

in a subset of patients with metastatic melanoma, as well as

yielding promising results in several other tumor types. Now,

with the perspective of combining genomically targeted agents

and immune checkpoint therapies, we are finally poised to

deliver curative therapies to cancer patients. To support this

goal and accelerate these efforts, changes in directions of

research support and funding may be required.

Precision Medicine: Targeting the Drivers
In the past three decades, enormous strides have been made in

elucidating the molecular mechanisms involved in the develop-

ment of cancer (Hanahan and Weinberg, 2011). It is now clear

that the oncogenic process involves somatic mutations that

result in activation of genes that are normally involved in regula-

tion of cell division and programmed cell death, as well as inac-

tivation of genes involved in protection against DNA damage or

driving apoptosis (Bishop, 1991; Solomon et al., 1991;Weinberg,

1991; Knudson, 2001). These genetic links led to the decision

early in the war on cancer to undertake sequencing of cancer

genomes to provide a comprehensive view of somatic muta-

tional landscapes in cancer and identify possible therapeutic tar-

gets. Infrastructure and funding were provided to coordinate the

sequencing efforts. It has become apparent that the level of

somatic mutations differs widely between and within different

tumor types ranging from very low rates in childhood leukemias

to very high rates in tumors associated with carcinogens (Alex-

androv et al., 2013).
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Mutations can be divided into two broad classes: those whose

products ‘‘drive’’ tumorigenesis in a dominant fashion and ‘‘pas-

sengers’’ with no obvious role in the tumor causation. The Can-

cer Genome Atlas (TCGA) projects have enabled identification of

many of these mutations (Chen et al., 2014; Cancer Genome

Atlas Research Network, 2014). This has allowed for the rational

design of drugs that target and selectively interfere with onco-

genic signaling pathways. This approach has revolutionized

cancer medicine by moving away from the ‘‘one size fits

all’’ approach—for instance, traditional chemotherapy, which

attacks all dividing cells, including both cancer-differentiating

or regenerating normal cells—to a more personalized strategy

of treating patients with a specific drug only if their cancer bears

particular molecular mutations that are target of that drug.

As an example of genomically targeted therapies, an inhibitor

against BRAF was developed when it was discovered that

�40%–60% of cutaneous melanomas carry mutations in

BRAF, which induces constitutive activation of the MAPK

pathway (Curtin et al., 2005; Davies et al., 2002). In a randomized

phase III trial comparing a BRAF inhibitor (vemurafenib) versus

dacarbazine, the vemurafenib treatment group had a response

rate of �48% versus 5% in the dacarbazine arm (Chapman

et al., 2011). However, the median duration of response was

short, only 6.7 months (Sosman et al., 2012). Another oncogenic

pathway that has been targeted is the tyrosine kinase chromo-

somal rearrangement, which results in the fusion oncogene

EML4-ALK that is found in �5% of NSCLC patients (Soda

et al., 2007). The EML4 fusion partner mediates ligand-indepen-

dent oligomerization and/or dimerization of anaplastic lym-

phoma kinase (ALK), resulting in constitutive kinase activity.

Standard chemotherapies in this subgroup of patients have

been associated with response rates of up to 10% (Hanna

et al., 2004). Crizotinib, a tyrosine kinase inhibitor targeting

ALK (Kwak et al., 2010), was shown to elicit a response rate of

�65%with a median duration of response of less than 8 months

in a phase III trial (Shaw et al., 2013). Although there was a signif-

icant increase in progression-free survival for patients treated

with crizotinib, regrettably, there was no overall survival benefit

in the interim analysis. Therefore, although the concept of target-

ing ‘‘driver mutations’’ has great merit and has demonstrated

clinical responses, the reality remains that the majority of

patients treated with these agents will derive short-term clinical

responses with eventual development of resistance mecha-

nisms that lead to disease progression and death.

Mechanisms operative in acquired resistance fall into three

main categories: alterations in the targeted gene (as a result of

mutation, amplification, or alternative splicing); other changes

that do not affect the original target but re-activate the signaling

pathway involved (i.e., NRAS and MEK mutations in BRAF

mutant melanoma); and changes that activate alternate path-

ways (such as activation of growth factor receptors). Consider-

able effort has gone into finding ways to enhance efficacy of

genomically targeted therapies. One effort involves multiple

agents that target different molecules in the same pathway,

such as the combination of a BRAF inhibitor and a MEK-inhibitor

(Larkin et al., 2014; Robert et al., 2015a). This approach helps to

reduce compensatory feedback loops, as well as to block the

development of resistance due to mutations downstream that

pathway. A different strategy consists of blocking parallel path-

ways to prevent emerging resistance (Martz et al., 2014). Still,

the chief challenge of these combinatorial approaches is the

multiplicity of resistance mechanisms and the fact that different

mechanisms may be in operation in different cells due to intratu-

mor heterogeneity. Given these observations, it is difficult to

envision realistic approaches to effectively overcome the myriad

of resistance mechanisms that may arise in the course of cancer

treatment. The continued evolvability of the tumor cells and their

mechanisms of escape from targeted therapies raise the ques-

tion as to whether combinations of genomically targeted agents

will ever be curative.

Advantages of Mobilizing T Cells for Cancer Therapy
As the knowledge of the intricate biology of cancer has pro-

gressed, so has the understanding of the fundamental cellular

and molecular mechanisms that orchestrate the interplay of

the innate and adaptive arms of the immune system. In a

simplistic way, the innate system is composed primarily of cyto-

kines, the complement system, and phagocytes such as macro-

phages, neutrophils, dendritic cells, and natural killer (NK) cells.

Cells of the innate immune system have hard-wired receptors to

detect products of infectious microorganisms and dying cells.

Macrophages and neutrophils provide an early defense against

microorganisms, whereas dendritic cells provide a key interface

to the adaptive immune system, composed of B and T cells with

their somatically generated, clonally expressed repertoire of

antigen receptors.

The understanding of the basic principles governing the con-

trolling immunity provided the rational for the development of

powerful strategies to actively engage the immune system for

cancer therapy. Strategies to unleash T cells against tumors

are particularly compelling, as the activity of these cells presents

important features that are advantageous over other cancer

therapies. The first is their specificity. T cells express antigen re-

ceptors that recognize cell-surface complexes of MHC mole-

cules and peptides sampled from virtually all the proteins in the

cell and are not limited to peptide antigens derived from cell-

surface molecules. The second feature is memory. Primary

T cell responses are generally followed by the production of

long-livedmemory T cells with accelerated kinetics of secondary

response if the antigen recurs. Finally, the T cell response is

adaptable and can accommodate not only tumor heterogeneity

but also responses to novel antigens expressed by recurring

tumors. It has been calculated that the somatic recombination

process that generates the antigen receptors of T cells can

generate as many as 1015 different receptors (Davis and Bjork-

man, 1988). Of this theoretical number, each individual human

has perhaps 109 different receptors. The immense size of the

repertoire suggests that the immune system is indeed well

equipped to deal with mutability and adaptability of cancer.

Harnessing T Cell Responses to Tumor Antigens
With the advent of genomic and cDNA expression cloning

methods and sequencing of peptides eluted from tumor cell

MHC molecules, an avalanche of tumor antigens defined by

tumor-specific T cells has been identified in both mice and in hu-

mans. Most of these are shared between cancer cells of different
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individuals and fall into four groups: products of oncogenic

viruses (Epstein-Barr virus in certain leukemias and human

papilloma virus in cervical and some head and neck cancers);

antigens related to tissue-specific differentiation molecules

(tyrosinase and related proteins in melanoma and prostate-spe-

cific antigen and prostatic acid phosphatase in prostate cancer);

molecules normally expressed only during fetal development

(carcino-embryonic antigen in colon cancer, a-fetoprotein in liver

cancer); and cancer-testes (CT) antigens, which are normally ex-

pressed during gametogenesis but are found in many cancer

cells as a result of changes in epigenetic regulation (MAGE and

NY-ESO-1).

Additionally, somatic mutations also can result in the genera-

tion of tumor-specific peptides with the potential to bind major

histocompatibility complex (MHC) molecules and therefore be

recognized by the immune system as neoantigens (Sjoblom

et al., 2006; Segal et al., 2008). The analysis of the epitope land-

scape of breast and colon carcinoma cells revealed that the

products of seven to ten mutant genes in colorectal and

breast cancer, respectively, have the potential for binding to

HLA-A*0201 alone. Because each heterozygote individual

carries as many as 6 different HLA class I genes, this means

an average of 42–60 potential neoantigens that can be presented

to T cells. In support of these estimates, recent studies have

demonstrated that neoantigens generated by somatic mutation

are recognized by T cells in bothmouse and human cancers (Lin-

nemann et al., 2015; Gros et al., 2014; Tran et al., 2014; Gubin

et al., 2014).

At first, as a result of earlier studies identifying shared anti-

gens, the field of cancer immunotherapy became focused on

developing therapeutic vaccines to expand T cells against these

shared antigens expressed on tumors. Many studies focused on

stimulating T cell responses with peptides, proteins, whole-

tumor cells including those modified to express cytokines,

DNA, recombinant viral-based vaccines, or antigen-pulsed den-

dritic cells given alone or in combination with various adjuvants

or cytokines. Although these trials were conducted with the

best available science at the time and provided promising anec-

dotal evidence that induction of immune responses could elicit

clinical benefit, they remained largely negative and generally

failed to show objective clinical responses (see Rosenberg

et al., 2004 for review). Enthusiasm waned somewhat as the

number of failed clinical trials mounted.

Many reasons might have contributed to the failure of these

vaccination strategies, including choice of antigen, failure to pro-

vide adequate costimulation, or functional inactivation of tumor-

reactive T cells (Melero et al., 2014). A number of T-cell-extrinsic

suppressive mechanisms such as TGFb, FoxP3+ regulatory

T cells (Treg), and tryptophan metabolites (IDO) that can hamper

anti-tumor responses have also been identified, and there have

been efforts to minimize the suppressive effects of these in

pre-clinical and clinical studies.

Unraveling the Complexity of T Cell Activation
Another contributing factor to the failure of earlier cancer vaccine

trials was perhaps the lack of understanding and appreciation of

the full complexity of cell-intrinsic pathways that regulate T cell

activation. By the late 1980s, it was known that simple engage-

ment of peptide/MHC complexes by the antigen receptor is

insufficient for activation of T cells and may render them anergic

(Jenkins and Schwartz, 1987; Mueller et al., 1989). In order to

become fully activated, T cells must encounter antigen in the

context of antigen-presenting cells (APCs) such as dendritic

cells, which provide costimulatory signals mediated by B7 mol-

ecules (B7-1 and B7-2) that will engage their ligand, CD28, in

the T cell (Greenwald et al., 2005). Thus, T cells specific for a

tumor antigen will not be activated by an initial encounter with

tumor cells or may even be rendered anergic because, with the

exception of a few lymphomas, tumors do not express costimu-

latory B7 molecules (Townsend and Allison, 1993). Thus, tumors

are essentially invisible to T cells until the T cells are activated as

a result of cross-priming by dendritic cells that present tumor

antigens acquired from dying tumor cells. Simultaneous recogni-

tion of antigen/MHC complexes and costimulatory ligands by

T cells initiates a complex set of genetic programs that result in

cytokine production, cell-cycle progression, and production of

anti-apoptotic factors that result in proliferation and functional

differentiation of T cells. Consistent with the importance of

both antigen receptor and costimulatory signals in initiating

anti-tumor responses, many therapeutic vaccines now incorpo-

rate both antigen and dendritic cells or agents that enhance cos-

timulatory signaling.

By the mid-90s, it became clear that T cell priming elicits not

only programs leading to induction of T cell responses but also

a parallel program that will eventually stop the response. The crit-

ical inhibitory program is mediated by CTLA-4, a homolog of

CD28 that also binds B7-1 and B7-2, although with much greater

avidity than that CD28. Expression of the ctla-4 gene is initiated

upon T cell activation, and it traffics to and accumulates in the

immunological synapse, eventually attenuating or preventing

CD28 costimulation by competition for B7 binding and negative

signaling (Walunas et al., 1994; Krummel and Allison, 1995). The

fact that ctla-4 knockout mice suffer from a rapid and lethal

lymphadenopathy (Waterhouse et al., 1995; Tivol et al., 1995;

Chambers et al., 1997) speaks for a negative role for CTLA-4 in

limiting T cell responses to prevent damage to normal tissues.

Thus, activation of T cells as a result of antigen receptor

signaling and CD28 costimulation is followed not only by induc-

tion of genetic programs leading to proliferation and functional

differentiation but also by induction of an inhibitory program

mediated by CTLA-4, which will ultimately stop proliferation.

Extrapolating this paradigm to anti-tumor T cell responses, if

eradication of the tumor has not been completed by the time

that the inhibitory signal of CTLA-4 is triggered, the T cells will

be turned off and will be unable to complete the task. Impor-

tantly, this also suggests that, after this program is initiated,

vaccines used to stimulate antigen receptor signaling may

actually serve to strengthen the ‘‘off’’ signal as a result of addi-

tional induction of ctla-4 expression by antigen receptor

signaling. In any event, this suggests the importance of shifting

strategies for cancer immunotherapy from activating T cells to

unleashing them.

Inactivating the Brakes to Increase Anti-tumor Immunity
Consistent with the observations that CD28 and CTLA-4 had

opposing effects on T cell responses in vitro, in the late 90s, it
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was found that, although blocking antibodies to CD28 impaired

anti-tumor responses in mice, blocking antibodies to CTLA-4

enhanced anti-tumor responses in mouse tumor models (Leach

et al., 1996). In fact, the treatment of mice with anti-CTLA-4

antibodies as monotherapy results in complete tumor rejection

and long-lived immunity. Later on, mechanistic studies revealed

that anti-tumor activity was associated with increased ratio of

both CD4 and CD8 effector cells to FoxP3+ regulatory T cells

(Quezada et al., 2006). The success of CTLA-4 blockade in these

initial studies raised two compelling points. First, because the

target molecule was on the T cell and not the tumor cell, it was

feasible to imagine that the same strategy would work on

many different histologic tumors, as well as on tumors caused

by different genetic lesions. Second, taking into consideration

that CTLA-4 inhibited CD28-mediated costimulation by a cell-

intrinsicmechanism (Peggs et al., 2009), its blockade could allow

for enhanced T cell costimulation, which in turn would increase

the efficacy of tumor vaccines, as well as agents that kill tumor

cells under conditions that promote inflammatory responses.

These possibilities were further supported by the results of a

series of studies in different mouse models, including the

demonstration that blockade of CTLA-4 was not limited to any

particular tumor type but was rather broadly effective. CTLA-4

also was able to synergize with a vaccine consisting of tumor

cells engineered to express the cytokine GM-CSF to eradicate

tumors (Hurwitz et al., 1998; van Elsas et al., 1999). Finally,

CTLA-4 could be combined with local delivery of irradiation,

cryoablation, or an oncolytic virus to induce systemic tumor im-

munity and eradication of distant metastases (Zamarin et al.,

2014; Waitz et al., 2012; Tang et al., 2014). These preclinical

studies supported the development of clinical anti-CTLA-4

therapy.

Immune Checkpoint Therapy: The Clinical Success
CTLA-4 blockade was translated to the clinic with a fully human

antibody to human CTLA-4 (ipilimumab, Medarex, Bristol-Myers

Squibb). Tumor regression was observed in phase I/II trials in

patients with a variety of tumor types, including melanoma, renal

cell carcinoma, prostate cancer, urothelial carcinoma, and

ovarian cancer (Yang et al., 2007; Hodi et al., 2008; Carthon

et al., 2010; van den Eertwegh et al., 2012). Two phase III clinical

trials with ipilimumab were recently completed in prostate can-

cer, the first in patients with castrate-resistant prostate cancer

who had not received prior chemotherapy treatment and the

second in a more advanced disease setting, in which patients

with castrate-resistant prostate cancer presented disease that

had progressed on chemotherapy treatment. The former trial is

yet to be reported. The latter trial reports the lack of statistical

significance (p value of 0.053) to indicate a survival benefit for

patients who received ipilimumab treatment. However, subset

analyses indicate that patients who have favorable clinical char-

acteristics such as lack of liver metastases do benefit from ipili-

mumab therapy (Kwon et al., 2014). Two phase III clinical trials

with anti-CTLA-4 (ipilimumab) were also conducted in patients

with advanced melanoma and demonstrated improved overall

survival for patients treated with ipilimumab (Hodi et al., 2010;

Robert et al., 2011). Importantly, these trials indicate long-term

durable responses with greater than 20% of treated patients

living for more than 4 years, including a recent analysis indicating

survival of 10 years or more for a subset of patients (Schadendorf

et al., 2015). The FDA approved ipilimumab as treatment for

patients with melanoma in 2011.

The clinical success of anti-CTLA-4 opened a new field termed

‘‘immune checkpoint therapy’’ as additional T cell intrinsic path-

ways were identified and targeted for clinical development

(Sharma et al., 2011; Pardoll, 2012). Another T-cell-intrinsic

inhibitory pathway identified after CTLA-4 was that mediated

by PD-1 (programmed death 1) and its ligand PD-L1. PD-1 was

initially cloned in 1992 in a study of molecules involved in nega-

tive selection of T cells by programed cell death in the thymus

(Ishida et al., 1992). Its function as an immune checkpoint was

not established until 2000 upon identification of its ligands

(Freeman et al., 2000). PD-L1 was then shown to protect tumor

cells by inducing T cell apoptosis (Dong et al., 2002). Later,

preclinical studies in animal models evaluated anti-PD-1 and

anti-PD-L1 antibodies as immune checkpoint therapies to treat

tumors (Keir et al., 2008).

Much like CTLA-4, PD-1 is expressed only in activated T cells.

However, unlike CTLA-4, PD-1 inhibits T cell responses by inter-

fering with T cell receptor signaling as opposed to outcompeting

CD28 for binding to B7. PD-1 also has two ligands, PD-L1 and

PD-L2. PD-L2 is predominantly expressed on APCs, whereas

PD-L1 can be expressed on many cell types, including cells

comprising the immune system, epithelial cells, and endothelial

cells. Antibodies targeting PD-L1 have shown clinical responses

in multiple tumor types, including melanoma, renal cell carci-

noma, non-small-cell lung cancer (Brahmer et al., 2012), and

bladder cancer (Powles et al., 2014). Similarly, phase I clinical

trials with a monoclonal antibody against PD-1 demonstrated

clinical responses in multiple tumor types, including melanoma,

renal cell carcinoma, non-small-cell carcinoma (Topalian et al.,

2012), Hodgkin’s lymphoma (Ansell et al., 2015), and head and

neck cancers (Seiwert et al., 2014, J. Clin. Oncol., abstract).

Recently, a large phase I clinical trial with an anti-PD-1 antibody

known as MK-3475 showed response rates of �37%–38% in

patients with advanced melanoma, including patients who had

progressive disease after prior ipilimumab treatment (Hamid

et al., 2013), triggering the approval of MK-3475 (pembroluzi-

mab, Merck) by the FDA in September 2014. A phase III clinical

trial that treated patients with metastatic melanoma with a

different anti-PD-1 antibody (nivolumab, Bristol-Myers Squibb,

BMS) also demonstrated improved responses and overall sur-

vival benefit as compared to chemotherapy treatment (Robert

et al., 2015b). Nivolumab was FDA approved for patients with

metastatic melanoma in December 2014. In addition, nivolumab

was FDA approved in March 2015 for patients with previously

treated advanced or metastatic non-small-cell lung cancer

based on a phase III clinical trial, which reported an improvement

in overall survival for patients treated with nivolumab as

compared to patients treated with docetaxel chemotherapy.

Because CTLA-4 and PD-1 regulate different inhibitory path-

ways on T cells, combination therapy with antibodies targeting

both molecules was tested and found to improve anti-tumor re-

sponses in a pre-clinical murine model (Curran et al., 2010). A

recently reported phase I clinical trial with anti-CTLA-4 in combi-

nation with anti-PD-1 also demonstrated tumor regression
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in �50% of treated patients with advanced melanoma, in most

cases with tumor regression of 80% or higher (Wolchok et al.,

2013). There are ongoing clinical trials with anti-CTLA-4

(ipilimumab, BMS or tremelimumab, MedImmune/Astrazeneca)

plus anti-PD-1 or anti-PD-L1 in other tumor types, with prelimi-

nary data indicating promising results (Hammers et al., 2014,

J. Clin. Oncol., abstract; Callahan et al., 2014, J. Clin. Oncol.,

abstract) that highlight this combination as an effective immuno-

therapy strategy for cancer patients.

As with other cancer therapies, immune checkpoint therapies

may lead to side effects and toxicities (see Postow et al., 2015;

Gao et al., 2015 for recent reviews). Briefly, these side effects

consist of immune-related adverse events that are defined by in-

flammatory conditions, including dermatitis, colitis, hepatitis,

pancreatitis, pneumonitis, and hypophysitis. These side effects

can be managed and usually involve administration of immuno-

suppressive agents such as corticosteroids, which do not

appear to interfere with clinical benefit that is derived from

the immune checkpoint agents. The profile of side effects that

occur with both anti-CTLA-4 and anti-PD-1/PD-L1 antibodies

is similar; however, the side effects appear to occur more

frequently in the setting of anti-CTLA-4 therapy as compared

to anti-PD-1 and anti-PD-L1 therapies. The continued success

of immune checkpoint therapies in the clinic will require educa-

tion of the oncology community regarding recognition and treat-

ment of the side effects elicited by these agents.

Novel Immunologic Targets for Cancer Immunotherapy
Although blockade of the CTLA-4 and PD-1/PD-L1 pathways is

furthest along in clinical development, it only represents the tip

of the iceberg in the realm of potential targets that can serve to

improve anti-tumor responses. Ongoing studies on regulation

of immune responses have led to the identification of multiple

other immunologic pathways that may be targeted for the devel-

opment of therapies, either as monotherapy or in combination

strategies, for the successful treatment of cancer patients. These

include immune checkpoints or inhibitory pathways, as well as

co-stimulatory molecules, which act to enhance immune re-

sponses. A partial list of new immune checkpoints that are being

evaluated in pre-clinical tumor models and/or in the clinic with

cancer patients includes LAG-3 (Triebel et al., 1990), TIM-3

(Sakuishi et al., 2010), and VISTA (Wang et al., 2011), whereas

co-stimulatory molecules include ICOS (Fan et al., 2014), OX40

(Curti et al., 2013), and 4-1BB (Melero et al., 1997).

Of these emerging immune checkpoints, LAG-3 is the furthest

along in clinical development with a fusion protein (IMP321,

Immuntep) and an antibody (BMS-986016, BMS) in clinical trials.

The fusion protein was tested as monotherapy in patients with

renal cell carcinoma, which was well tolerated and led to stabili-

zation of disease in some patients (Brignone et al., 2009).

IMP321 was also tested in combination with paclitaxel chemo-

therapy in patients with metastatic breast cancer, which led

to an objective response rate of 50% (Brignone et al., 2010).

Based on these promising results, a phase III clinical trial is

expected to begin accrual in 2015. Other clinical trials are

ongoing with an antibody against LAG-3 (BMS-986016), which

is also being tested in combination with anti-PD-1 (nivolumab)

(NCT01968109, http://www.clinicaltrials.gov). TIM-3 is another

immune checkpoint for which agents are being developed for

clinical testing. Pre-clinical studies indicate that TIM-3 is co-

expressed with PD-1 on tumor-infiltrating lymphocytes, and

combination therapy targeting these two pathways improves

anti-tumor immune responses (Sakuishi et al., 2010). Finally, an

antibody targeting VISTA was recently shown to improve anti-

tumor immune responses in mice (Le Mercier et al., 2014), with

clinical development soon to follow. Again, these agents repre-

sent only a partial list of the immune checkpoint agents that

are currently under development for clinical testing, with expec-

tations that they will be tested in combination strategies based

on in-depth analyses of human tumors to provide an understand-

ing of co-expression of these, and other immunologic targets, to

guide rational combinations.

Regarding the co-stimulatory molecules, OX40 and 41BB,

which are members of the TNF-receptor superfamily, are

furthest along in clinical development. A murine anti-OX40 anti-

body, given as a single dose, was tested in a phase I clinical trial

and found to have an acceptable safety profile, as well as evi-

dence of anti-tumor responses in a subset of patients (Curti

et al., 2013). Humanized antibodies against OX40 are expected

to enter clinical trial in 2015. Anti-41BB (BMS-663513) is a fully

humanized monoclonal antibody that has been tested in a phase

I/II study in patients with melanoma, renal cell carcinoma, and

ovarian cancer, with promising clinical responses, as well as

toxicities, especially at higher doses, which led to re-evaluation

of the dose and schedule of treatment (Sznol et al., 2008,

J. Clin. Oncol., abstract). Currently, there are five clinical trials

with anti-41BB (urelumab, BMS-663513) that are recruiting pa-

tients with various tumor types (http://www.clinicaltrials.gov),

including combination with anti-PD-1 (nivolumab), with data ex-

pected to be presented from these trials during the next 1 to 2

years. The third co-stimulatory molecule is inducible co-stimu-

lator (ICOS), a member of the CD28/B7 family whose expression

increases on T cells upon T cell activation. ICOS+ effector T cells

(Teff), as opposed to ICOS+ regulatory T cells (Treg), increase

after patients receive treatment with anti-CTLA-4 (Liakou et al.,

2008), correlating with clinical benefit in a small retrospective

study (Carthon et al., 2010). ICOS thus may serves as a pharma-

codynamic biomarker to indicate that anti-CTLA-4 has ‘‘hit its

target’’ enhancing T cell activation (Ng Tang et al., 2013). Also,

the association of agonistic targeting of ICOS and blockade of

CTLA-4 can lead to improved anti-tumor immune responses

and tumor rejection in mice (Fan et al., 2014). Anti-ICOS anti-

bodies are expected to enter into clinical trials in 2015. It is likely

that combination therapy to simultaneously engage co-stimula-

tory pathways and limit inhibitory pathways will be a successful

path forward to provide clinical benefit. Importantly, based on

the profile of toxicities observed to date, it will be critical

to closely monitor these combination strategies for potential

adjustments of dosage and management of toxicities that may

arise.

Reconciliation: Curative Therapeutic Combinations
The last few decades have witnessed the emergence of two

effective but fundamentally different strategies for cancer ther-

apy, each with its own strengths and weaknesses. Genomic-

guided identification of mutations that drive cancer has led to
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the development of drugs that result in remarkable responses in

the majority of patients whose tumors have the targeted lesion,

but the responses are relatively short-lived. As was the case

with chemotherapies, it is not unreasonable that combinations

of genomically targeted agents will be more powerful against

cancer than single agents. It is possible that the use of multiple

agents may enhance their effectiveness in terms of increasing

overall survival. However, the myriad of mechanisms of acquired

resistance and the complexity of the target landscape due to

inherent genomic instability may prove extremely difficult to

overcome through the sole use of genomically targeted strate-

gies, attaining to achieve cure. In contrast, immune checkpoint

therapy is inherently multivalent because targeting a single

checkpoint can potentially release T cells with specificity for

peptides derived from many different antigens present in a

tumor, including differentiation, cancer testis, and even neoanti-

gens generated by mutational events inherent in the genomic

instability that drives cancer (Snyder et al., 2014; Linnemann

et al., 2015). As a result of the generation of improved anti-tumor

T cell responses, immune checkpoint therapy results in durable

responses but only in a fraction of patients. As discussed in the

previous sections, it is certainly possible to target multiple

immune checkpoints with different mechanisms for improved

anti-tumor responses in greater numbers of patients. Will pa-

tients benefit from combination of these two strategies?

Efforts to combine molecularly targeted agents and immuno-

therapy have already begun. A phase I clinical trial with agents

that inhibit receptor tyrosine kinases, sunitinib, or pazopbnib,

in combination with anti-PD-1, was recently reported and

showed promising overall response rates of 40%–50% in pa-

tients with metastatic renal cell carcinoma (RCC) (Amin et al.,

2014, J. Clin. Oncol., abstract). These types of combinations

will require further follow-up to evaluate for survival and durability

of responses. An area that has not yet received enough attention

is the immunological impact of genetically targeted agents.

Vemurafenib, an FDA-approved BRAF inhibitor used for the

treatment of melanoma, has been shown to increase expression

of tumor antigens and MHC molecules (Frederick et al., 2013),

increasing the sensitivity of the tumor cells to immune attack.

Vemurafenib also has potent effects on T cells, enhancing the

effects of antigen-mediated activation, perhaps as a result of

enhanced activation of the MAP kinase pathway after T cell

antigen receptor signaling (Atefi et al., 2014). These data sug-

gest that certain agents may be well suited for combination

with immunotherapy. However, a clinical trial testing a BRAF in-

hibitor (vemurafenib) in combination with anti-CTLA-4 (ipilimu-

mab) was terminated due to hepatotoxicity (Ribas et al., 2013).

A second clinical trial with a BRAF inhibitor (dabrafenib) in com-

bination with anti-CTLA-4 (ipilimumab) is currently ongoing, and

Figure 1. Combination TherapyMay Improve Anti-tumor Responses
Depiction of tumor cells dying as a result of genomically targeted therapies
with release of tumor antigens; tumor antigens are taken up by APCs and are
presented in the context of B7 costimulatory molecules to T cells; T cells
recognize antigens on APCs to become activated; activated T cells also up-
regulate inhibitory checkpoints such as CTLA-4 and PD-1; immune checkpoint
therapy prevents attenuation of T cell responses, thereby allowing T cells to kill
tumor cells; and T cells may differentiate into memory T cells that can re-
activate in the presence of recurrent tumor.
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preliminary data indicate that this combination appears to be

well tolerated (Puzanov et al., 2014, J. Clin. Oncol., abstract),

which highlights the need to consider differences in drugs,

dose, and/or schedule when evaluating agents for combination

strategies. Understanding how different genetically targeted

agents affect the responsiveness to immunotherapy may help

guide choices of combinations of drugs.

From a mechanistic perspective, it is possible that combina-

tion strategies with immune checkpoint therapies and genomi-

cally targeted agents will result in induction of immune memory,

leading to more durable control of tumor growth than what is

achievable with either modality alone. Genomically targeted

therapies with high objective response rates actually could serve

as ‘‘cancer vaccines,’’ inducing the killing of tumor cells and re-

sulting in the release of tumor antigens and neoantigens, which

can then be presented by APCs to tumor-specific T cells

(Figure 1). These T cells would become activated but also upre-

gulate inhibitory checkpoints such as CTLA-4 and PD-1, which

can be blocked with antibodies to permit enhanced anti-tumor

T cell responses, including memory T cell responses, to enable

long-term control of disease and possible cure. In addition, the

use of targeted agents to directly kill tumor cells, with release

of tumor antigens, may focus the activated immune response

generated by immunotherapy agents on tumor antigens rather

than self-antigens expressed on normal tissues, resulting in

fewer adverse events. Furthermore, identification of neoantigens

may result in the development of personalized vaccines

composed of these neoantigens for novel vaccine strategies

plus immune checkpoint agents (Gubin et al., 2014; Tran et al.,

2014; Linnemann et al., 2015).

Although it is clear that clinical responses can be elicited with

immune checkpoint therapies or genomically targeted agents, it

appears that genomically targeted agents alone tend to improve

median survival without providing long-term durable responses

(Figure 2, blue line). Targeting immune checkpoints improves

median survival but remarkably also provides long-term durable

responses, raising the tail of the survival curve (Figure 2, green

line). When combined, these therapies are likely to have an addi-

tive or even synergistic therapeutic effect that not only would

potentially further improve median survival but would also raise

the tail of the survival curve, increasing the number of patients

that appreciate long-term clinical benefit (Figure 2, red line).

A Future of Curative Cancer Therapies
Federal funding for research has been overwhelmingly directed

toward genomically targeted therapies as compared to immune

checkpoint therapies. The fundamental research that led to the

identification of CTLA-4 as an immune checkpoint, as well as

the pre-clinical studies showing the potential of its blockade in

cancer therapy, were funded by the National Cancer Institute,

but since then, there have been no major initiatives to accelerate

progress in this area. Given the durability of the responses that

have been obtained with immune checkpoint therapies, it seems

reasonable also to allocate enough funds and resources to

research focused on immune checkpoint therapies and combi-

nation therapy of genomically targeted agents and immuno-

therapy with promising curative potential. Efforts to determine

the impact of genomically targeted therapies on the immune sys-

tem should also be prioritized, as they will help to identify which

agents can enhance anti-tumor T cell responses and guide the

choice of combinations from the two classes of agents. At this

stage, it does not seem a stretch to say that increasing funding

to combination therapies will be key to development of new

safe treatments that may prove to be curative for many patients

with many types of cancer.
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SUMMARY

Specification of primordial germ cells (PGCs) marks
the beginning of the totipotent state. However,
without a tractable experimental model, the mecha-
nism of human PGC (hPGC) specification remains
unclear. Here, we demonstrate specification of
hPGC-like cells (hPGCLCs) from germline compe-
tent pluripotent stem cells. The characteristics of
hPGCLCs are consistent with the embryonic hPGCs
and a germline seminoma that share a CD38 cell-sur-
face marker, which collectively defines likely pro-
gression of the early human germline. Remarkably,
SOX17 is the key regulator of hPGC-like fate,
whereas BLIMP1 represses endodermal and other
somatic genes during specification of hPGCLCs.
Notable mechanistic differences between mouse
and human PGC specification could be attributed
to their divergent embryonic development and
pluripotent states, which might affect other early
cell-fate decisions. We have established a founda-
tion for future studies on resetting of the epigenome
in hPGCLCs and hPGCs for totipotency and the
transmission of genetic and epigenetic information.

INTRODUCTION

Primordial germ cells (PGCs) are the precursors of sperm and

eggs, which generate the totipotent state. The genetic basis of

mammalian PGC specification was first established in mice (Sai-

tou et al., 2002; Ohinata et al., 2005; Hayashi et al., 2007), which

are specified from postimplantation epiblast cells on embryonic

day (E)6.25 in response to bonemorphogenetic protein 4 (BMP4)

(Lawson et al., 1999). Subsequently, �35 founder PGCs are de-

tected at E7.25. Similar studies on human PGCs (hPGCs) would

require E9–E16 embryos, which is not practicable. However, em-

bryonic hPGCs at approximately week 5 to 10 of development,

which correspond to mouse PGCs at E10.5–E13.5, can in princi-

ple be examined (Leitch et al., 2013). These cells retain charac-

teristic of PGCs while they undergo resetting of the epigenome

and global DNA demethylation (Hackett et al., 2012).

In mice, BMP4 induces expression of BLIMP1 (encoded by

Prdm1) and PRDM14 in the postimplantation epiblast at E6.25;

together with AP2g (encoded by Tfap2c), a direct target of

BLIMP1, they induce PGC fate (Magnúsdóttir et al., 2013; Nakaki

et al., 2013). The tripartite genetic network acts combinatorially

to repress somatic genes, induce expression of PGC genes,

such as Nanos3, reinduce pluripotency genes, and initiate the

epigenetic program (Hackett et al., 2013; Magnúsdóttir and Sur-

ani, 2014). PGC-like cells (PGCLCs) can also be induced in vitro

from naive pluripotent mouse embryonic stem cells (mESCs)

after they acquire competence for germ cell fate after�48 hr cul-

ture in basic fibroblast growth factor (bFGF) and Activin A (Hay-

ashi et al., 2011). These competent cells acquire PGC-like fate in

response to either BMP4 signal or directly to Blimp1, Prdm14,

and Tfap2c, which is similar to PGCs in vivo (Magnúsdóttir

et al., 2013; Nakaki et al., 2013).

Human PGCLCs (hPGCLCs) have been generated at a low fre-

quency by spontaneous differentiation of human ESCs (hESC)

in vitro (Gkountela et al., 2013; Kee et al., 2009), but systematic

studies to characterize and identify the key regulators of hPGCs

remain to be elucidated. Because there are evident differences

between the regulation of mouse and human pluripotent ESCs

(Hackett and Surani, 2014; Nichols and Smith, 2009) and during

their early postimplantation development (de Fellici, 2013; De

Miguel et al., 2010; Irie et al., 2014), this might affect the mech-

anism and the role of the key regulators of hPGCLC specification

(Imamura et al., 2014; Pera, 2013). Once the mechanism of

hPGCLC specification is established, it could provide insights

on the progression of the early human germline with reference

to embryonic hPGCs and seminomas that originate from human

germ cells in vivo and retain key characteristics of the lineage

(Looijenga et al., 2014).

We have developed a robust approach for hPGCLC specifica-

tion from germ cell competent hESCs/hiPSCs (Gafni et al., 2013).

We show that SOX17, a critical transcription factor for endoderm

lineages, is the earliest marker of hPGCLCs and is in fact the key

regulator of hPGCLC fate, which is not the case in mice (Hara

et al., 2009; Kanai-Azuma et al., 2002). BLIMP1 is downstream

of SOX17, and it represses endodermal and other somatic genes
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during hPGCLC specification. Comparisons among hPGCLCs,

embryonic hPGCs, and a seminoma indicate likely progression

of the early human germline. These cells also exhibit CD38 cell

surface marker, which is shared by cells with germ cell charac-

teristics. We anticipate that genome editing approaches with

our robust in vitro model for hPGCLC specification, combined

with patient-specific human-induced pluripotent stem cells

(hiPSCs), will lead tomajor advances in human germ cell biology,

including on the unique germline-specific epigenetic program

with potential consequences for subsequent generations.

RESULTS

Generation of hPGCLCs from Embryonic Stem Cells
First, we generated three independent hESC lines (WIS2 and

LIS1 male hESC and WIBR3 female hESC line) (Gafni et al.,

2013) with a NANOS3-mCherry knockin reporter (Figure S1A

available online), a highly conserved PGC-specific gene (Gkoun-

tela et al., 2013; Julaton and Reijo Pera, 2011). These

hESCs maintained in bFGF and responded to BMP2/BMP4

with �0%–5% NANOS3-mCherry positive putative hPGCLCs

at day 4 (see Figure 7A). Like hESC, mouse epiblast stem cells

(mEpiSC) also respond poorly to specification of PGCLCs (Hay-

ashi and Surani, 2009). In contrast, epiblast-like cells (EpiLCs)

derived from naive mESCs have a significant potential for germ

cell fate (Hayashi et al., 2011). However, the approach used

for mouse ESCs did not confer competence for germline fate

on hESCs.

Next, we tested hESC-NANOS3-mCherry cells that were

maintained in four-inhibitor-containing medium with LIF, bFGF,

and TGFb (adopted and modified from NHSM conditions; see

Experimental Procedures), henceforth called ‘‘4i’’ medium,

which endows the cells with a distinct pluripotent state (Gafni

et al., 2013). These hESCs were then cultured for 2 days in

bFGF, TGFb, and 1% KSR medium, and thereafter, 2,000–

4,000 cells were cultured in low-attachment well in the presence

of BMP2 or BMP4, LIF, stem cell factor (SCF), epidermal growth

factor (EGF), and Rho-kinase (ROCK) inhibitor to induce

hPGCLCs (Hayashi et al., 2011; Watanabe et al., 2007) (Fig-

ure 1A). These cells aggregated to form embryoid bodies (hence-

forth called embyoids) and responded within 3 days with signif-

icant expression of NANOS3-mCherry and tissue-nonspecific

alkaline phosphatase (TNAP), a PGC and pluripotency marker

in humans and mice (Figure 1B). The intensity of the NANOS3-

mCherry reporter increased progressively until day 4–5, resulting

in �27% of NANOS3/TNAP double-positive putative hPGCLCs

(Figures 1B and S1B). Similar to mice, hPGCLCs do not prolifer-

ate significantly after 5 days under these conditions (Hayashi

et al., 2011). The response was highly reproducible in three inde-

pendent male and female NANOS3-mCherry hESC lines. Both

BMP2 and/or BMP4 (with LIF, SCF, and EGF) were effective in

inducing hPGCLC (Figure S1C) in a dose-dependent manner in

the range of 50–500 ng/ml (Figures S1D and S1E).

The NANOS3/TNAP double-positive putative hPGCLCs also

expressed key PGC genes, including NANOS3, BLIMP1,

TFAP2C, STELLA, TNAP, KIT, OCT4, and NANOG, as well as

PRDM14, albeit with reduced levels compared to hESC (Fig-

ure 1C). Remarkably, SOX17 was significantly upregulated,

whereas SOX2 was downregulated in the putative hPGCLCs

that reflects their expression in embryonic hPGCs and semino-

mas (de Jong et al., 2008; see Figure 2), which is not the

case in mouse PGCs. Immunofluorescence confirmed that

NANOS3-mCherry expression coincided with OCT4, NANOG,

and TFAP2C in day 4 embryoids (Figures 1D and S1F), as did

OCT4 with BLIMP1 (Figure S1F). This suggests that the

NANOS3-mCherry-positive cells are very likely nascent germ

cells.

RNA-Seq Analysis of hPGCLCs: Comparisonwith hPGCs
and Seminoma
We carried out RNA sequencing (RNA-seq) on NANOS3/TNAP

double-positive cells from day 4 embryoids and compared

themwith the gonadal hPGCs fromweek 7male human embryos

(Carnegie stage 18/19), which are equivalent to mouse �E12.5–

E13.5 PGCs (Leitch et al., 2013). These hPGCs retain key

characteristics of earlier hPGCs but, consistent with their more

advanced state, expresses later germ cell markers such as

VASA and DAZL. We also included TCam-2, a human seminoma

that originates from the germline in vivo (Looijenga et al., 2014).

Unsupervised hierarchical clustering of global gene expres-

sion showed that the hPGCLCs clustered with hPGCs and

TCam-2, whereas 4i hESCs and preinduced cells (4i hESCs

treated with bFGF and TGFb for 2 days) clustered together in

another branch away from gonadal somatic cells (soma) (Fig-

ure 2A). Consistently, hPGCs were globally more related

to hPGCLCs (Pearson correlation coefficient [r[[ ]r = 0.85) and

TCam-2 (r(( = 0.818) than to 4i hESCs (r(( = 0.799) and preinduced

cells (r(( = 0.773) (Figure S2A).

A heat map of mRNA expression revealed that hPGCLCs

and gonadal hPGCs shared expression of early PGCs (BLIMP1(( ,

TFAP2C, DND1, NANOS3, UTF1, ITGB3, and KIT)TT and pluripo-

tency genes (TNAP, OCT4, NANOG, PRDM14, and LIN28A)

but with a notable lack of SOX2 expression (Figure 2C). Early

mesoderm marker T was detected in hPGCLCs (Figure 2C), as

inmouse early PGCs (Aramaki et al., 2013). Interestingly, expres-

sion of two endodermal genes, SOX17 and GATA4, was de-

tected in hPGCLCs, embryonic hPGCs, and TCam-2, which

are absent in the mouse germline. Notably, we identified CD38

expression in hPGCLCs/hPGCs and TCam-2, but not in hESCs

or soma (Figures 2C and see also Figures 3A–3C). Overall,

hPGCLCs indeed have germ cell characteristics consistent

with hPGCs. Late germ cell markers, however, including DAZL,

VASA, and MAEL, were only detected in hPGCs (Figure 2C).

TCam-2 gene expression was similar to hPGCLCs, albeit with

lower expression levels ofNANOS3, ITGB3, and T and upregula-

tion of a few somatic genes, e.g., HAND1 and RUNX1. Immuno-

fluorescence analysis validated the expression of BLIMP1,

TFAP2C, and OCT4 in hPGCLCs/hPGCs and TCam-2 (Figures

2E–2H). Interestingly, PRDM14 showed nuclear localization in

the majority of hPGCLCs but was predominantly enriched in

the cytoplasm of hPGCs (Figure 2F). Importantly, although

SOX2 was undetectable, there was significant expression of

SOX17 in hPGCLCs, hPGCs, and TCam-2 (Figures 2G and 2H).

Given the similarities of hPGCLCs, hPGCs, and TCam-2,

a three-way Venn diagram was plotted to investigate their rela-

tionships (Figure 2D). Out of 972 highly upregulated genes
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Figure 1. Specification of hPGCLCs from Human Embryonic Stem Cells

(A) Schematic protocol for hPGCLCs specification from hESCs.

(B) Development of day 1–7 embryoids derived from WIS2-NANOS3-mCherry hESCs. Top row: images of embryoids. Bottom row: FACS analysis of the

dissociated embryoids with anti-TNAP-Alexa Fluor 647 and NANOS3-mCherry to detect hPGCLCs.

(C) Expression analysis by RT-qPCR of TNAP-positive 4i hESCs (hESC TNAP+), TNAP/NANOS3-mCherry-positive hPGCLCs (TNAP+N3+), and the remaining

cells (TNAP-N3-) of day 4 embryoids (D4 embryoid). Relative expression levels are shown with normalization to b�ACTIN. Error bars indicate mean ± SD from

three independent biological replicates.

(D) Immunofluorescence of a day 4 embryoid showing coexpression of NANOS3-mCherry, NANOG, and OCT4 in hPGCLCs. Scale bar, 66 mm.
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Figure 2. hPGCLC Shares Transcriptional Profile with Human Embryonic PGCs and TCam-2 Seminoma

(A) Unsupervised hierarchical clustering (UHC) of gene expression in 4i hESC, preinduced cells (Pre-induced), day 4 hPGCLCs (hPGCLC), gonadal hPGC,

TCam-2, and gonadal somatic cell (Soma). RNA-seq was performed on two biological replicates (#1 and #2) for each cell type.

(B) PCA of RNA-seq data. Arrowline indicates potential germline progression from 4i hESC to hPGCLC and gonadal hPGC.

(legend continued on next page)
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compared to soma (Table S1), the three germline-related cell

types shared expression of 161 genes, including pluripotency

and germline-specific genes: BLIMP1, TFAP2C, CD38, SOX17,

OCT4, and NANOG (Figure 2D). Gene ontology (GO biological

process) analysis revealed (Table S1) that hPGCLCs from male

cell line and male gonadal hPGCs were commonly enriched

in ‘‘spermatogenesis’’ genes—for example, NANOS3 and

HIST1H1T—whereas meiosis-related SYCP3, MAEL, and

PIWIL1 genes were upregulated only in embryonic hPGCs (Fig-

ures 2C and 2D). Interestingly, TCam-2 and hPGCs revealed

expression of a number of late germ cell markers, including

Tudor-domain-containing TDRD5, TDRD9, and TDRD12 genes,

which have been implicated in PIWI-interacting RNA biogenesis

pathway (Shoji et al., 2009) (Figure 2D). As expected, TCam-2

showed characteristics associated with cancer cells, including

genes that promote cell proliferation with suppression of

apoptosis genes (Figure 2D). Altogether, hPGCLCs, TCam-2,

and hPGCs share key germ cell characteristics and expressed

the core germ cell genes, including CD38, whereas the differen-

tially expressed genes reflected their corresponding stages of

development and cell identity.

Principal component analysis (PCA) further illustrates the rela-

tionships between the different cell types. PCA reduces dimen-

sionality of whole-genome expression data by transforming

into principal components (PCs), in which the variance within

the dataset is maximal. A three-dimensional (3D) PCA plot of

the first three PCs showed that the 4i hESC, soma, and hPGC-

related cells (hPGCLCs, gonadal hPGCs, and TCam-2) settled

at three discrete positions (Figure 2B). In particular, hPGCLCs,

TCam-2, and gonadal hPGCs aligned together at the lower

extreme of PC2, whereas 4i hESCs and preinduced cells formed

a distinct cluster withmediumPC2 scores and soma at the upper

extreme (Figures 2B and S2B). The relative contributions

(weights) of key germ cell, pluripotency, and gonadal somatic

genes to PC2 and PC3 were plotted as two-dimensional (2D)

loading plot alongside a corresponding 2DPCAplot (Figure S2B).

Indeed, the weights of germ cell, pluripotency, and somatic

genes highly overlap with the position of germ-cell-related cell

types, hESCs, and soma, respectively. Germ-cell-related genes,

such as SOX17, CD38, and NANOS3 loaded heavily for lower

extreme of PC2, where hPGCLCs, TCam-2, and gonadal hPGCs

were aligned. There was a clear difference in weights of early

germ cell genes (commonly expressed in hPGCLCs, TCam-2,

and gonadal hPGCs—for example, BLIMP1 and TFAP2C) and

late germ cell genes (expressed only in gonadal hPGCs or

TCam-2—for example, VASA and DAZL) on PC3, with the latter

weighing more heavily toward low PC3 scores (Figure S2B).

Notably, decreasing scores of PC3 reflected potential progres-

sion of germ cell development from hPGCLCs toward gonadal

hPGCs, whereas TCam-2 aligned between hPGCLCs and

gonadal hPGCs (Figures 2B and S2B).

Taken together, hPGCLCs demonstrate germ cell characteris-

tics that are apparently en route to hPGCs, whereas our objec-

tive analysis placed TCam-2 in an intermediate position, which

reflects their origin from hPGCs in vivo. Notably, hPGCLCs

evidently represent the earliest stages of the human germ cell

lineage, indicating that our in vitro model provides an important

opportunity to explore the mechanism of hPGC specification,

which is otherwise not possible because E9–E14 postimplanta-

tion human embryos are excluded from investigations. TCam-2

and other seminomas might, however, also serve as important

in vitro models of human germ cell biology (Looijenga et al.,

2014; Schafer et al., 2011).

CD38: ACoreMarker of HumanGerm-Cell-Related Cells
and Initiation of the Epigenetic Program
CD38, an established cell-surface glycoprotein on leukocytes, is

a prognostic marker of leukemia (Malavasi et al., 2008). Surpris-

ingly, we detected CD38 expression in hPGCLCs, gonadal

hPGCs, and TCam-2, but not in hESCs or gonadal somatic cells

(Figure 2C). Indeed, fluorescence-activated cell sorting (FACS)

analysis showed that CD38 is present on all the TNAP-positive

embryonic hPGCs and on TCam-2with some heterogeneity (Fig-

ures 3B and 3C). Although CD38 is absent on hESCs, �50% of

the NANOS3-mCherry-positive hPGCLCs were CD38 positive

on day 4 (Figure 3A), which increased to �70% by day 5 (Fig-

ure 3A). Interestingly, the NANOS3-mCherry/CD38 cells had

higher expression of NANOS3, BLIMP1, SOX17, OCT4, and

NANOG (Figure 3D). By contrast, hESCs and embryonic carci-

noma cells exhibit CD30 (also known as TNFRSF8) and SOX2

(Figures 3D and 2G) (Pallesen and Hamilton-Dutoit, 1988).

Thus, CD38 and CD30 could potentially be used as additional

markers of germ cell tumors in vivo (Figure 7D).

The RNA-seq of hPGCLC also revealed gene expression

changes that indicate initiation of the epigenetic program with

downregulation of UHRF1, DNMT3A, and DNMT3B and upregu-

lation of TET1 and TET2 (Figure S3D). Notably, we found a

significant increase in 5-hydroxymethylacytosine (5hmC) in

hPGCLCs, which is consistent with an increase in the expression

of TET1, an enzyme that converts 5-methylcytosine (5mC) to

5hmC (Figures 3E–3G), together with a small but significant

decline in 5mC (Figures 3G and S3A). This indicates that, as in

themouse PGCs, loss of 5mCmight be coupled with the conver-

sion of 5mC to 5hmC (Hackett et al., 2013). At the same time, we

detected a decline in the expression of de novo DNA methyl-

transferase 3A (DNMT3A) and UHRF1 in hPGCLCs compared

to the neighboring somatic cells in the embryoids (Figures 3G,

S3B, and S3C). UHRF1 targets DNMT1 to replication foci to

(C) Heat map of gene expression of key PGC-associated genes (early and late) and of pluripotency, mesoderm, endoderm, and gonadal somatic (Soma)markers.

(D) Venn diagram illustrates common and differentially expressed genes. Significantly upregulated genes in hPGCLC, gonadal hPGC, and TCam-2 (with log2 (fold

change) > 3 and adjusted p value < 0.05 versus gonadal Soma, respectively) were compared. Representative genes that were exclusive to each category are

indicated. Text boxes indicate gene ontology biological processes (BP) terms that were significantly enriched as indicated by p values. Asterisk denotes custom

categories absent from BP annotation.

(E–H) Immunofluorescence analysis for (E) BLIMP1, (F) PRDM14, (G) SOX2, and (H) SOX17 on 4i hESCs (top row), day 4 hPGCLC embryoids (second row), human

week 7 male gonad (third row), and TCam-2 (bottom row). Samples were counterstained with TFAP2C or OCT4 to identify hPGCLCs in embryoids and hPGCs in

embryonic gonad. Arrows indicate cytoplasmic enrichment of PRDM14 (F). Scale bars, 70 mm.
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confer maintenance of DNA methylation (Liu et al., 2013). The

repression of UHRF1 in proliferating (KI-67-positive) hPGCLCs

would allowDNA-replication-coupled loss of 5mC,which is anal-

ogous to the observations on the early mouse germline.

Taken together, day 4 hPGCLCs, which are the nascent hu-

man germ cells, already showed evidence for the initiation of

epigenetic changes and DNA demethylation that are compara-

ble to E8 mouse PGCs (Hackett et al., 2013). Notably, we also

found that PRMT5, an arginine methylatransferase that was

ubiquitously but weakly present in the cytoplasm of day 1 and

2 embryoids, showed enhanced expression in the nucleus of

day 4–8 hPGCLCs (Figure S3E). This is a shared characteristic

with �E8 mouse PGCs, hPGCs, and TCam-2 seminoma (Eckert

et al., 2008). The translocation of PRMT5 to the nucleus is impor-

tant for the suppression of transposable elements at the onset of

DNA demethylation (Kim et al., 2014).

Sequential Gene Expression during hPGCLC
Specification in Embryoids
Having established similarities between hPGCLCs and the

authentic hPGCs, we set out to investigate the mechanism

of hPGCLC specification. First, for establishing the precise

A D

E

F

B

Figure 3. CD38 Expression in Human Germ-Cell-Related Cells and Epigenetic Changes in hPGCLCs

(A) FACS analysis of NANOS3-mCherry and CD38 on WIS2-NANOS3-mCherry cell line cultured in 4i medium and on day 4 and 5 embryoids following hPGCLC

induction. Ratios of CD38 low and high expression in the NANOS3-mCherry-positive cells are indicated.

(B) FACS histogram of CD38 low and high populations in TCam-2.

(C) FACS analysis of CD38 and TNAP on genital ridges isolated from a week 6 human embryo.

(D) Expression analysis by RT-qPCR for FACS-sorted TNAP-positive 4i hESCs (TNAP+ hESC) and CD38 low or high/NANOS3-mCherry day 5 hPGCLCs. Relative

expression levels are shown with normalization to b�ACTIN. Error bars indicate mean ± SD from two independent biological replicates.

(E and F) Immunofluorescence analysis for 5hmC (E) and TET1 (F) on day 4 embryoids cryosection. OCT4 or BLIMP1were used to identify hPGCLCs (highlighted).

Scale bars, 50 mm.

(G) Quantification of immunofluorescence intensity of various epigenetic marks/modifiers in hPGCLCs and somatic neighbors in day 1–4 embryoids (see also

Figures S3A–S3C). For UHRF1, only KI-67-positive (proliferating) cells were used for quantification. Numbers below each box denotes number of cells analyzed.

Black central line represents themedian, boxes andwhiskers represent the 25th and 75th, and 2.5th and 97.5th percentiles, respectively.Wilcoxon signed-rank test

was used to test for statistical significance. #p < 0.05; *p < 0.0001.
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sequence of expression of the key hPGC-related genes at the

resolution of single cells, we performed systematic time course

analysis by immunofluorescence on day 1–8 embryoids after

hPGCLC differentiation.

On day 1, we first detected SOX17 in a few widely scattered

cells throughout the embryoids (Figures 4A and 4E). Among

the SOX17-positive (+) cells, 55% were also BLIMP1+, and

22%were TFAP2C+ (Figures 4A and 4C). However, all BLIMP1+

cells coexpressed SOX17, suggesting that SOX17 is upregu-

lated before BLIMP1. The proportion of BLIMP1+ and TFAP2C+

cells increased to �70% on day 2 and to �90% on days 4–8

(Figures 4A and 4C). These triple-positive cells likely represent

specified hPGCLCs, as they also coexpressed other key hPGC

genes. However,�10% of single SOX17+ cells failed to undergo

hPGCLC specification but persisted in day 4–8 embryoids.

These may be aberrant cells or else may belong to other

lineages.

Figure 4. Sequential Expression of Germ-

Cell-Related Transcription Factors in Sin-

gle Cells during hPGCLC Specification

(A and B) Immunofluorscence analysis for (A)

BLIMP1, SOX17, and TFAP2C and (B) BLIMP1

and T in cryosections of day 1–8 embryoids after

hPGCLC induction. Bottom row in (B) shows high

exposure (digital) image of T, indicating low but

specific expression in hPGCLC. SOX17-positive

or BLIMP1-positive cells are highlighted. Scale

bars, 50 mm.

(C) Percentage of SOX17-positive (+) cells in day

1–8 embryoids that were also TFAP2C+ or

BLIMP1+. Corresponds to data in Figure 4A.

(D) Percentage of BLIMP1-positive (+) cells in day

1–8 embryoids that were TFAP2C+, NANOG+, or

OCT4+. Corresponds to data in Figures 4A, S4A,

and S4B.

(E) Summary model for dynamics of hPGCLC

specification in embryoids. SOX17-positive cells

are first scattered in day 1 embryoids. They gain

expression of BLIMP1, TFAP2C, and NANOG

sequentially and form a cluster from day 2 onward

until the formation of nascent hPGCLC.

Expression of T is of particular interest,

as it signifies competence for germ cell

fate in mice, and BMPs can induce it in

hESCs (Bernardo et al., 2011; Yu et al.,

2011). Notably, expression of T was high

in the majority of cells on day 1, except

formost of the BLIMP1+ cells (Figure 4B).

By day 2, however, T was dramatically

downregulated in most cells, although

now the BLIMP1+ nascent hPGCLC re-

tained low T expression, which persisted

until at least day 4 (Figure 4B), consistent

with the T transcripts detected by RNA-

seq (Figure 2C). It is possible that BMP

signaling may initially enhance expres-

sion of T in the embryoids (Bernardo

et al., 2011), and it is from this population

that hPGCLCs are specified, which reflects the events during

mouse PGC induction (Aramaki et al., 2013).

Expression of OCT4 was low but widespread in the day 1 em-

bryoids, including 75% of the BLIMP1+ cells (Figures S4B and

4D). Although the overall OCT4 expression declined dramatically

in day 2 embryoids, it was strongly expressed in �86% of the

BLIMP1+ cells. Subsequently, all BLIMP1+ cells became highly

OCT4+ by day 4. By contrast, NANOG was expressed in

�35% of BLIMP1+ cells on day 1, but it was generally absent

in other cells in the embryoids (Figures 4D and S4A). Thereafter,

NANOGwas also rapidly upregulated in the majority of BLIMP1+

cells by day 2–4. The upregulation of key pluripotency genes,

such as OCT4 and NANOG, is also reminiscent of their re-

expression in mouse PGCs (Magnúsdóttir et al., 2013). Although

NANOS3-mCherry expression was weakly detected in 24% of

OCT4+ cells at day 2 (Figure S4C), it was detected in all

OCT4+ cells on day 4, confirming their PGCLC identity.
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PRDM14 is a key regulator of pluripotency in mouse and hu-

man ESCs (Chia et al., 2010; Grabole et al., 2013; Ma et al.,

2011; Yamaji et al., 2013) and is a key regulator of mouse PGC

specification (Yamaji et al., 2008). PRDM14 was generally down-

regulated in day 1–2 embryoids but was detectable in the

nucleus of most BLIMP1+ cells by day 4 (Figure S4A). Notably,

in a minority of BLIMP1/NANOG-positive hPGCLCs at day 8,

PRDM14 was enriched in the cytoplasm (Figure S4A), which

was the case in most of the gonadal hPGCs (Figure 2F). This is

inmarked contrast to the persistent nuclear PRDM14 expression

in mouse PGCs (Grabole et al., 2013).

The SOX17/BLIMP1 double-positive cells were initially distrib-

uted randomly in day 1 embryoids (Figure 4A) but were then

loosely organized in clusters andoften a single cluster in day 2 em-

bryoids. By day 4, generally one and occasionally two tight clus-

ters of hPGCLCs were observed either at the core or periphery

of each embryoid (Figure 4E). Cumulative observations suggest

that SOX17/BLIMP1 might be among the key regulators of

hPGCLC specification. Although OCT4 and NANOG were de-

tected between days 1 and 2 in conjunction with NANOS3-

mCherry and other PGC-specific genes from days 2–4, PRDM14

was upregulated more gradually in hPGCLCs and was subse-

quently detected in thecytoplasmof embryonic hPGCs. Following

the early expression of SOX17 and BLIMP1 in hPGCLCs, these

two transcription factors were also detected in embryonic hPGCs

in vivo, as well as in TCam-2 (Figures 2E and 2H). These observa-

tions suggest that SOX17-BLIMP1 might be among the critical

determinant of hPGC specification and maintenance.

Role of BLIMP1 during hPGCLC Specification
BLIMP1 is the first and key regulator of mouse PGC, and loss of

function abrogates PGC fate (Ohinata et al., 2005; Vincent et al.,

2005). However, BLIMP1 expression is apparently downstream

of SOX17 in hPGCLCs (Figures 4A and 4C). We examined

its mechanistic role by generating BLIMP1 knockout (KO)

NANOS3-mCherry hESC line (Figure S5A). These cells showed

loss of BLIMP1 by western blot (Figure 5A) and immunofluores-

cence (Figure S5B) on day 4 of hPGCLCs induction. Notably,

there was also a loss of NANOS3-mCherry-positive cells,

together with a significant reduction of NANOG, OCT4, and

TFAP2C expression on day 4 (Figures 5C and S5B), indicating

a failure of hPGCLC specification, and all of these cells disap-

peared by day 8 (Figure 5C). However, we detected �8% of

TNAP-positive cells in day 4 embryoids (Figure 5B). This obser-

vation is highly reminiscent of the effects of Blimp1 mutation on

mouse PGC specification (Ohinata et al., 2005).

We isolated and characterized the TNAP-positive cells by

FACS and confirmed loss of BLIMP1, except for low expression

of mutant transcripts (Figure 5D). These cells also showed loss of

NANOS3, UTF1, and KLF4 and reduced expression of TFAP2C,

DND1, OCT4, NANOG, and T (Figures 5D and S5B). In addition,

they showed prominent upregulation of mesodermal/primitive

streak and HOX genes, as well as endodermal genes, including

GATA4, GATA6, FOXA1 HNF1b, and HNF4a (Figure 5D). By

contrast, endodermal genes were not upregulated in Blimp1

mutant mouse PGCs (Kurimoto et al., 2008; Vincent et al.,

2005). This suggests that BLIMP1 probably suppresses

endoderm and other somatic genes, which might otherwise

be induced by SOX17 and BMP signaling during hPGCLCs

specification (Figure 6H). Loss of BLIMP1 and TFAP2C also

caused upregulation of HOX genes in TCam-2 (Weber et al.,

2010). This suggests that one of the roles of BLIMP1 is to

continually suppress the somatic program during human germ-

line development.

SOX17 Is the Key Regulator of hPGCLCs, which Acts
Upstream of BLIMP1
Expression of SOX17 among T-positive cells prior to BLIMP1

apparently marks the onset of hPGCLC specification, which is

a key difference between the specification of human and mouse

germline fate (see Figure 4). Notably, SOX17 and BLIMP1 are

also expressed in the authentic in vivo hPGCs and in TCam-2

(de Jong et al., 2008) (Figure 2). Knockdown of SOX17 in

TCam-2, which exhibits key germ cell characteristics (Looijenga

et al., 2014) (Figure 2), induced repression of the pluripotency

genes NANOG, as well as of the PGC-genes BLIMP1, NANOS3,

TFAP2C, STELLA, and KIT (Figure S6A). This suggests that

SOX17 might be important for regulating the established germ-

line gene expression network.

We addressed the role of SOX17 during hPGCLC specification

by generating SOX17 KO NANOS3-mCherry hESC line (Fig-

ure S6B) and validated absence of SOX17 expression in day 4

embryoids from mutant cells by western blot and immunofluo-

rescence (Figures 6A and S6C). Notably, we did not detect any

NANOS3-mCherry or TNAP-positive cells in the embryoids

from SOX17 mutant cells (Figure 6B). Further, RT-qPCR analysis

of day 4 SOX17 null embryoids showed absence of NANOS3,

TFAP2C, DND1, UTF1, KLF4, OCT4, NANOG, and, importantly,

BLIMP1 (Figure 6C). Instead, there was upregulation of meso-

dermal genes PDGFRA, KDR, and HOXA1 (Figure 6C). Although

a few TFAP2C-positive cells were detected on day 4, they were

BLIMP1 negative and most likely belong to other lineages

(Figure S6C).

To determine whether SOX17 acts cell autonomously, we

mixed wild-type NANOS3-mCherry hESCs with the SOX17 null

hESCs in 1:1 ratio during induction of hPGCLCs by cytokines.

Figure 5. Role of BLIMP1 in hPGCLC Specification

(A) Western blot analysis of BLIMP1 and SOX17 in TNAP-positive (TNAP+) cells sorted from wild-type (WT) and BLIMP1 knockout (BLIMP1 KO) day 4 embryoids

after hPGCLC induction. TUBULIN was used as loading control.

(B) FACS analysis of TNAP and NANOS3-mCherry on WT and BLIMP1 knockout (BLIMP1 KO) day 4 embryoids.

(C) Immunofluorscence for OCT4 and SOX17 in cryosections of WT and BLIMP1 KO day 4 and 8 embryoids. OCT4-positive cells are highlighted. Scale bar,

50 mm.

(D) Expression analysis by RT-qPCR forWT TNAP/NANOS3-mCherry double-positive cells (WT; TNAP+N3+) andBLIMP1 KOTNAP single-positive cells (BLIMP1

KO; TNAP+) sorted from day 4 embryoids. Relative expression levels are shown with normalization to b�ACTIN. Error bars indicate mean ± SD from two

independent biological replicates.
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All NANOS3-mCherry positive cells detected by immunofluores-

cence on day 4 were SOX17 positive (Figure 6D), indicating that

SOX17 null hESCs did not undergo hPGCLC specification even

in the presence of wild-type cells. The overall number of

NANOS3-mCherry-positive cells in the embryoid with mixed

cells was about half of that in the control consisting of wild-

type cells only (Figure S6D), suggesting that SOX17 null cells

did not affect PGCLC induction from wild-type cells. Thus,

SOX17 null cells have intrinsic defect for hPGCLC specification.

To determine the competency of the SOX17 null hESCs, we

transfected an inducible SOX17 fusion construct with human

glucocorticoid receptor ligand-binding domain (GR) into the

SOX17 null hESCs. This would allow dexamethasone (Dex) to

activate the SOX17-GR and induce translocation of SOX17

fusion protein from the cytoplasm into the nucleus (Brocard

et al., 1998). After 5 days of induction with cytokines and Dex

in the SOX17 null SOX17-GR hESCs, expression of germ cell

genes BLIMP1, TFAP2C, OCT4, NANOG, and KIT and the

TNAP/CD38-positive population was restored (Figures 6E and

6G). This demonstrates that SOX17 null hESCsmaintain compe-

tency for hPGCLC specification. Strikingly, activation of SOX17

alone in the absence of cytokines was sufficient to induce

germ cell genes and TNAP/CD38-positive cells from 4i hESCs

(Figures 6F and 6G). Taken together, SOX17 is indispensable

and sufficient for hPGCLC gene induction from competent

hESCs, and it acts upstream of BLIMP1 and other genes to

initiate the human germ cell transcriptional network (Figure 6H).

Interestingly, loss of SOX17 in TCam-2 also causes a repression

of germ-cell- and pluripotency-associated genes (Figure S6A).

This suggests that SOX17 might also be important for the main-

tenance of the germ cell state because it is also highly expressed

in embryonic hPGCs.

Specification of hPGCLCs from Germ-Cell-Competent
hESC/hiPSCs
Because gene expression of hESCs in 4i medium resembles

that of hESC after preinduction for 2 days in bFGF/TGFb (Fig-

ures 2A, 2B, and S2A), we decided to investigate hPGCLC in-

duction directly in hESCs maintained in 4i medium (Figure 1A).

Indeed, hPGCLCs could be induced directly from 4i hESCs

with apparent enhanced response resulting in �46% hPGCLCs

(Figure 7A). These hPGCLCs showed a slightly higher intensity

of NANOS3/TNAP by FACS, and a greater proportion of

them were CD38 positive (Figure 7A). Notably, cells maintained

for more than 2 weeks in the conventional hESC medium,

regardless of whether they were initially maintained in 4i

medium, showed a significantly lower numbers of hPGCLCs

(�5%) with a reduced intensity of NANOS3-mCherry/TNAP

and CD38 expression (Figure 7A). This demonstrates that

hESCs in 4i medium are highly competent for the hPGCLC

fate. Importantly, the competent state is conferred reversibly

because it is gained and lost in 4i and conventional culture con-

ditions, respectively.

Global gene expression analysis indicated overall similarities

between hESCs in the conventional medium versus those in

‘‘4i’’ medium (r = 0.923) but with notable differences (Figure S7A).

Although these cells showed similar expression levels of core

pluripotency factors OCT4, NANOG, and SOX2, 4i hESCs

had higher expression of mesoderm and gastrulation genes,

including T,TT RUNX1, and PDGFRA (Figures S7B and S7C and

Table S2). Furthermore, OCT4-positive cells in 4i hESCs had

varying levels of T protein, possibly due to inhibition of GSK3b

(Chen et al., 2013), which is not the case in hESC cultured in con-

ventional condition (Figure S7D). These differences might be

relevant for the mechanism of competence of ESCs for PGCLC,

which merits further investigation.

We also asked whether hiPSCs could be used to generate and

isolate hPGCLCs using the combination of surface markers

CD38 with TNAP (Figures 2C and 3A–3D). Using FX71.1 hiPSCs

(see Experimental Procedures) maintained in 4i medium for

>2 weeks that lack CD38 expression, we detected�31% of

TNAP/CD38 double-positive cells after 4 days in response to

cytokines (Figure 7B). TNAP/CD38 double-positive hPGCLCs

showed expression of NANOS3, BLIMP1, TFAP2C, SOX17,

STELLA, T,TT OCT4, NANOG, and PRDM14, but not of SOX2 (Fig-

ure 7C). Similar results were obtained with another hiPSC line

(C1, Gafni et al., 2013). Thus, hPGCLC specification could be

induced efficiently and directly in hiPSCs that are maintained in

the 4i medium, which could be used for disease modeling using

patient-derived iPSCs.

Figure 6. Role of SOX17 in hPGCLC Specification

(A) Western blot analysis of SOX17 expression of WT day 4 TNAP/NANOS3-mCherry-positive hPGCLCs (WT, TNAP+N3+), and whole SOX17 knockout day 4

embryoids. TUBULIN was used as loading control.

(B) FACS analysis of TNAP and NANOS3-mCherry on WT and SOX17 KO day 4 embryoids.

(C) RT-qPCR analysis of TNAP/NANOS3-mCherry FACS-sortedWT double-negative (TNAP-N3-) or -positive (TNAP+N3+) cells sorted from day 4 embryoids and

whole SOX17 KO embryoids (SOX17 KO). Relative expression levels are shown with normalization to b�ACTIN. Error bars indicate mean ± SD from two

independent biological replicates.

(D) Immunofluorescence of day 4 embryoids derived fromWT, SOX17 knockout (SOX17 KO), and from 1 to 1mixture ofWT and SOX17 KO 4i hESCs. The number

of NANOS3-mCherry+ cells with or without SOX17 expression is shown. Quantification was based on seven to nine confocal images from four independent

embryoids of each condition. Scale bars, 50 mm.

(E and F) FACS analysis of TNAP and CD38 on day 5 embryoids derived from SOX17 knockout 4i hESCs containing SOX17 fusion construct with human

glucocorticoid receptor ligand-binding domain (SOX17 KO+ SOX17 GR). Embryoids were derived in the presence (E) or absence (F) of cytokines with (Dex+) or

without (Dex�) addition of dexamethasone.

(G) RT-qPCR analysis of day 5 hPGCLC derived from WT and SOX17 KO (S17KO) and SOX17 KO + SOX17-GR (S17KO+S17GR) hESCs with (+) or without (�)

dexamethasone (Dex) and in the presence (+) or absence (�) of cytokines. FACS-sorted NANOS3-mCherry/TNAP double-positive cells or whole embryoids

(for S17KO) were used. Relative expression levels are shown with normalization to GAPDH. Error bars indicate mean ± SD from two biological replicates.

(H) Model for establishment of hPGC transcription network by SOX17 and BLIMP1. SOX17 induces germ cell genes and, potentially, endoderm gene. Expression

of BLIMP1, downstream of SOX17, suppresses endodermal genes, as well as mesodermal genes. As a result, the SOX17-BLIMP1 axis initiates hPGC program

from competent cells upon induction by BMP signaling. The hPGC specification gene network is abrogated in the absence of SOX17 or BLIMP1.
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DISCUSSION

Specification of hPGCLCs from germ cell competent hESC/

hiPSC provides a unique mechanistic view of the establishment

of the human germline (Figure 7D). Notably, SOX17 is the key

regulator of hPGCLC specification, whereas BLIMP1 represses

endodermal and other somatic genes during hPGCLC specifica-

tion. This was unexpected because the primary role of SOX17 is

in the endoderm (D’Amour et al., 2005; Kanai-Azuma et al., 2002)

and because Sox17 has no detectable role in the specification of

mouse PGCs (Hara et al., 2009; Kanai-Azuma et al., 2002). A

comparison among hPGCLCs, embryonic hPGCs, and TCam-

2 seminoma (Looijenga et al., 2014; Schafer et al., 2011) also es-

tablishes the likely progression of the early human germline

(Figure 2B).

During hPGCLC specification from hESCs, SOX17 was first

detected in a few scattered cells in day 1 embryoids, which

showed expression of T. The nascent hPGCLCs subsequently

form a few or a single cluster in day 4–8 embryoids. SOX17 is

indeed essential for hPGCLC specification, and this gene alone

is sufficient to induce germ cell genes in the SOX17mutant cells,

with or without cytokines from 4i hESCs. SOX17 acts cell auton-

omously, and the presence of mutant cells in embryoids had no

effect on hPGCLC specification from wild-type cells. It will be of

interest to see how SOX17, with or without BLIMP1, determines

cell fates between germ cell, hematopoietic, and endodermal

lineages (Nakajima-Takagi et al., 2013; Clarke et al., 2013).

Expression of BLIMP1 is intimately associated with SOX17

during hPGCLC specification. BLIMP1 represses somatic

genes, including mesendodermal genes, which might allow

SOX17 to function as the regulator of hPGCLCs specification.

A mutation in BLIMP1 abrogates hPGCLC specification but

without completely abolishing SOX17 expression. However,

TNAP-positive cells were detected, in which PGC-specific genes

were repressed but some endodermal and other somatic genes

were upregulated. This suggests that BLIMP1 might repress

them during hPGCLC specification, but not excluding its wider

role in hPGCLC specification in conjunction with SOX17. In

mice, BLIMP1 also represses somatic genes in PGCs (Ohinata

et al., 2005; Vincent et al., 2005), but it is also a key determinant

of PGC specification, together with PRDM14 and TFAP2C

(Magnúsdóttir et al., 2013).

Although PRDM14 is critical for mouse PGC specification, its

expression during hPGCLC specification is delayed and signifi-

cantly diminished in hPGCs and is very low in TCam-2 compared

to hESCs. PRDM14 is crucial for maintaining pluripotency in hu-

man and mouse ESCs, although different signaling molecules

regulate its expression, and the genomic targets in ESCs also

differ in the two species (Chia et al., 2010; Grabole et al., 2013;

Ma et al., 2011; Yamaji et al., 2013). The rapid downregulation

and delayed re-expression of PRDM14 at the onset of hPGCLC

induction (Figures 2F and S4A) may allow exit of pluripotency

from 4i hESC en route to germ cell differentiation. Interestingly,

the human and mouse PRDM14 proteins have diverged, which

might result in functional differences. There is expression of

SOX2 in mouse PGCs, which is apparently regulated by

PRDM14 (Grabole et al., 2013), whereas SOX2 is repressed in

human hPGCLCs/hPGCs. BLIMP1 also apparently represses

SOX2 during spontaneous differentiation of hPGCLCs from

hESCs (Lin et al., 2014). By contrast, KLF4 is expressed in

hPGCLCs /hPGCs (Figure 2C), but not in mouse PGCs (Kurimoto

et al., 2008). The precise significance of the repression and

expression of pluripotency genes, including NANOG, remains

to be elucidated.

Germ cell neoplasia or carcinoma in situ (CIS) (Skakkebaek,

1972) can generate embryonal carcinoma cells that resemble

hESCs or seminomas such as TCam-2 that inherit key character-

istics of germ cells (Looijenga et al., 2014; Schafer et al., 2011).

TCam-2 expresses SOX17, BLIMP1, TFAP2C, KIT, and DND1

with low levels of SOX2 and PRDM14. Knockdown of SOX17

in TCam-2 induces repression of germ cell and pluripotency

genes (Figure S6A), whereas knockdown of BLIMP1 and

TFAP2C induced upregulation of somatic genes (Weber et al.,

2010). These observations suggest that SOX17 and BLIMP1

might also be important for the maintenance of the early human

germline. We found that CD38 is a marker of all human germline-

related cells, including seminomas. Distinction between semi-

noma and embryonal carcinoma could therefore be made by

the expression of SOX17/CD38 and SOX2/CD30, respectively

(de Jong et al., 2008). Furthermore, CD38/TNAP are reliable

markers for the isolation of hPGCLCs derived from hESC/hiPSC

without any reporters.

The hPGCLCs also showed early signs of DNA demethylation,

which is consistent with the germline-specific epigenetic pro-

gram. The striking upregulation of 5hmC concomitantly with

TET1 suggests that, similar to mouse, conversion of 5mC to

5hmC may contribute to DNA demethylation in hPGC (Hackett

et al., 2013). Furthermore, repression of UHRF1 and DNMT3A

in hPGCLCs would promote DNA-replication-coupled loss of

5mC. Indeed, there was a small but significant decline in 5mC

in hPGCLCs, a trend that could lead to a significant loss of

5mC with further proliferation of hPGCLCs. Furthermore, we

detected upregulation and translocation of PRMT5 to the nu-

cleus in hPGCLC, which occurs with the onset of global DNA

Figure 7. Induction and Isolation of hPGCLCs from Competent hiPSCs/hESCs

(A) FACS analysis of TNAP and NANOS3-mCherry (top) and TNAP and CD38 (bottom) on day 4 embryoids induced from 4i hESCs after preinduction (left), directly

without preinduction (middle) or from conventional hESCs (right, Conv hESC).

(B) FACS analysis of TNAP and CD38 in 4i hiPSCs (top) and day 4 embryoids derived from 4i hiPSCs after direct induction (bottom).

(C) Expression analysis by RT-qPCR on TNAP-positive hiPSCs (iPSC TNAP+), TNAP/CD38 double-negative (TNAP�CD38�) population and TNAP/CD38

double-positive population (TNAP+CD38+) on day 4 after hPGCLC induction. Relative expression levels are shown with normalization to b�ACTIN. Error bars

indicate mean ± SD from two independent biological replicates.

(D) Overview of human germline development. hESCs in 4i reversibly attains competence for germ cell fate. Exposure of 4i cells to cytokines containing BMPs

results in strong induction of hPGCLCs following expression of SOX17-BLIMP1, which are among the key regulators of germ cell fate. SOX17 and BLIMP1 are

detected in in vivo gonadal hPGC and TCam-2 seminoma, indicating a likely progression of early human germ cell lineage. CD38, a cell-surface glycoprotein, is

shared by all cells with germ cell characteristics, but not by hESC. Loss of SOX17 or BLIMP1 abrogates hPGCLC specification.
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demethylation to repress transposable elements (Kim et al.,

2014). Detailed analysis of the transcriptome and epigenome,

together with the targets of SOX17 in hPGCLCs/hPGCs, should

provide insights on the mechanism of how the epigenome is

reset in the early human germline and potentially on the inheri-

tance and consequences of transgenerational epigenetic inher-

itance (Heard and Martienssen, 2014).

This study shows that changes in pluripotent cell states can be

induced by environmental factors with respect to gain and loss of

competence for germ cell fate in hESCs in the 4i culture (Gafni

et al., 2013). This competence for hPGCLCs is reversibly main-

tained and progressively lost in conventional culture conditions.

Notably, hESCs in 4i medium show a slight upregulation of T

together with HAND1 compared to conventional hESCs (Fig-

ure S7), with putative posterior primitive streak-like feature

(Mendjan et al., 2014). This might explain why hESC in 4i are

highly competent for hPGCLC fate. Because MAPK inhibitors

may also alter the epigenetic state of pluripotent cells (Gafni

et al., 2013), the precise molecular basis for competence for

PGC fate remains to be elucidated in both mouse and human.

Nonetheless, hESC/hiPSC can reversibly gain competence for

hPGCLC specification in 4i medium, which provides a model

for advances in human germ cell biology.

Mouse is the primary model organism for early mammalian

development, pluripotency, and the regulation of cell fates. Post-

implantation rodent embryos develop as egg cylinders with an

overlying extraembryonic ectoderm, which is the source of

signals, including BMP4, whereas postimplantation epiblast em-

bryonic disc in humans is typical of many mammalian species

(Barrios et al., 2013; de Fellici, 2013; Irie et al., 2014). These dif-

ferences may affect the source, duration, and the nature of

signaling molecules that regulate competence for cell fates

in vivo. The evolutionary divergence in the pluripotent states in

mouse and human might also result in differences in the mecha-

nism of germline specification and, potentially, other cell fate de-

cisions. If so, mechanisms of early cell fate decisions in mice

cannot be safely or wholly extrapolated to specification events

during early human development.

EXPERIMENTAL PROCEDURES

hESC/iPSC Culture and hPGCLC Differentiation

4i hESCs (WIS2: 46XY; WIBR3: 46XX; LIS1, 46XY) and iPSCs (FX71.1; a fragile

X male patient-derived iPSC line, C1 female iPSC line) were grown in condi-

tions adapted and modified from previously described WIS-NHSM conditions

(Gafni et al., 2013). 4i cells were grown on irradiated mouse embryonic fibro-

blasts (MEFs) (GlobalStem) in knockout DMEM supplemented with 20%

knockout serum replacement (KSR), 2 mM L-glutamine, 0.1 mM nonessential

amino acids, 0.1 mM 2-mercaptoethanol (all GIBCO), 20 ng/ml human LIF

(Stem Cell Institute [SCI]), 8 ng/ml bFGF (SCI), 1 ng/ml TGF-b1 (Peprotech),

3 mM CHIR99021 (Miltenyi Biotec), 1 mM PD0325901 (Miltenyi Biotec), 5 mM

SB203580 (TOCRIS bioscience), and 5 mM SP600125 (TOCRIS bioscience).

Cells were passaged every 3 to 5 days using TrypLE Express (GIBCO).

10 mM of ROCK inhibitor (Y-27632, TOCRIS bioscience) was used for 24 hr

after the passage.

To preinduce, 4i hESCs were dissociated with TrypLE Express and filtered

with 50 mm cell filter (PERTEC), and 43 105 cells/ 12-well were plated on vitro-

nectin/gelatin-coated plates (Gafni et al., 2013) in N2B27 medium (Ying et al.,

2008) with 1% KSR, 10 ng/ml bFGF (SCI), 1 ng/ml TGF-b1 (Peprotech), or

20 ng/ml Activin A (SCI) and 10 mM ROCK inhibitor. Medium was changed

on day 1. After 2 days of preinduction, the cells are dissociated with TrypLE

and plated to ultra-low cell attachment U-bottom 96-well plates (Corning,

7007) at a density of 2,000–4,000 cells/well in 200 ml PGCLC medium. PGCLC

medium is composed of Glasgow’s MEM (GMEM, GIBCO), 15%KSR, 0.1 mM

nonessential amino acids, 0.1 mM 2-mercaptoethanol, 100 U/ml Penicillin-

0.1 mg/ml Streptomycin, 2 mM L-Glutamine, 1 mM Sodium pyruvate, and

the following cytokines: 500 ng/ml BMP4 (R&D Systems) or BMP2 (SCI),

1 mg/ml human LIF (SCI), 100 ng/ml SCF (R&D Systems), 50 ng/ml EGF

(R&D Systems), and 10 mM ROCK inhibitor.

Conventional hESCs/hiPSCs were maintained on irradiated MEFs

(GlobalStem) in DMEM/F12+GlutaMAX supplemented with 20% KSR, 0.1 mM

nonessential amino acids, 0.1 mM 2-mercaptoethanol (all GIBCO), and 10–

20 ng/ml of bFGF (SCI). Media were replaced every day. Cells were passaged

every 4 to 6 days using 1 mg/ml of Dispase (GIBCO), and 10 mMROCK inhibitor

(Y-27632, TOCRIS bioscience) was added for 24 hr after the passage.
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SUMMARY

The bacteria Yersinia pestis is the etiological agent
of plague and has caused human pandemics with
millions of deaths in historic times. How and
when it originated remains contentious. Here, we
report the oldest direct evidence of Yersinia pestis
identified by ancient DNA in human teeth from Asia
and Europe dating from 2,800 to 5,000 years ago.
By sequencing the genomes, we find that these
ancient plague strains are basal to all known
Yersinia pestis. We find the origins of the Yersinia
pestis lineage to be at least two times older than
previous estimates. We also identify a temporal
sequence of genetic changes that lead to increased
virulence and the emergence of the bubonic
plague. Our results show that plague infection
was endemic in the human populations of Eurasia
at least 3,000 years before any historical recordings
of pandemics.

INTRODUCTION

Plague is caused by the bacteria Yersinia pestis and is being

directly transmitted through human-to-human contact (pneu-

monic plague) or via fleas as a common vector (bubonic or septi-

cemic plague) (Treille and Yersin, 1894). Three historic human

plaguepandemicshavebeendocumented: (1) theFirstPandemic,

which started with the Plague of Justinian (541–544 AD), but

continued intermittently until�750 AD; (2) the Second Pandemic,

which began with the Black Death in Europe (1347–1351 AD) and

included successivewaves, such as theGreatPlague (1665–1666

AD), until the 18th century; (3) the Third Pandemic, which emerged

inChina in the1850sanderupted there inamajor epidemic in1894

before spreading across the world as a series of epidemics until

the middle of the 20th century (Bos et al., 2011; Cui et al., 2013;

Drancourt et al., 1998; Harbeck et al., 2013; Parkhill et al., 2001;

Perry andFetherston, 1997;Wagneretal., 2014). Earlieroutbreaks

such as the Plague of Athens (430–427 BC) and the Antonine

Plague (165–180 AD) may also have occurred, but there is no

direct evidence that allows confident attribution toY. pestis (Dran-

court and Raoult, 2002; McNeill, 1976).
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The consequences of the plague pandemics have been well-

documented and the demographic impacts were dramatic (Little

et al., 2007). The Black Death alone is estimated to have killed

30%–50% of the European population. Economic and political

collapses have also been in part attributed to the devastating

effects of the plague. The Plague of Justinian is thought to

have played a major role in weakening the Byzantine Empire,

and the earlier putative plagues have been associated with the

decline of Classical Greece and likely undermined the strength

of the Roman army.

Molecular clock estimates have suggested thatY. pestis diver-

sified from themore prevalent and environmental stress-tolerant,

but lesspathogenic, enteric bacteriumY.pseudotuberculosisbe-

tween 2,600 and 28,000 years ago (Achtman et al., 1999, 2004;

Cui et al., 2013; Wagner et al., 2014). However, humans may

potentially have been exposed to Y. pestis for much longer than

the historical record suggests, though direct molecular evidence

for Y. pestis has not been obtained from skeletal material older

than 1,500 years (Bos et al., 2011; Wagner et al., 2014). The

most basal strains of Y. pestis (0.PE7 clade) recorded to date

were isolated from the Qinghai-Tibet Plateau in China in 1961–

1962 (Cui et al., 2013).

We investigated the origin of Y. pestis by sequencing ancient

bacterial genomes from the teeth of Bronze Age humans across

Europe and Asia. Our findings suggest that the virulent, flea-

borne Y. pestis strain that caused the historic bubonic plague

pandemics evolved from a less pathogenic Y. pestis lineage in-

fecting human populations long before recorded evidence of

plague outbreaks.

RESULTS

Identification of Yersinia pestis in Bronze Age Eurasian
Individuals
We screened c. 89 billion raw DNA sequence reads obtained

from teeth of 101 Bronze Age individuals from Europe and Asia

(Allentoft et al., 2015) and found that seven individuals carried se-

quences resembling Y. pestis (Figure 1, Table S1, Supplemental

Experimental Procedures). Further sequencing allowed us to

Figure 1. Archaeological Sites of Bronze

Age Yersinia pestis

(A) Map of Eurasia indicating the position, radio-

carbon dated ages and associated cultures of the

samples in which Y. pestis were identified. Dates

are given as 95% confidence interval calendar BC

years. IA: Iron Age.

(B) Burial four from Bulanovo site. Picture by

Mikhail V. Khalyapin. See also Table S1.

assemble the Y. pestis genomes to an

average depth of 0.14–29.5X, with 12%–

95% of the positions in the genome

covered at least once (Table 1, Table S2,

S3, and S4). We also recovered the

sequences of the three plasmids pCD1,

pMT1, and pPCP1 (0.12 to 50.3X in

average depth) the latter two of which

are crucial for distinguishing Y. pestis from its highly similar

ancestor Y. pseudotuberculosis (Table 1, Figure 2, Table S3)

(Bercovier et al., 1980; Chain et al., 2004; Parkhill et al., 2001).

The host individuals from which Y. pestis was recovered belong

to Eurasian Late Neolithic and Bronze Age cultures (Allentoft

et al., 2015), represented by the Afanasievo culture in Altai, Sibe-

ria (2782 cal BC, 2794 cal BC, n = 2), the Corded Ware culture in

Estonia (2462 cal BC, n = 1), the Sintashta culture in Russia (2163

cal BC, n = 1), the Unetice culture in Poland (2029 cal BC, n = 1),

the Andronovo culture in Altai, Siberia (1686 cal BC, n = 1), and

an early Iron Age individual from Armenia (951 cal BC, n = 1)

(Table S1).

Authentication of Yersinia pestis Ancient DNA
Besides applying standard precautions for working with ancient

DNA (Willerslev and Cooper, 2005), the authenticity of our

findings are supported by the following observations: (1) The

Y. pestis sequences were identified in significant amounts in

shotgun data from eight of 101 samples, showing that this

finding is not due to a ubiquitous contaminant in our lab or in

the reagents. Indeed, further analysis showed that one of these

eight was most likely not Y. pestis. We also sequenced all nega-

tive DNA extraction controls and found no signs of Y. pestis DNA

in these (Table S3). (2) Consistent with an ancient origin, the

Y. pestis reads were highly fragmented, with average read

lengths of 43–65 bp (Table S3) and also displayed clear signs of

C-T deamination damage at the 50 termini typical of ancient

DNA (Figure 3, Figure S1). Because the plasmids are central for

discriminating between Y. pestis and Y. pseudotuberculosis,

we tested separately for DNA damage patterns for the chromo-

some and for each of the plasmids. For the seven samples, we

observe similar patterns of DNA damage for chromosome and

plasmid sequences (Figure 3, Figure S1). (3) We observe corre-

lated DNA degradation patterns when comparing DNA degra-

dation in the Y. pestis sequences and the human sequences

from the host individual. Given that DNA decay can be described

as a rate process (Allentoft et al., 2012), this suggests that the

DNA molecules of the pathogen and the human host have a

similar age (Figure 3, Figure S1, Table S3 and Supplemental
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Experimental Procedures). (4) Because of the high sequence

similarity between Y. pestis and Y. pseudotuberculosis, we

mapped all reads both to the Y. pestis CO92 and to the

Y. pseudotuberculosis IP32953 reference genomes (Chain

et al., 2004). Consistent with being Y. pestis, the seven investi-

gated samples displayed more reads matching perfectly (edit

distance = 0) toward Y. pestis (Figure 3, Figure S2). One sample

(RISE392) was most likely not Y. pestis based on this criterion.

(5) A naive Bayesian classifier trained on known genomes pre-

dicts the seven samples tobeY. pestiswith 100%posterior prob-

ability, while RISE392 is predicted to have 0% probability of

being Y. pestis (Figure S2, Table S3). (6) If the DNA was from

other organisms than Y. pestis, we would expect the reads to

be more frequently associated with either highly conserved or

low-complexity regions. However, we find the reads to be distrib-

uted across the entire genome (Figure S2), and comparison of

actual coverage versus the coverage that would be expected

from read length distributions and mappability of the reference

sequencesarealso inagreement for thesevensamples (Figure3).

(7) In a maximum likelihood phylogeny, the recovered Y. pestis

genomic sequences of RISE505 and RISE509 are clearly within

the Y. pestis clade and basal to all contemporary Y. pestis strains

(Figure 4) (see below).

The Phylogenetic Position of the Bronze Age Yersinia

pestis Strains
To determine the phylogenetic positions of the two high

coverage ancient Y. pestis strains, RISE505 (Andronovo culture

1686 cal BC, 8.7X) and RISE509 (Afanasievo culture, 2746 cal

BC, 29.7X), we mapped the reads, together with reads from

strains of Yersinia similis (n = 5), Y. pseudotuberculosis (n =

25), and Y. pestis (n = 139), to the Y. pseudotuberculosis refer-

ence genome (IP32953). Only high confidence positions were

extracted. To assess whether the individuals were infected

with multiple strains of Y. pestis we investigated the genotype

heterozygosity levels of the ancient genomes and found no

indications of mixed infection (Figure S3). There was no decay

in Linkage Disequilibrium (LD) across the chromosome (Fig-

ure S3), indicating no detectable recombination among strains.

We therefore used RAxML (Stamatakis, 2014) to construct a

Maximum Likelihood phylogeny from a supermatrix concate-

nated from 3,141 genes and a total of 3.14 Mbp (Figure 4). This

contrasts with earlier phylogenies (Bos et al., 2011; Cui et al.,

2013; Morelli et al., 2010;Wagner et al., 2014), which were based

on less than 2,300 nucleotides that were ascertained to be vari-

able in Y. pestis, likely leading to lower statistical accuracy than

with whole-genome analyses. Furthermore, the use of SNPs

ascertained to be variable in Y. pestis would downwardly bias

estimates of branch lengths in Y. pseudotuberculosis and lead

to underestimates of the Y. pestis versus Y pseudotuberculosis

divergence time, as seen in the branch length of the Y. pestis

clade to Y. pseudotuberculosis (Figure S3). The topology of our

whole genome tree shows Y. pestis as a monophyletic group

within Y. pseudotuberculosis with RISE505 and RISE509 (Fig-

ure 4A, black arrow, Figure S4) clustered together within the

Y. pestis clade. The Y. pestis sub-tree topology (Figure 4B, Fig-

ure S4) is similar to that reported previously (Bos et al., 2011;

Cui et al., 2013; Morelli et al., 2010; Wagner et al., 2014), but

with the two ancient strains (RISE505 and RISE509) falling basal

to all other known strains of Y. pestis (100% bootstrap support).

Determination of Yersinia pestis Divergence Dates
To determine the dates for the most recent common ancestor

(MRCA) of Y. pestis and Y. pseudotuberculosis, and for all known

Y. pestis strains, we used a Bayesian Markov Chain Monte Carlo

approach implemented in BEAST2 (Bouckaert et al., 2014) on a

subset of the supermatrix. We estimated the MRCA of Y. pestis

and Y. pseudotuberculosis to be 54,735 years ago (95% HPD

[highest posterior density] interval: 34,659–78,803 years ago)

(Figure 4C, Figure S5, Table S5), which is about twice as old

compared to previous estimates of 2,600–28,000 years ago

(Achtman et al., 1999, 2004; Cui et al., 2013; Wagner et al.,

2014). Additionally, we estimated the age of the MRCA of all

known Y. pestis to 5,783 years ago (95% HPD interval: 5,021–

7,022 years ago). This is also significantly older and with a

much narrower confidence interval than previous findings of

3,337 years ago (1,505–6,409 years ago) (Cui et al., 2013).

Bronze Age Yersinia pestis Strains Lacking Yersinia
Murine Toxin
For the high-depth ancient Y. pestis genomes, we investigated

the presence of 55 genes that have been associated with the

virulence of Y. pestis (Figure 5A, Table S6).We found all virulence

genes to be present, except the Yersinia murine toxin (ymt(( ) genett

that is located at 74.4–76.2 kb on the pMT1 plasmid (Figure 2C,

arrow 1). The ymt gene encodes a phospholipase D that protects

Table 1. Overview of the Y. pestis Containing Samples

SampleSa p eSample CountryCou yCountry SiteS eSite CultureCu u eCulture Date (cal BC)a e (ca C)Date (cal BC) CO92CO9CO92 pMT1ppMT1 pPCP1p CpPCP1 pCD1pCpCD1

RISE00S 00RISE00RISE00 Estonias o aEstoniaEstonia SopeSopeSopeSope Corded WareCo ded a eCorded WareCorded Ware 2575–23495 5 3 92575 23492575 2349 0 390 390.390.39 0 360 360.360.36 1 4001.401.40 0 660 660.660.66

RISE139S 39RISE139RISE139 Polando a dPolandPoland ChociwelC oc eChociwelChociwel UneticeU e ceUneticeUnetice 2135–192335 9 32135 19232135 1923 0 1400.140.14 0 2400.240.24 0 760 60.760.76 0 280 80.280.28

RISE386S 386RISE386RISE386 Russiauss aRussiaRussia Bulanovou a o oBulanovoBulanovo SintashtaS as aSintashtaSintashta 2280–204780 02280 20472280 2047 0 820 80.820.82 0 960 960.960.96 1 121.121.12 1 60601.601.60

RISE397S 39RISE397RISE397 Armeniae aArmeniaArmenia KapanapaKapanKapan EIAEIAEIA 1048–8850 8 8851048 8851048 885 0 250 50.250.25 0 400 00.400.40 6 886 886.886.88 0 500 500.500.50

RISE505S 505RISE505RISE505 Russiauss aRussiaRussia Kytmanovoy a o oKytmanovoKytmanovo Andronovod o o oAndronovoAndronovo 1746–16266 6 61746 16261746 1626 8 738 38.738.73 9 159 59.159.15 34 093 0934.0934.09 17 46617.4617.46

RISE509S 509RISE509RISE509 Russiauss aRussiaRussia Afanasievo Goraa as e o Go aAfanasievo GoraAfanasievo Gora Afanasievoa as e oAfanasievoAfanasievo 2887–267788 62887 26772887 2677 29 459 529.4529.45 16 966 9616.9616.96 31 22331.2231.22 50 3250 350.3250.32

RISE511S 5RISE511RISE511 Russiauss aRussiaRussia Afanasievo Goraa as e o Go aAfanasievo GoraAfanasievo Gora Afanasievoa as e oAfanasievoAfanasievo 2909–2679909 6 92909 26792909 2679 0 200 00.200.20 0 2400.240.24 1 1991.191.19 0 600 600.600.60

The dating is direct AMS dating of bones and teeth and is given as 95% confidence interval calendar BC years (details are given in Table S1). The

columns CO92, pMT1, pPCP1 and pCD1 correspond to sequencing depth. Additional information on the archaeological sites and mapping statistics

can be found in the Supplemental Experimental Procedures and Table S1, S2, and S3. EIA: Early Iron Age, AMS: Accelerator Mass Spectrometry.
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Y. pestis inside the flea gut, thus enabling this enteric bacteria

to use an arthropod as vector; it further allows for higher titers

of Y. pestis and higher transmission rates (Hinnebusch, 2005;

Hinnebusch et al., 2002). When investigating all seven samples

for the presence of ymt, we identified a 19 kb region (59–78 kb,

Figure 2C arrow 2–3, Figure 5B) to bemissing except in the youn-

gest sample (RISE397, 951 cal BC) (Figure 5B, Table S7). We find

this region to be present in all other published Y. pestis strains

(modern and ancient), except three strains (5761, 945, and

CA88) that are lacking the pMT1 plasmid completely.

Although larger sample sizes are needed for confirmation, our

data indicate that the ymt gene was not present in Y. pestis

before 1686 cal BC (n = 6), while after 951 cal BC, it is found in

97.8% of the strains (n = 140), suggesting a late and very rapid

spread of ymt. This contrasts with previous studies arguing

that the ymt gene was acquired early in Y. pestis evolution due

A B

C
D

Figure 2. Y. pestis Depth of Coverage Plots

(A–D) Depth of coverage plots for (A) CO92 chromosome, (B) pCD1, (C) pMT1, (D) pPCP1. Outer ring: Mappability (gray), genes (RNA: black, transposon: purple,

positive strand: blue, negative strand: red), RISE505 (blue), RISE509 (blue), Justinian plague (orange), Black Death plague (purple), modern Y. pestis D1982001

(green), Y. pseudotuberculosis IP32881 (red) sample. The modern Y. pestis and Y. pseudotuberculosis samples are included for reference. The histograms show

sequence depth in 1 kb windows for the chromosome and 100 bp windows for the plasmids with a max of 20X depth for each ring. Arrow 1: ymt gene, arrow 2:

transposon at start of missing region on pMT1, arrow 3: transposon at end of missing region on pMT1, arrow 4: pla gene, arrow 5: missing flagellin region on

chromosome. The plots were generated using Circos (Krzywinski et al., 2009). See also Tables S2, S3 and S8.
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to its importance in its life cycle (Carniel, 2003; Hinnebusch,

2005; Hinnebusch et al., 2002; Sun et al., 2014). Interestingly,

we identified two transposase elements flanking the missing

19 kb region, confirming that the ymt gene was acquired through

horizontal gene transfer, as previously suggested (Lindler et al.,

1998). Moreover, it has recently been shown that the transmis-

sion of Y. pestis by fleas is also dependent on loss of function

mutations in the pde2, pde3, and rcsA genes (Sun et al., 2014).

The RISE509 sample carries the promoter mutation of pde3

and the functional pde2 and rcsA alleles (Figure S6). In combina-

tion with the absence of ymt, these results strongly suggest that

the ancestral Y. pestis bacteria in these early Bronze Age individ-

uals were not transmitted by fleas.

Native Plasminogen Activator Gene Present in Bronze
Age Yersinia pestis

Another hallmark gene of Y. pestis pathogenicity is the plas-

minogen activator gene pla (omptin protein family), located on

the pPCP1 plasmid (6.6–7.6 kb). The gene facilitates deep tissue

invasion and is essential for development of both bubonic and

pneumonic plague (Sebbane et al., 2006; Sodeinde et al.,

1992; Zimbler et al., 2015). We identify the gene in six of the

seven genomes, but not in RISE139, the sample with the lowest

overall depth of coverage (0.75X on pPCP1) (Figure 2D, arrow 4,

Table S6). Recently, it has been proposed that pPCP1 was

acquired after the branching of the 0.PE2 clade (Zimbler et al.,

2015); however, we identified pPCP1 in our samples, including

in the 0.PE7 clade (strains 620024 and CMCC05009), which

diverged prior to the common ancestor of the 0.PE2 lineage (Fig-

ure 4B, Figure 5A). This shows that pPCP1 and pla likely were

present in the most basal Y. pestis (RISE509), suggesting that

the 0.PE2 strains lost the pPCP1 plasmid. Interestingly, three

2.ANT3 strains (5761, CMCC64001, and 735) are also missing

the pla gene, indicating that the loss of pPCP1 occurred more

than once in the evolutionary history of Y. pestis.

Additionally, we investigated whether RISE397, RISE505, and

RISE509 had the isoleucine to threonine mutation at amino acid

259 in the Pla protein. This mutation has been shown to be

essential for developing bubonic, but not pneumonic, plague

(Zimbler et al., 2015). We found that these samples, in agreement

with their basal phylogenetic position, carry the ancestral isoleu-

cine residue. However, we also identified a valine to isoleucine

mutation at residue 31 for RISE505 (1686 cal BC) and RISE509

(2746 cal BC). This mutation was not found in any of the other

140 Y. pestis strains, but was present in other omptin proteins,

such as Escherichia coli and Citrobacter koseri, and very likely

represents the ancestral Y. pestis state. The youngest of the

samples, RISE397 (951 cal BC) carries the derived isoleucine

residue, showing that this mutation, similar to the acquisition of

ymt, was only observed after 1686 cal BC.

An alternative explanation to the acquisition of ymt and the pla

I259T mutation, given the disparate geographical locations of

our samples, could be that the Armenian strain (RISE397, 951

cal BC) containing ymt and the isoleucine residue in pla had a

longer history in the Middle East and experienced an expansion

during the 1st millennium BC. This would have led to its export to

Eurasia and presumably the extinction of the other more ances-

tral and less virulent Y. pestis strains.

Different Region 4 Present in the Ancestral Yersinia
pestis

Besides the 55 pathogenicity genes, we also investigated the

presence of different region 4 (DFR4) that contains several genes

with potential role in Y. pestis virulence (Radnedge et al., 2002).

This region was reported as present in the Plague of Justinian

and Black Death strains, having been lost in the CO92 reference

genome (from the Third Pandemic) (Chain et al., 2004; Wagner

et al., 2014). Consistent with the ancestral position of our sam-

ples, we find evidence that the region is present in all of our seven

samples (Figure S6).

Yersinia pestis flagellar Frameshift Mutation Absent in
Bronze Age Strains
Another important feature of Y. pestis is the ability to evade the

mammalian immune system. Flagellin is a potent initiator of the

mammalian innate immune system (Hayashi et al., 2001).

Y. pseudotuberculosis is known to downregulate expression

of flagellar systems in a temperature-dependent manner, and

none of the known Y. pestis strains express flagellin due to a

frameshift mutation in the flhD regulatory gene (Minnich and

Rohde, 2007). However, we do not find this mutation in either

RISE505 or RISE509, suggesting that they have fully functional

flhD genes and that the loss of function occurred after 2746 cal

BC. Interestingly, the youngest of these two Y. pestis genomes

(RISE505, 1686 cal BC) shows partial loss of one of the two

flagella systems (758–806 kb), with 39 of 49 genes deleted (Fig-

ure 2A, arrow 5, Table S8). This deletion was not found in any of

the other Y. pestis samples (n = 147). This may point to selective

pressure on ancestral Y. pestis when emerging as a mammalian

pathogen, yielding variably adaptive strains.

DISCUSSION

Our calibrated molecular clock pushes the divergence dates for

the early branching of Y. pestis back to 5,783 years ago, an addi-

tional 2,000 years compared to previous findings (Table S5, Fig-

ure S5) (Cui et al., 2013; Morelli et al., 2010). Furthermore, using

the temporally stamped ancient DNA data, we are able to derive

a time series for the molecular acquisition of the pathogenicity

elements and immune avoidance systems that facilitated the

evolution from a less virulent bacteria with zoonotic potential,

such as Y. pseudotuberculosis, to one of the most deadly bacte-

ria ever encountered by humans (Figure 6).

From our findings, we conclude that the ancestor of extant

Y. pestis strains was present by the end of the 4th millennium

BC and was widely spread across Eurasia from at least the early

3rd millennium BC. The occurrence of plague in the Bronze

Age Eurasian individuals we sampled (7 of 101) indicates that

plague infections were common at least 3,000 years earlier

than recorded historically. However, based on the absence of

crucial virulence genes, unlike the later Y. pestis strains that

were responsible for the first to third pandemics, these ancient

ancestral Y. pestis strains likely did not have the ability to cause

bubonic plague, only pneumonic and septicemic plague. These

early plagues may have been responsible for the suggested

population declines in the late 4th millennium BC and the early

3rd millennium BC (Hinz et al., 2012; Shennan et al., 2013).
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It has recently been demonstrated by ancient genomics

that the Bronze Age in Europe and Asia was characterized

by large-scale population movements, admixture, and re-

placements (Allentoft et al., 2015; Haak et al., 2015), which

accompanied profound and archaeologically well-described

social and economic changes (Anthony, 2007; Kristiansen

and Larsson, 2005). In light of our findings, it is plausible

that plague outbreaks could have facilitated—or have been

facilitated by—these highly dynamic demographic events.

However, our data suggest that Y. pestis did not fully adapt

as a flea-borne mammalian pathogen until the beginning of

the 1st millennium BC, which precipitated the historically re-

corded plagues.

EXPERIMENTAL PROCEDURES

Samples and Archaeological Sites

We initially re-analyzed the data from Allentoft et al. (Allentoft et al., 2015) and

identified Y. pestis DNA sequences in 7 of the 101 individuals. Descriptions of

the archaeological sites are given in Supplemental Experimental Procedures

and Table S1.

Generation of Additional Sequence Data

In order to increase the depth of coverage on the Y. pestis genomes we

sequenced more on these seven DNA extracts. Library construction was con-

ducted as in (Allentoft et al., 2015). Briefly, double stranded and blunt-ended

DNA libraries were prepared using the NEBNext DNA Sample Prep Master

Mix Set 2 (E6070) and Illumina-specific adapters (Meyer and Kircher, 2010).

The libraries were ‘‘shot-gun’’ sequenced in two pools on Illumina HiSeq2500

platforms using 100-bp single-read chemistry. We sequenced 32 lanes gener-

ating a total of 11.2 billion new DNA sequences for this study. Reads for the

seven Y. pestis samples are available from ENA: PRJEB10885. Individual sam-

ple accessions numbers are available in Table S2.

Creation of Database for Identification of Y. pestis Reads

To identify Y. pestis reads in the Bronze Age dataset (Allentoft et al., 2015) we

first created a database of all previously sequenced Y. pestis strains (n = 140),

Y. pseudotuberculosis strains (n = 30), Y. similis strains (n = 5), and a selection

of Y. enterocolitica strains (n = 4) (Supplemental Experimental Procedures and

Table S2). The genomes were either downloaded fromNCBI or downloaded as

reads and de novo assembled using SPAdes-3.5.0 (Bankevich et al., 2012)

with the–careful and–cov-cutoff auto options.

Identification and Assembly of Y. pestis From Ancient Samples

Raw reads were trimmed for adaptor sequences using AdapterRemoval-

1.5.4 (Lindgreen, 2012). Additionally leading and trailing Ns were removed

as well as bases with quality 2 or less. Hereafter, the trimmed reads

with a length of at least 30 nt were mapped using bwa mem (local

alignment) (Li and Durbin, 2009) to the database of Y. pestis,

Y. pseudotuberculosis, Y. similis, and Y. enterocolitica mentioned above.

Reads with a match to any of the sequences in this database were aligned

separately to three different reference genomes: Yersinia pestis CO92

genome including the associated plasmids pCD1, pMT1, pPCP1 (Parkhill

et al., 2001); Yersinia pseudotuberculosis IP32953 including the associ-

ated plasmids (Chain et al., 2004); Yersinia pestis biovar Microtus 91001

and associated plasmids (Zhou et al., 2004). This alignment was performed

using bwa aln (Li and Durbin, 2009) with the seed option disabled for

better sensitivity for ancient data, enforcing global alignment of the

read to the reference genome. Each sequencing run was merged to library

level and duplicates removed using Picard-1.124 (http://broadinstitute.

github.io/picard/), followed by merging to per sample alignment files.

These files were filtered for a mapping quality of 30 to only retain high

quality alignments and the base qualities were re-scaled for DNA

damage using MapDamage 2.0 (Jónsson et al., 2013). We defined

Y. pestis as present in a sample if the mapped depth of the CO92 refer-

ence sequences were higher or equal to 0.1X and if the reads covered

at least 10% of the chromosome and each of the plasmids. The assembly

of Justinian, Black Death, and the modern samples were performed

similarly and is described in detail in the Supplemental Experimental

Procedures.

Coverage, Depth and Mappability Analyses

We calculated the coverage of the individual sample alignments versus

the Y. pestis CO92 reference genome using Bedtools (Quinlan and Hall,

2010) and plotted this using Circos (Krzywinski et al., 2009). For the

chromosome, the coverage was calculated in 1 kbp windows and for the

plasmids in 100 bp windows. Mappability was calculated using GEM-

mappability library using a k-mer size of 50, which is similar to the average

length of the trimmed and mapped Y. pestis reads (average length

43–65 bp). Statistics of the coverage and depth are given in Tables S3

and S4.

DNA Decay Rates

We investigated the molecular degradation signals obtained from the

sequencing data. Based on the negative exponential relationship between

frequency and sequence length, we estimated for each sample the DNA

damage fraction (l, per bond), the average fragment length (1/ l), the DNA

decay rate (k, per bond per year), and the molecular half-lives of 100 bp frag-

ments (Allentoft et al., 2012). We compared these DNA decay estimates for

Y. pestis to the decay of endogenous human DNA from the host individuals.

If the plague DNA is authentic and ancient, a correlation is expected between

the rate of DNA decay in the human host and in Y. pestis, because the

DNA has been exposed to similar environmental conditions for the same

amount of time. See Supplemental Experimental Procedures for additional

information.

Figure 3. Authenticity of Y. pestis DNA

(A) DNA damage patterns for RISE505 and RISE509. The frequencies of all possible mismatches observed between the Y. pestis CO92 chromosome and the

reads are reported in gray as a function of distance from 50 (left panel, first 25 nucleotides sequenced) and distance to 30 (right panel, last 25 nucleotides). The

typical DNA damage mutations C>T (50) and G>A (30) are reported in red and blue, respectively.

(B) Ancient DNA damage patterns (n = 7) of the reads aligned to the CO92 chromosome and the Y. pestis associated plasmids pMT1, pCD1 and pPCP1. The

boxplots show the distribution of C-T damage in the 50 of the reads. The lower and upper hinges of the boxes correspond to the 25th and 75th percentiles, the

whiskers represent the 1.5 inter-quartile range (IQR) extending from the hinges, and the dots represent outliers from these.

(C) DNA fragment length distributions fromRISE505 and RISE509 samples representing both the Y. pestisDNA and the DNA of the human host. The declining part

of the distributions is fitted to an exponential model (red).

(D) Linear correlation (red) between the decay constant in the DNA of the human host and the associated Y. pestis DNA extracted from the same individual

(R2 = 0.55, p = 0.055). The decay constant (l) describes the damage fraction (i.e., the fraction of broken bonds on the DNA strand).

(E) Distribution of edit distance of high quality reads from RISE505 and RISE509 samples mapped to either Y. pestis (dark gray) or Y. pseudotuberculosis (light

gray) reference genomes. The reads have a higher affinity to Y. pestis than to Y. pseudotuberculosis.

(F) Plots of actual coverage versus expected coverage for the 101 screened samples. Expected coverage was computed taking into account read length dis-

tributions, mappable fractions of reference sequences, and the deletions in pMT1 for some of the samples. Samples assumed to contain Y. pestis are shown in

blue and RISE392 that is classified as not Y. pestis appears is shown in red. See also Figure S1 and S2, Table S3.
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Comparison of Samples to Y. pestis and Y. pseudotuberculosis

Reference Genomes

We used the alignments of several sets of reads (Y. pestis,

Y. pseudotuberculosis, and Y. similis) to Y. pestis CO92 and the

Y. pseudotuberculosis IP32953 genomes. Per sample we determined the dis-

tribution of edit-distances (mismatches) of the reads versus the particular

reference genome.We used these distributions to build a Naive Bayesian clas-
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Figure 4. Phylogenetic Reconstructions

(A) Maximum Likelihood reconstruction of the

phylogeny of Y. pseudotuberculosis (blue) and

Y. pestis (red). The tree is rooted using Y. similis

(not shown). The full tree including three additional

Y. pseudotuberculosis strains (O:15 serovar) can be

seen in Figure S4. Major branching nodes within

Y. pseudotuberculosiswith > 95%bootstrap support

are indicated with an asterisk and branch lengths are

given as substitutions per site.

(B) Maximum Likelihood reconstruction of the

phylogeny in (A) showing only the Y. pestis clade. The

clades are collapsed by population according to

branches and serovars, as given in (Achtman et al.,

1999, 2004; Cui et al., 2013). See Figure S4 for an

uncollapsed tree and Table S2 for details on pop-

ulations. Nodes with more than 95% bootstrap

support are indicated with an asterisk and branch

lengths are given as substitutions per site.

(C) BEAST2 maximum clade credibility tree showing

median divergence dates. Branch lengths are

given as years before the present (see Divergence

estimations in Experimental Procedures). Only the

Y. pseudotuberculosis (blue), the ancient Y. pestis

samples (magenta) and the most basal branch

0 strains (black) are shown. For a full tree including all

Y. pestis see Figure S5. See also Figure S3, S4, and

S5 and Table S5.

sifier to classify whether reads were originating

from Y. pestis, Y. pseudotuberculosis, or Y. similis.

See Supplemental Experimental Procedures and

Table S3.

Expected versus Actual Coverage

We estimated the expected coverage of Y. pestis

given a specific sequencing depth and correlated

that with the actual coverage of a genome per sam-

ple. Expected coverage was calculated as

c= 1�
YN
i = 1

�
1� lil

g

�rirr

where the reads have N different lengths, l1 to lN with

counts r1 to rN. To account for mappability we deter-

mined the mappable fraction for each reference

sequence using kmers of length 40, 50, and 60,

and then used the mappability value with the k-mer

length closest to the actual average read length for

each sample/reference combination. For more infor-

mation see Supplemental Experimental Procedures.

Genotyping For Phylogenetic Analyses

Alignments of all strains versus Y. pseudotuberculosis

IP32953 was used as reference for genotyping the

consensus sequences for all samples used in the

phylogeny. The samples were genotyped individually

using samtools-0.1.18 and bcftools-0.1.17 (Li et al.,

2009) and hereafter filtered (Supplemental Experimental Procedures). Based

on Y. pseudotuberculosis IP32953 gene annotations, the consensus se-

quences for each gene and sample were extracted. Because of the divergence

between Y. pestis and Y. pseudotuberculosis, a number of gene sequences

displayed high rates of missing bases and we removed genes where 20 or

more modern Y. pestis samples had >10% missingness. This corresponded

to a total of 985 genes, leaving data from 3,141 genes that were merged into
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a supermatrix. We created two different supermatrices, one with Y. similis,

Y. pseudotuberculosis, and Y. pestis containing 173 taxa 3 3,141 genes that

was used for the initial phylogeny (Figure 4A). The second supermatrix

consisted of all Y. pestis strains and the genomes from the two closest

Y. pseudotuberculosis clades, which was used for the divergence time

estimations.

Phylogenetics

The alignments were partitioned by codon position and analyzed with jmodelt-

est-2.1.7 (Darriba et al., 2012) to test for the best fitting substitution model. All

decision criteria (Akaike, Bayesian, and Decision theory) found theGeneralized

Time Reversible substitution model with gamma distributed rates, using

four rate categories, and a proportion of invariable sites (GTR+G+I) to be the

best fit for each of the three codon partitions. To test for recombination across

the chromosome we estimated linkage disequilibrium (LD) using 141 Y. pestis

strains. A total of 482 bi-allelic single nucleotide variations (SNVs), with aminor

allele frequency of 5% or higher were extracted. For all pairs of the extracted

A

B

Figure 5. Identification of Virulence Genes

(A) Gene coverage heatmap of 55 virulence genes (rows)

in 140 Y. pestis strains (columns). Sample ordering is

based on hierarchical clustering (not shown) of the gene

coverage distributions. RISE505 and RISE509 are

marked with a red asterisk. Coloring goes from 0% gene

coverage (white) to 100% gene coverage (blue).

(B) Depth of coverage of high quality reads mapping

across pMT1. Outer ring is mappability (gray), genes

(RNA: black, transposon: purple, positive strand: blue,

negative strand: red) and then the RISE samples ordered

after direct AMS dating. Sample ordering are RISE509,

RISE511, RISE00, RISE386, RISE139, RISE505 and

RISE397. See also Figure S6, Tables S2, S6, and S7.

AMS: Accelerator Mass Spectrometry.

SNVs, the LD r2rr was calculated using PLINK 1.9 (Chang

et al., 2015) and plotted against the physical distance be-

tween the pairs. We reconstructed the phylogeny from

the codon-partitioned supermatrix using RAxML-8.1.15

(Stamatakis, 2014) with the GTR+G+I substitution model.

Bootstraps were performed by generating 100 bootstrap

replicates and their corresponding parsimony starting

trees using RAxML. Hereafter, a standard Maximum

Likelihood inferencewas run on each bootstrap replicate,

and the resulting best trees were merged and drawn on

the best ML tree. Initial phylogenies placed the Y. pestis

Harbin strain with an unusual long branch inside the

1.ORI clade and it was excluded from further analysis.

Additionally Y. pseudotuberculosis SP93422 (serotype

O:15), Y. pseudotuberculosis WP-931201 (serotype

O:15) and Y. pseudotuberculosis Y248 (serotype un-

known) was in a clade with long branch lengths and

were therefore also omitted (see Figure S4).

Heterozygosity Estimates

We determined heterozygosity by down-sampling the

Y. pestisbam-files to the sameaveragedepthas the corre-

sponding RISE samples, genotyped each of the samples

and extracted heterozygote calls with a depth equal to or

higher than 10. All transitions were excluded. See Supple-

mental Experimental Procedures for detailed information.

Divergence Estimations

To date the divergence time for Y. pestis and nodes within

the Y. pestis clade we performed Bayesian Markov Chain

Monte Carlo simulations using BEAST-2.3.0 (Bouck-

aert et al., 2014) and the BEAGLE library v2.1.2 (Ayres

et al., 2012). We used the codon-partitioned supermatrix that included the

two closest Y. pseudotuberculosis clades, with unlinked substitution models,

GTR+G+I with eight gamma rate categories and unlinked clock models. Dates

were set as years ago with the RISE509, RISE505, Justinian and Black Death

samples set to 4,761, 3,701, 1,474, and667years ago, respectively. All unknown

dates were set to 0 years ago.We followed previouswork (Cui et al., 2013;Wag-

ner etal., 2014)andapplieda lognormal relaxedclock, assumingaconstantpop-

ulation size. We re-rooted the ML tree from RAxML so that the root was placed

between the two Y. pseudotuberculosis clades (IP32953, 260, IH111554) and

(IP32921, IP32881, IP32463) and used this as the starting tree. Based on

the ML tree we defined the closets Y. pseudotuberculosis clade (IP32921,

IP32881, IP32463) and the Y. pestis clade as a monophyletic group and defined

auniformpriorwith 1,000and100,000yearsasminimumandmaximumbounds.

We ran 20 independent parallel BEAST chains sampling every 2,000 states for

between 52 and 64million states using a total of 240,000 core hours. The chains

were combined using LogCombiner discarding the initial 10 million states as

burn-in. The combined post burn-in data represented 961 million states and
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the effective sample sizes (ESS) for the posteriorwas 398, for the TreeHeight 238

and for the MRCA for Y. pseudotuberculosis and Y. pestis 216. All other

parameters had ESS > 125. We then sampled 1/5 of the trees from each

chain and combined them for a total of 192,406 trees that were summarized

using TreeAnnotator producing a maximum clade credibility tree of median

heights. We additionally ran BEAST2 sampling the priors only (and disregarding

sequence information) and found the posterior distribution no different than the

priors used. It suggests that the posterior distributions recovered when consid-

ering full sequence alignments are driven by the sequence information and are

not mere by-products of the sampling structure in our dataset (Figure S5).

Analysis of Virulence Associated Genes

To assess the potential virulence of the ancient Y. pestis strains, we identified

55 genes previously reported to be associated with virulence of Y. pestis (Sup-

plemental Experimental Procedures and Table S6 for details). Based on the

alignments to Y. pestis CO92 reference genome we determined the fraction

of the each gene sequence that was covered by at least one read for each

Y. pestis sample.Additionally, because thedifferent region 4 (DFR4) (Radnedge

et al., 2002) has been associated with virulence, but is not present in the CO92

genome, we used the alignments to Y. pestis microtus 91001 to determine the

presence of this region (Supplemental Experimental Procedures). We note that

the absence of KIM pPCP1 is due to it being missing from the reference

genome, but that it has been reported to be present in KIM strains (Hu et al.,

1998). The genotypes were generated as described above and the variant

call format (VCF) files from these analyses are available at http://www.cbs.

dtu.dk/suppl/plague/. For detailed information on genotyping of pde2, pde3,

rscA, pla, and flhD see Supplemental Experimental Procedures.

Identification of the Missing ymt Region on pMT1

Most of the regions that were unmapped could be associated with low mapp-

ability. However, we identified a region from 59–78 kb on pMT1 that could not

be explained by low mappability. From the depth of coverage this region was

absent in all of our ancient plague genomes, except for RISE397 (Figure 5). We

tested for the significance of this by comparing the distribution of gene depths

within and outside of the missing region using theWilcoxon rank-sum test (Ta-

ble S7). For all samples except RISE397 the region had a median depth of 0X

and the gene depth distributions were significantly different compared to the

remaining pMT1 plasmid genes (p values < 1E-9). For the RISE397 sample,

the regions had 0.43X and 0.42X median depths and there was no significant

difference in the depth of the genes in the two regions (p value 0.77).
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Meirav Pevsner-Fischer,3 Rony Bikovsky,1,2 Zamir Halpern,5,7 Eran Elinav,3,9,* and Eran Segal1,2,9,*
1Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
3Immunology Department, Weizmann Institute of Science, Rehovot 7610001, Israel
4Internal Medicine Department, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
5Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University,

Tel Aviv 6423906, Israel
6Day Care Unit and the Laboratory of Imaging and Brain Stimulation, Kfar Shaul Hospital, Jerusalem Center for Mental Health,

Jerusalem 9106000, Israel
7Digestive Center, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
8Co-first author
9Co-senior author
*Correspondence: eran.elinav@weizmann.ac.il (E.E.), eran.segal@weizmann.ac.il (E.S.)

http://dx.doi.org/10.1016/j.cell.2015.11.001

SUMMARY

Elevated postprandial blood glucose levels consti-
tute a global epidemic and amajor risk factor for pre-
diabetes and type II diabetes, but existing dietary
methods for controlling them have limited efficacy.
Here, we continuously monitored week-long glucose
levels in an 800-person cohort, measured responses
to 46,898 meals, and found high variability in the
response to identical meals, suggesting that univer-
sal dietary recommendations may have limited
utility. We devised a machine-learning algorithm
that integrates blood parameters, dietary habits, an-
thropometrics, physical activity, and gut microbiota
measured in this cohort and showed that it accu-
rately predicts personalized postprandial glycemic
response to real-life meals. We validated these
predictions in an independent 100-person cohort.
Finally, a blinded randomized controlled dietary
intervention based on this algorithm resulted in
significantly lower postprandial responses and
consistent alterations to gut microbiota configura-
tion. Together, our results suggest that personalized
diets may successfully modify elevated postprandial
blood glucose and its metabolic consequences.

INTRODUCTION

Blood glucose levels are rapidly increasing in the population, as

evident by the sharp incline in the prevalence of prediabetes and

impaired glucose tolerance estimated to affect, in the U.S. alone,

37% of the adult population (Bansal, 2015). Prediabetes, charac-

terized by chronically impaired blood glucose responses, is a sig-

nificant risk factor for type II diabetes mellitus (TIIDM), with up to

70% of prediabetics eventually developing the disease (Nathan

et al., 2007). It is also linked to other manifestations, collectively

termed the metabolic syndrome, including obesity, hypertension,

non-alcoholic fatty liver disease,hypertriglyceridemia,andcardio-

vascular disease (Grundy, 2012). Thus, maintaining normal blood

glucose levels is considered critical for preventing and controlling

the metabolic syndrome (Riccardi and Rivellese, 2000).

Dietary intake is a central determinant of blood glucose levels,

and thus, in order to achieve normal glucose levels it is impera-

tive to make food choices that induce normal postprandial (post-

meal) glycemic responses (PPGR; Gallwitz, 2009). Postprandial

hyperglycemia is an independent risk factor for the development

of TIIDM (American Diabetes Association., 2015a), cardiovascu-

lar disease (Gallwitz, 2009), and liver cirrhosis (Nishida et al.,

2006) and is associated with obesity (Blaak et al., 2012), and

enhanced all-cause mortality in both TIIDM (Cavalot et al.,

2011) and cancer (Lamkin et al., 2009).

Despite their importance, no method exists for predicting

PPGRs to food. The current practice is to use the meal carbohy-

drate content (American Diabetes Association., 2015b; Bao

et al., 2011), even though it is a poor predictor of the PPGR

(Conn and Newburgh, 1936). Other methods aimed at estimating

PPGRs are the glycemic index, which quantifies PPGR to con-

sumption of a single tested food type, and the derived glycemic

load (Jenkins et al., 1981). It thus has limited applicability in as-

sessing the PPGR to real-life meals consisting of arbitrary food

combinations and varying quantities (Dodd et al., 2011),

consumed at different times of the day and at different proximity

to physical activity and other meals. Indeed, studies examining

the effect of diets with a low glycemic index on TIIDM risk, weight

loss, and cardiovascular risk factors yielded mixed results

(Greenwood et al., 2013; Kristo et al., 2013; Schwingshackl

and Hoffmann, 2013).
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Figure 1. Profiling of Postprandial Glycemic Responses, Clinical Data, and Gut Microbiome

(A) Illustration of our experimental design.

(B and C) Distribution of BMI and glycated hemoglobin (HbA1c%) in our cohort. Thresholds for overweight (BMI R 25 kg/m2), obese (BMI R 30 kg/m2),

prediabetes (HbA1c% R 5.7%) and TIIDM (R6.5%) are shown.

(legend continued on next page)
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More broadly, ascribing a single PPGR to each food assumes

that the response is solely an intrinsic property of the consumed

food. However, the few small-scale (n = 23–40) studies that

examined interpersonal differences in PPGRs found high vari-

ability in the response of different people to the same food

(Vega-López et al., 2007; Vrolix and Mensink, 2010), but the fac-

tors underlying this variability have not been systematically

studied.

Factors that may affect interpersonal differences in PPGRs

include genetics (Carpenter et al., 2015), lifestyle (Dunstan

et al., 2012), insulin sensitivity (Himsworth, 1934), and exocrine

pancreatic and glucose transporters activity levels (Gibbs

et al., 1995). Another factor that may be involved is the gutmicro-

biota. Pioneering work by Jeffrey Gordon and colleagues previ-

ously showed that it associates with the propensity for obesity

and its complications, and later works also demonstrated asso-

ciations with glucose intolerance, TIIDM, hyperlipidemia, and in-

sulin resistance (Le Chatelier et al., 2013; Karlsson et al., 2013;

Qin et al., 2012; Suez et al., 2014; Turnbaugh et al., 2006; Zhang

et al., 2013). However, little is known about the association of gut

microbiota with PPGRs.

Here, we set out to quantitatively measure individualized

PPGRs, characterize their variability across people, and identify

factors associated with this variability. To this end, we continu-

ously monitored glucose levels during an entire week in a cohort

of 800 healthy and prediabetic individuals and also measured

blood parameters, anthropometrics, physical activity, and self-

reported lifestyle behaviors, as well as gut microbiota composi-

tionand function.Our resultsdemonstratehigh interpersonal vari-

ability in PPGRs to the same food.Wedevised amachine learning

algorithm that integrates thesemulti-dimensional data and accu-

rately predicts personalizedPPGRs,whichwe further validated in

an independently collected 100-person cohort. Moreover, we

show thatpersonally tailoreddietary interventionsbasedon these

predictions result in significantly improved PPGRs accompanied

by consistent alterations to the gut microbiota.

RESULTS

Measurements of Postprandial Responses, Clinical
Data, and Gut Microbiome
To comprehensively characterize PPGRs, we recruited 800

individuals aged 18–70 not previously diagnosed with TIIDM

(Figure 1A, Table 1). The cohort is representative of the adult

non-diabetic Israeli population (Israeli Center for Disease Con-

trol, 2014), with 54% overweight (BMI R 25 kg/m2) and 22%

obese (BMIR 30 kg/m2, Figures 1B, 1C, and S1). These proper-

ties are also characteristic of the Western adult non-diabetic

population (World Health Organization, 2008).

Each participant was connected to a continuous glucose

monitor (CGM), which measures interstitial fluid glucose every

5 min for 7 full days (the ‘‘connection week’’), using subcutane-

ous sensors (Figure 1D). CGMs estimate blood glucose levels

with high accuracy (Bailey et al., 2014) and previous studies

found no significant differences between PPGRs extracted

from CGMs and those obtained from either venous or capillary

blood (Vrolix and Mensink, 2010). We used blinded CGMs and

thus participants were unaware of their CGM levels during the

connection week. Together, we recorded over 1.5 million

glucose measurements from 5,435 days.

While connected to the CGM, participants were instructed to

log their activities in real-time, including food intake, exercise

and sleep, using a smartphone-adjusted website (www.

personalnutrition.org) that we developed (Figure S2A). Each

food item within every meal was logged along with its weight

by selecting it from a database of 6,401 foods with full nutritional

values based on the Israeli Ministry of Health database that we

further improved and expanded with additional items from certi-

fied sources. To increase compliance, participants were

informed that accurate logging is crucial for them to receive an

accurate analysis of their PPGRs to food (ultimately provided

to each of them). During the connection week, participants

were asked to follow their normal daily routine and dietary habits,

except for the first meal of every day, which we provided as one

of four different types of standardized meals, each consisting of

50 g of available carbohydrates. This resulted in a total of 46,898

real-lifemeals with close-to or full nutritional values (median of 54

(D) Example of continuous glucosemonitoring (CGM) for one participant during an entire week. Colored areawithin zoom-in shows the incremental area under the

glucose curve (iAUC) which we use to quantify the meal’s PPGR.

(E) Major food components consumed by energy intake.

(F) Distribution of meals (dots) by macronutrient content. Inset shows histogram of meals per macronutrient.

(G) Bray-Curtis based PCoA of metagenome-based bacterial abundances of stool samples in our cohort and in the U.S. HMP and European MetaHIT cohorts.

Inset shows PCoA when samples from other HMP body sites are added. See also Figure S2.

Table 1. Cohorts Description

a Co oMain Cohort

Validation

CohortCo oCohort

KS

p Valuep a uep Value

Number of participants (n)u be o pa c pa s ( )Number of participants (n)Number of participants (n) 800800800800 10000100100

Sex (% female)Se (% e a e)Sex (% female)Sex (% female) 60%60%60%60% 60%60%60%60% 111

AAge (y) Meange (y) eaAge (y) MeanAge (y) Mean ±±± SDSSDSD 43 33 343.343.3 ±±± 13 1313.113.1 42 442.442.4 ±±± 12 6612.612.6 0 9720 90.9720.972

BMI (kg/m( g/BMI (kg/mBMI (kg/m^2) Mean) ea2) Mean2) Mean ±±± SDSSDSD 26 4626.426.4 ±±± 5 155.15.1 26 56 526.526.5 ±±± 4 884.84.8 0 8670 860.8670.867

BMIBMIBMI RRRR 2552525 428 (54%)8 (5 %)428 (54%)428 (54%) 50 (50%)50 (50%)50 (50%)50 (50%)

BMIBMIBMI RRRR 30303030 173 (22%)3 ( %)173 (22%)173 (22%) 18 (18%)8 ( 8%)18 (18%)18 (18%)

HbA1c% Meanb c% eaHbA1c% MeanHbA1c% Mean ±±± SDSSDSD 5 435 35.435.43 ±±± 0 450 50.450.45 5 505 505.505.50 ±±± 0 550 550.550.55 0 4920 90.4920.492

HbA1c%b c%HbA1c%HbA1c% RRRR 5 755.75.7 189 (24%)89 ( %)189 (24%)189 (24%) 31 (31%)3 (3 %)31 (31%)31 (31%)

HbA1c%b c%HbA1c%HbA1c% RRRR 6 56 56.56.5 23 (3%)3 (3%)23 (3%)23 (3%) 3 (3%)3 (3%)3 (3%)3 (3%)

Total cholesterol

(non-fasting, mg/dl)

MeaneaMeanMean ±±± SDSSDSD

186.8 ± 37.5 182.7 ± 35.7 0.231

HDL cholesterol

(non-fasting, mg/dl)

MeaneaMeanMean ±±± SDSSDSD

59.0 ± 17.8 55.0 ± 16.1 0.371

Waist-to-hip

circumference

ratio Meana o earatio Meanratio Mean ±±± SDSSDSD

0.83 ± 0.12 0.84 ± 0.07 0.818

KS - Kolmogorov-Smirnov test. See also Figure S1.
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Figure 2. High Interpersonal Variability in the Postprandial Glycemic Response to the Same Meal

(A) PPGRs associatewith risk factors. Shown are PPGRs, BMI, HbA1c%, age, andwakeup glucose of all participants, sorted bymedian standardizedmeal PPGR

(top, red dots). Correlation of factors with the median PPGRs to standardized meals is shown along with a moving average line.

(legend continued on next page)
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meals per participant) and 5,107 standardized meals. The PPGR

of each meal was calculated by combining reported meal time

with CGM data and computing the incremental area under the

glucose curve in the 2 hr after the meal (iAUC; Wolever and Jen-

kins, 1986; Figure 1D).

Prior to CGM connection, a comprehensive profile was

collected from each participant, including: food frequency, life-

style, and medical background questionnaires; anthropometric

measures (e.g., height, hip circumference); a panel of blood

tests; and a single stool sample, used for microbiota profiling

by both 16S rRNA and metagenomic sequencing.

With a total of�10,000,000 Calories logged, our data provide a

global view into the cohort’s dietary habits, showing the fraction

that each food source contributes to the cohort’s overall energy

intake (e.g., dairy, 7%; sweets, 6%; Figure 1E), andmacronutrient

intake (Figures S2B–S2D). Analysis of the caloric breakdown of

every meal by macronutrients revealed that protein intake varies

relatively little across meals (80% of meals have 5%–35% pro-

tein), while fat and carbohydrates have a wide and bimodal distri-

bution,whereoneof themodescorresponds to fat-freemealsand

constitutes 18% of all meals (Figure 1F).

Principal coordinates analysis (PCoA) on the Bray-Curtis

dissimilarity between metagenome-based relative abundances

(RA) revealed a similar degree of variability in the microbiomes

of our cohort and stool samples of the US HMP (Human Micro-

biome Project Consortium, 2012) and European MetaHIT (Niel-

sen et al., 2014) cohorts (Figure 1G). The first two principal coor-

dinates show some distinction between our cohort and the other

cohorts, but when HMP samples from other body sites are

added to the PCoA, stool samples from all three cohorts cluster

together and separate from the rest, indicative of overall similar-

ity in the gut microbiota composition of individuals from these

three distinct geographical regions (Figure 1G).

Postprandial Glycemic Responses Associate with
Multiple Risk Factors
Our data replicate known associations of PPGRs with risk fac-

tors, as the median standardized meal PPGR was significantly

correlated with several known risk factors including BMI (R =

0.24, p < 10�10), glycated hemoglobin (HbA1c%, R = 0.49, p <

10�10), wakeup glucose (R = 0.47, p < 10�10), and age (R =

0.42, p < 10�10, Figure 2A). These associations are not confined

to extreme values but persist along the entire range of PPGR

values, suggesting that the reduction in levels of risk factors is

continuous across all postprandial values, with lower values

associatedwith lower levels of risk factors evenwithin the normal

value ranges (Figure 2A).

Utilizing the continuous nature of the CGMs,we also examined

the association between risk factors and the glucose level of

each participant at different percentiles (0–100) with respect

to all glucose measurements from the connection week. These

levels are affected by the PPGRswhile also reflecting the general

glycemic control state of the participant. All percentiles signifi-

cantly associated with risk factors (wakeup glucose, BMI,

HbA1c%, and age; Figures S3A–S3D). The percentile at which

the glucose level correlation was highest varied across risk fac-

tors. For example, BMI had the highest correlation with the 40th

glucose value percentile, whereas for HbA1c%percentile 95 had

the highest correlation (Figures S3A and S3C). These results

suggest that the entire range of glucose levels of an individual

may have clinical relevance, with different percentiles being

more relevant for particular risk factors.

High Interpersonal Variability in the Postprandial
Response to Identical Meals
Next, we examined intra- and interpersonal variability in the

PPGR to the same food. First, we assessed the extent to which

PPGRs to three types of standardized meals that were given

twice to every participant (Figure 1A), are reproducible within

the same person. Indeed, the two replicates showed high agree-

ment (R = 0.77 for glucose, R = 0.77 for bread with butter, R =

0.71 for bread, p < 10�10 in all cases), demonstrating that the

PPGR to identical meals is reproducible within the same person

and that our experimental system reliably measures this repro-

ducibility. However, when comparing the PPGRs of different

people to the same meal, we found high interpersonal variability,

with the PPGRs of every meal type (except fructose) spanning

the entire range of PPGRs measured in our cohort (Figures 2B,

2C, and S3E–S3H). For example, the average PPGR to bread

across 795 people was 44 ± 31 mg/dl*h (mean ± SD), with the

bottom 10% of participants exhibiting an average PPGR below

15mg/dl*h and the top 10%of participants exhibiting an average

PPGR above 79 mg/dl*h. The large interpersonal differences in

PPGRs are also evident in that the type of meal that induced

the highest PPGR differs across participants and that different

participants might have opposite PPGRs to pairs of different

standardized meals (Figures 2D and 2E).

Interpersonal variability was not merely a result of participants

having high PPGRs to all meals, since high variability was also

observed when the PPGR of each participant was normalized to

his/her own PPGR to glucose (Figures S3I–S3K). For white bread

and fructose, for which such normalized PPGRs were previously

measured, the mode of the PPGR distribution in our cohort had

excellent agreement with published values (Foster-Powell et al.,

(B) Kernel density estimation (KDE) smoothed histogram of the PPGR to four types of standardized meals provided to participants (each with 50 g of available

carbohydrates). Dashed lines represent histogram modes (See also Figure S3).

(C) Example of high interpersonal variability and low intra-personal variability in the PPGR to bread across four participants (two replicates per participant

consumed on two different mornings).

(D) Heatmap of PPGR (average of two replicates) of participants (rows) to three types of standardized meals (columns) consumed in replicates. Clustering is by

each participant’s relative rankings of the three meal types.

(E) Example of two replicates of the PPGR to two standardized meals for two participants exhibiting reproducible yet opposite PPGRs.

(F) Box plot (box, IQR; whiskers, 10–90 percentiles) of the PPGR to different real-life meals along with amount of carbohydrates consumed (green; mean ± std).

(G) Same as (E), for a pair of real-life meals, each containing 20 g of carbohydrates.

(H) Heatmap (subset) of statistically significant associations (p < 0.05, FDR corrected) between participants’ standardized meals PPGRs and participants’ clinical

and microbiome data (See also Figure S4 for the full heatmap).
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2002), further validating theaccuracyof our data (bread: 65 versus

71; fructose: 15 versus 19, Figures S3I and S3K).

Next, we examined variability in the PPGRs to the multiple

real-life meals reported by our participants. Since real-life meals

vary in amounts and may each contain several different food

components, we only examined meals that contained 20–40 g

of carbohydrates and had a single dominant food component

whose carbohydrate content exceeded 50% of the meal’s car-

bohydrate content. We then ranked the resulting dominant foods

that had at least 20 meal instances by their population-average

PPGR (Figure 2F). For foods with a published glycemic index,

our population-average PPGRs agreed with published values

(R = 0.69, p < 0.0005), further supporting our data (Table S1).

For example, the average PPGR to rice and potatoes was

relatively high, whereas that for ice cream, beer, and dark

chocolate was relatively low, in agreement with published data

(Atkinson et al., 2008; Foster-Powell et al., 2002). Similar to stan-

dardized meals, PPGRs to self-reported meals highly varied

across individuals, with both low and high responders noted

for each type of meal (Figures 2F and 2G).

Postprandial Variability Is Associated with Clinical and
Microbiome Profiles
We found multiple significant associations between the stan-

dardized meal PPGRs of participants and both their clinical and

gut microbiome data (Figures 2H and S4). Notably, the TIIDM

and metabolic syndrome risk factors HbA1c%, BMI, systolic

blood pressure, and alanine aminotransferase (ALT) activity are

all positively associated with PPGRs to all types of standardized

meals, reinforcing themedical relevance of PPGRs. Inmost stan-

dardized meals, PPGRs also exhibit a positive correlation with

CRP, whose levels rise in response to inflammation (Figure 2H).

With respect to microbiome features, the phylogenetically

related Proteobacteria and Enterobacteriaceae both exhibit pos-

itive associations with a few of the standardized meals PPGR

(Figure 2H). These taxa have reported associations with poor

glycemic control, and with components of the metabolic syn-

drome including obesity, insulin resistance, and impaired lipid

profile (Xiao et al., 2014). RAs of Actinobacteria are positively

associated with the PPGR to both glucose and bread, which is

intriguing since high levels of this phylum were reported to asso-

ciate with a high-fat, low-fiber diet (Wu et al., 2011).

At the functional level, the KEGG pathways of bacterial

chemotaxis and of flagellar assembly, reported to increase

in mice fed high-fat diets and decrease upon prebiotics adminis-

tration (Everard et al., 2014), exhibit positive associations

with several standardized meal PPGRs (Figure 2H). The KEGG

pathway of ABC transporters, reported to be positively associ-

ated with TIIDM (Karlsson et al., 2013) and with a Western

high-fat/high-sugar diet (Turnbaugh et al., 2009), also exhibits

positive association with several standardized meal PPGRs (Fig-

ure 2H). Several bacterial secretion systems, including both type

II and type III secretion systems that are instrumental in bacterial

infection and quorum sensing (Sandkvist, 2001) are positively

associated with most standardized meal PPGRs (Figure 2H).

Finally, KEGG modules for transport of the positively charged

amino acids lysine and arginine are associated with high PPGR

to standardized foods, while transport of the negatively charged

amino acid glutamate is associated with low PPGRs to these

foods.

Taken together, these results show that PPGRs vary greatly

across different people and associate with multiple person-spe-

cific clinical and microbiome factors.

Prediction of Personalized Postprandial Glycemic
Responses
We next askedwhether clinical andmicrobiome factors could be

integrated into an algorithm that predicts individualized PPGRs.

To this end, we employed a two-phase approach. In the first,

discovery phase, the algorithm was developed on the main

cohort of 800 participants, and performance was evaluated us-

ing a standard leave-one-out cross validation scheme, whereby

PPGRs of each participant were predicted using a model trained

on the data of all other participants. In the second, validation

phase, an independent cohort of 100 participants was recruited

and profiled, and their PPGRs were predicted using the model

trained only on the main cohort (Figure 3A).

Given non-linear relationships between PPGRs and the

different factors, we devised a model based on gradient boost-

ing regression (Friedman, 2001). This model predicts PPGRs us-

ing the sum of thousands of different decision trees. Trees are

inferred sequentially, with each tree trained on the residual of

all previous trees and making a small contribution to the overall

prediction (Figure 3A). The features within each tree are selected

by an inference procedure from a pool of 137 features represent-

ing meal content (e.g., energy, macronutrients, micronutrients);

daily activity (e.g., meals, exercises, sleep times); blood param-

eters (e.g., HbA1c%, HDL cholesterol); CGM-derived features;

questionnaires; and microbiome features (16S rRNA and meta-

genomic RAs, KEGG pathway and module RAs and bacterial

growth dynamics - PTRs; Korem et al., 2015).

As a baseline reference, we used the ‘‘carbohydrate counting’’

model, as it is the current gold standard for predicting PPGRs

(American Diabetes Association., 2015b; Bao et al., 2011). On

our data, this model that consists of a single explanatory variable

representing the meal’s carbohydrate amount achieves a

modest yet statistically significant correlation with PPGRs (R =

0.38, p < 10�10, Figure 3B). A model using only meal Caloric

content performsworse (R = 0.33, p < 10�10, Figure 3C). Our pre-

dictor that integrates the above person-specific factors predicts

the held-out PPGRs of individuals with a significantly higher cor-

relation (R = 0.68, p < 10�10, Figure 3D). This correlation ap-

proaches the presumed upper bound limit set by the 0.71–0.77

correlation that we observed between the PPGR of the same

person to two replicates of the same standardized meal.

Validation of Personalized Postprandial Glycemic
Response Predictions on an Independent Cohort
We further validated our model on an independent cohort of 100

individuals that we recruited separately. Data from this additional

cohort were not available to us while developing the algorithm.

Participants in this cohort underwent the same profiling as in

the main 800-person cohort. No significant differences were

found between the main and validation cohorts in key parame-

ters, including age, BMI, non-fasting total and HDL cholesterol,

and HbA1c% (Table 1, Figure S1).
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Notably, our algorithm, derived solely using the main 800 par-

ticipants cohort, achieved similar performance on the 100 partic-

ipants of the validation cohort (R = 0.68 and R = 0.70 on the main

and validation cohorts, respectively, Figures 3D and 3E). The

reference carbohydrate counting model achieved the same per-

formance as in themain cohort (R = 0.38). This result further sup-

ports the ability of our algorithm to provide personalized PPGR

predictions.

Factors Underlying Personalized Predictions
To gain insight into the contribution of the different features in

the algorithm’s predictions, we examined partial dependence

plots (PDP), commonly used to study functional relations be-

tween features used in predictors such as our gradient boosting

regressor and an outcome (PPGRs in our case; Hastie et al.,

2008). PDPs graphically visualize the marginal effect of a given

feature on prediction outcome after accounting for the average

effect of all other features. While this effect may be indicative of

feature importance, it may also be misleading due to higher-or-

der interactions (Hastie et al., 2008). Nonetheless, PDPs are

commonly used for knowledge discovery in large datasets

such as ours.

Predicted PPGR
(iAUC, mg/dl.h)

R=0.70

Personal features Meal features

Main
cohort

800 participants

Validation
cohort

100 participants

Time, nutrients,
prev. exercise

Meal response predictorMeal
responses

Train predictor

Cross-validation
Leave-one-person-out

0 20 25 5 30

x4000

Use predictor tor predict meal responses

Boosted decision trees

=?

Meal response prediction

Predicted Measured

16S MG

Participantt

M
ea

su
re

d 
P

P
G

R
(iA

U
C

, m
g/

dl
. h

)

R=0.38

Carbohydrate-only

prediction

Predicted PPGR
(iAUC, mg/dl.h)

R=0.68

A

B C

D

M
ea

su
re

d 
P

P
G

R
(iA

U
C

,m
g/

dl
. h

)

Calories-only

prediction

R=0.33

B Q A

Figure 3. Accurate Predictions of Personal-

ized Postprandial Glycemic Responses

(A) Illustration of our machine-learning scheme for

predicting PPGRs.

(B–E) PPGR predictions. Dots represent predicted

(x axis) and CGM-measured PPGR (y axis) for

meals, for a model based: only on the meal’s car-

bohydrate content (B); only on the meal’s Caloric

content (C); our predictor evaluated in leave-one-

person-out cross validation on the main 800-per-

son cohort (D); and our predictor evaluated on the

independent 100-person validation cohort (E).

Pearson correlation of predicted and measured

PPGRs is indicated.

As expected, the PDP of carbohydrates

(Figure 4A) shows that as the meal carbo-

hydrate content increases, our algorithm

predicts, on average, a higher PPGR. We

term this relation, of higher predicted

PPGR with increasing feature value, as

non-beneficial (with respect to prediction),

and the opposite relation, of lower pre-

dicted PPGR with increasing feature

value, as beneficial (also with respect to

prediction; see PDP legend in Figure 4).

However, since PDPs display the overall

contribution of each feature across the

entire cohort, we asked whether the rela-

tionship between carbohydrate amount

and PPGRs varies across people. To this

end, for each participant we computed

the slope of the linear regression between

the PPGR and carbohydrate amount of all

his/hermeals. As expected, this slopewas

positive for nearly all (95.1%) participants, reflective of higher

PPGRs in meals richer in carbohydrates. However, the magni-

tude of this slope varies greatly across the cohort, with the

PPGR of some people correlating well with the carbohydrate

content (i.e., carbohydrates ‘‘sensitive’’) and that of others exhib-

iting equally high PPGRs but little relationship to the amount

of carbohydrates (carbohydrate ‘‘insensitive’’; Figure 4B). This

result suggests that carbohydrate sensitivity is also person

specific.

The PDP of fat exhibits a beneficial effect for fat since our al-

gorithm predicts, on average, lower PPGR as the meal’s ratio

of fat to carbohydrates (Figure 4C) or total fat content (Fig-

ure S5A) increases, consistent with studies showing that adding

fat to meals may reduce the PPGR (Cunningham and Read,

1989). However, here too, we found that the effect of fat varies

across people. We compared the explanatory power of a linear

regression between each participant’s PPGR andmeal carbohy-

drates, with that of regression using both fat and carbohydrates.

We then used the difference in Pearson R between the two

models as a quantitative measure of the added contribution of

fat (Figure 4D). For some participants we observed a reduction

in PPGR with the addition of fat, while for others meal fat content
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Figure 4. Factors Underlying the Prediction

of Postprandial Glycemic Responses

(A) Partial dependence plot (PDP) showing the

marginal contribution of the meal’s carbohydrate

content to the predicted PPGR (y axis, arbitrary

units) at each amount of meal carbohydrates

(x axis). Red and green indicate above and below

zero contributions, respectively (number indicate

meals). Boxplots (bottom) indicate the carbohy-

drates content at which different percentiles (10,

25, 50, 75, and 90) of the distribution of all meals

across the cohort are located. See PDP legend.

(B) Histogram of the slope (computed per partici-

pant) of a linear regression between the carbohy-

drate content and the PPGR of all meals. Also

shown is an example of one participant with a low

slope and another with a high slope.

(C) Meal fat/carbohydrate ratio PDP.

(D) Histogram of the difference (computed per

participant) between the Pearson R correlation of

two linear regression models, one between the

PPGR and the meal carbohydrate content and

another when adding fat and carbohydrate*fat

content. Also shown is an example of the carbo-

hydrate and fat content of all meals of one partici-

pant with a relatively low R difference (carb alone

correlates well with PPGR) and another with a

relatively high difference (meals with high fat

content have lower PPGRs). Dot color and size

correspond to the meal’s PPGR.

(E) Additional PDPs.

(F) Microbiome PDPs. The number of participants

in which the microbiome feature was not detected

is indicated (left, n.d.). Boxplots (box, IQR; whiskers

10–90 percentiles) based only on detected values.

(G) Heatmap of statistically significant correlations

(Pearson) between microbiome features termed

beneficial (green) or non-beneficial (red) and

several risk factors and glucose parameters.

See also Figure S5.
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did not add much to the explanatory power of the regressor

based only on the meal’s carbohydrates content (Figure 4D).

Interestingly, while dietary fibers in the meal increase the pre-

dicted PPGR, their long-term effect is beneficial as higher

amount of fibers consumed in the 24 hr prior to the meal reduces

the predicted PPGR (Figure 4E). The meal’s sodium content, the

time that passed since last sleeping, and a person’s cholesterol

levels or age all exhibit non-beneficial PDPs, while the PDPs of

the meal’s alcohol and water content display beneficial effects

(Figures 4E and S5A). As expected, the PDP of HbA1c% shows

a non-beneficial effect with increased PPGR at higher HbA1c%

values; intriguingly, higher PPGRs are predicted, on average, for

individuals with HbA1c% above �5.5%, which is very close to

the prediabetes threshold of 5.7% (Figure S5A).

The 72 PDPs of the microbiome-based features used in our

predictor were either beneficial (21 factors), non-beneficial (28),

or non-decisive (23) in that they mostly decreased, increased,

or neither, as a function of the microbiome feature. The resulting

PDPs had several intriguing trends. For example, growth of Eu-

bacterium rectale was mostly beneficial, as in 430 participants

with high inferred growth for E. rectale it associates with a lower

PPGR (Figure 4F). Notably, E. rectale can ferment dietary carbo-

hydrates and fibers to produce metabolites useful to the host

(Duncan et al., 2007), and was associated with improved post-

prandial glycemic and insulinemic responses (Martı́nezı et al.,

2013), as well as negatively associated with TIIDM (Qin et al.,

2012). RAs of Parabacteroides distasonis were found non-bene-

ficial by our predictor (Figure 4F) and this species was also sug-

gested to have a positive association with obesity (Ridaura et al.,

2013). As another example, the KEGG module of cell-division

transport system (M00256) was non-beneficial, and in the 164

participants with the highest levels for it, it associates with a

higher PPGR (Figure 4F). Bacteroides thetaiotaomicron was

non-beneficial (Figure S5B), and it was associated with obesity

and was suggested to have increased capacity for energy har-

vest (Turnbaugh et al., 2006). In the case of Alistipes putredinis

and the Bacteroidetes phylum, the non-beneficial classification

that our predictor assigns to both of them is inconsistent with

previous studies that found them to be negatively associated

with obesity (Ridaura et al., 2013; Turnbaugh et al., 2006). This

may reflect limitations of the PDP analysis or result from a

more complex relationship between these features, obesity,

and PPGRs.

To assess the clinical relevance of the microbiome-based

PDPs, we computed the correlation between several risk factors

and overall glucose parameters, and the factors with beneficial

and non-beneficial PDPs across the entire 800-person cohort.

We found 20 statistically significant correlations (p < 0.05, FDR

corrected) where microbiome factors termed non-beneficial

correlated with risk factors, and those termed beneficial ex-

hibited an anti-correlation (Figure 4G). For example, higher levels

of the beneficial methionine degradation KEGG module

(M00035) resulted in lower PPGRs in our algorithm, and across

the cohort, this module anti-correlates with systolic blood pres-

sure and with BMI (Figure 4G). Similarly, fluctuations in glucose

levels across the connection week correlates with nitrate respira-

tion two-component regulatory system (M00472) and with lacto-

sylceramide biosynthesis (M00066), which were both termed

non-beneficial. Glucose fluctuations also anti-correlate with

levels of the tetrathionate respiration two-component regulatory

system (M00514) and with RAs of Alistipes finegoldii, both

termed beneficial (Figure 4G). In 14 other cases, factors with

beneficial or non-beneficial PDPs were correlated and anti-

correlated with risk factors, respectively.

These results suggest that PPGRs are associated with

multiple and diverse factors, including factors unrelated to

meal content.

Personally Tailored Dietary Interventions Improve
Postprandial Responses
Next, we asked whether personally tailored dietary interventions

based on our algorithm could improve PPGRs. We designed a

two-arm blinded randomized controlled trial and recruited 26

new participants. A clinical dietitian met each participant and

compiled 4–6 distinct isocaloric options for each type of meal

(breakfast, lunch, dinner, and up to two intermediate meals), ac-

commodating the participant’s regular diet, eating preferences,

and dietary constraints. Participants then underwent the same

1-week profiling of our main 800-person cohort (except that

they consumed the meals compiled by the dietitian), thus

providing the inputs (microbiome, blood parameters, CGM,

etc.) that our algorithm needs for predicting their PPGRs.

Participants were then blindly assigned to one of two arms

(Figure 5A). In the first, ‘‘prediction arm,’’ we applied our algo-

rithm in a leave-one-out scheme to rank every meal of each

participant in the profiling week (i.e., the PPGR to each predicted

meal was hidden from the predictor). We then used these rank-

ings to design two 1-week diets: (1) a diet composed of the

meals predicted by the algorithm to have low PPGRs (the

‘‘good’’ diet); and (2) a diet composed of the meals with high pre-

dicted PPGRs (the ‘‘bad’’ diet). Every participant then followed

each of the two diets for a full week, during which they were con-

nected to a CGM and a daily stool sample was collected

(if available). The order of the 2 diet weeks was randomized

for each participant and the identity of the intervention weeks

(i.e., whether they are ‘‘good’’ or ‘‘bad’’) was kept blinded from

CRAs, dietitians and participants.

The second, ‘‘expert arm,’’ was used as a gold standard for

comparison. Participants in this arm underwent the same

process as the prediction arm except that instead of using our

predictor for selecting their ‘‘good’’ and ‘‘bad’’ diets a clinical

dietitian and a researcher experienced in analyzing CGM data

(collectively termed ‘‘expert’’) selected them based on their

measured PPGRs to all meals during the profiling week. Specif-

ically, meals that according to the expert’s analysis of their CGM

had low and high PPGRs in the profiling week were selected

for the ‘‘good’’ and ‘‘bad’’ diets, respectively. Thus, to the

extent that PPGRs are reproducible within the same person,

this expert-based arm should result in the largest differences

between the ‘‘good’’ and ‘‘bad’’ diets because the selection of

meals in the intervention weeks is based on their CGM data.

Notably, for 10 of the 12 participants of the predictor-based

arm, PPGRs in the ‘‘bad’’ diet were significantly higher than in

the ‘‘good’’ diet (p < 0.05, Figure 5C). Differences between the

two diets are also evident in fewer glucose spikes and fewer

fluctuations in the raw week-long CGM data (Figure 5B). The
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success of the predictor was comparable to that of the expert-

based arm, in which significantly lower PPGRs in the ‘‘good’’

versus the ‘‘bad’’ diet were observed for 8 of its 14 participants

(p < 0.05, 11 of 14 participants with p < 0.1, Figure 5C).

When combining the data across all participants, the ‘‘good’’

diet exhibited significantly lower PPGRs than the ‘‘bad’’ diet

(p < 0.05, Figure 5D) as well as improvement in other measures

of blood glucose metabolism in both study arms, specifically,
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Figure 5. Personally Tailored Dietary Interventions Improve Postprandial Glycemic Responses

(A) Illustration of the experimental design of our two-arm blinded randomized controlled trial.

(B) Continuous glucose measurements of one participant from the expert arm (top) and another from the predictor arm (bottom) across their ‘‘good’’ (green) and

‘‘bad’’ (red) diet weeks.

(C) Boxplot of meal PPGRs during the ‘‘bad’’ (red) and ‘‘good’’ (green) diet weeks for participants in both the predictor (left) and expert (right) arms. Statistical

significance is marked (Mann-Whitney U-test, ***p < 0.001, **p < 0.01, *p < 0.05, y p < 0.1, n.s. not significant).

(D) As in (C), but for a grouping of all meals of all participants in each study arm (p, Wilcoxon signed-rank test).

(E) Boxplot of the blood glucose fluctuations (noise) of participants in both the ‘‘bad’’ (red) and ‘‘good’’ (green) diet weeks for both study arms. Blood glucose

fluctuations per participant are defined as the ratio between the standard deviation and mean of his/her weeklong blood glucose levels (p, Wilcoxon signed-

rank test).

(F) As in (E), but for the maximum PPGR of each participant.

(G) Subset of dominant food components prescribed in the ‘‘good’’ (green) diet of some participants and in the ‘‘bad’’ (red) diet of other participants. See also

Figure S6 for the full matrix.

(H) Dot plot between the CGM-measured PPGR of meals during the profiling week (x axis) and the average CGM-measured PPGR of the same meals during the

dietary intervention weeks (y axis). Meals of all participants in both study arms are shown.

(I) As in (H), but when PPGRs in the dietary intervention weeks are predicted by our predictor using only the first profiling week data of each participant.

Boxplots - box, IQR; whiskers 1.5*IQR.
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lower fluctuations in glucose levels across the CGM connection

week (p < 0.05, Figure 5E), and a lower maximal PPGR (p < 0.05,

Figure 5F) in the ‘‘good’’ diet.

Both study arms constitute personalized nutritional interven-

tions and thus demonstrate the efficacy of this approach in

lowering PPGRs. However, the predictor-based approach has

broader applicability since it can predict PPGRs to arbitrary un-

seen meals, whereas the ‘‘expert’’-based approach will always

require CGM measurements of the meals it prescribes.

Post hoc examination of the prescribed diets revealed the

personalized aspect of the diets in both arms in that multiple

dominant food components (as in Figure 2F) prescribed in the

‘‘good’’ diet of some participants were prescribed in the ‘‘bad’’

diet of others (Figures 5G and S6). This occurs when compo-

nents induced opposite CGM-measured PPGRs across partici-

pants (expert arm) or were predicted to have opposite PPGRs

(predictor arm).

The correlation between the measured PPGR of meals during

the profiling week and the average CGM-measured PPGR of the

same meals during the dietary intervention was 0.70 (Figure 5H),

which is similar to the reproducibility observed for standardized

meals (R = 0.71–0.77). Thus, as in the case of standardizedmeals,

a meal’s PPGR during the profiling week was not identical to its

PPGR in thedietary interventionweek.Notably, usingonly the first

profiling week data of each participant, our algorithm predicted

the average PPGRs of meals in the dietary intervention weeks

with an even higher correlation (R = 0.80, Figure 5I). Since our pre-

dictor also incorporates context-specific factors (e.g., previous

meal content, time since sleep), this result also suggests that

such factors may be important determinants of PPGRs.

Taken together, these results show the utility of personally

tailored dietary interventions for improving PPGRs in a short-

term intervention period, and the ability of our algorithm to devise

such interventions.

Alterations in Gut Microbiota Following Personally
Tailored Dietary Interventions
Finally, we used the daily microbiome samples collected during

the intervention weeks to ask whether the interventions induced

significant changes in the gut microbiota. Previous studies

showed that even short-term dietary interventions of several

days may significantly alter the gut microbiota (David et al.,

2014; Korem et al., 2015).

We detected changes following the dietary interventions that

were significant relative to a null hypothesis of no change derived

from the first week, in which there was no intervention, across all

participants (Figures 6A and 6B). While many of these significant

changes were person-specific, several taxa changed consis-

tently in most participants (p < 0.05, FDR corrected, Figure 6C

and S7). Moreover, in most cases in which the consistently

changing taxa had reported associations in the literature, the

direction of change in RA following the ‘‘good’’ diet was in agree-

ment with reported beneficial associations. For example, Bifido-

bacterium adolescentis, for which low levels were reported to be

associated with greater weight loss (Santacruz et al., 2009),

generally decrease in RA following the ‘‘good’’ diet and increase

following the ‘‘bad’’ diet (Figure 6C,D). Similarly, TIIDM has been

associated with low levels of Roseburia inulinivorans (Qin et al.,

2012; Figure 6E), Eubacterium eligens (Karlsson et al., 2013),

and Bacteroides vulgatus (Ridaura et al., 2013), and all these

bacteria increase following the ‘‘good’’ diet and decrease

following the ‘‘bad’’ diet (Figure 6C). The Bacteroidetes phylum,

for which low levels associate with obesity and high fasting

glucose (Turnbaugh et al., 2009), increases following the

‘‘good’’ diet and decreases following the ‘‘bad’’ diet (Figure 6C).

Low levels of Anaerostipes associate with improved glucose

tolerance and reduced plasma triglyceride levels in mice (Ever-

ard et al., 2011) and indeed these bacteria decrease following

the ‘‘good’’ diet and increase following the ‘‘bad’’ diet (Figure 6C).

Finally, low levels of Alistipes putredinis associate with obesity

(Ridaura et al., 2013) and this bacteria increased following the

‘‘good’’ diet (Figure 6C).

These findings demonstrate that while both baseline micro-

biota composition and personalized dietary intervention vary be-

tween individuals, several consistent microbial changes may be

induced by dietary intervention with a consistent effect on PPGR.

DISCUSSION

In this work we measured 46,898 PPGRs to meals in a popula-

tion-based cohort of 800 participants. We demonstrate that

PPGRs are highly variable across individuals even when they

consume the same standardized meals. We further show that

an algorithm that integrates clinical and microbiome features

can accurately predict personalized PPGRs to complex, real-

life meals even in a second independently collected validation

cohort of 100 participants. Finally, personalized dietary interven-

tions based on this algorithm induced lower PPGRs and were

accompanied by consistent gut microbiota alterations.

Our study focused on PPGRs, as they were shown to be

important in achieving proper glycemic control, and when

disturbed are considered an independent disease risk factor

(American Diabetes Association., 2015a; Gallwitz, 2009). PPGRs

in our study also associated with several risk factors, including

BMI, HbA1c%, and wakeup glucose. In addition to its centrality

in glucose homeostasis, PPGRs serves as a convenient and ac-

curate endpoint, enabling continuous ‘‘point-of-care’’ collection

of dozens of quantitative measurements per person during a

relatively short follow up period. Such continuous assessment

of PPGRs is complementary to other equally important clinical

parameters such as BMI and HbA1c%, for which changes typi-

cally occur over longer timescales and are thus difficult to corre-

late to nutritional responses in real time.

In line with few small-scale studies that previously examined

individual PPGRs (Vega-López et al., 2007; Vrolix and Mensink,

2010), we demonstrate on 800 individuals that the PPGR of

different people to the same food can greatly vary. The most

compelling evidence for this observation is the controlled setting

of standardized meals, provided to all participants in replicates.

This high interpersonal variability suggests that at least with re-

gard to PPGRs, approaches that grade dietary ingredients as

universally ‘‘good’’ or ‘‘bad’’ based on their average PPGR in

the population may have limited utility for an individual.

We report several associations between microbiome features

and variability in PPGRs across people. In some cases, such as

for Actinobacteria, Proteobacteria, and Enterobacteriaceae, the
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Figure 6. Dietary Interventions Induce Consistent Alterations to the Gut Microbiota Composition

(A) Top: Continuous glucose measurements of a participant from the expert arm for both the ‘‘bad’’ diet (left) and ‘‘good’’ diet (right) week. Bottom: Fold change

between the relative abundance (RA) of taxa in each day of the ‘‘bad’’ (left) or ‘‘good’’ (right) weeks and days 0–3 of the sameweek. Shown are only taxa that exhibit

statistically significant changes with respect to a null hypothesis of no change derived from changes in the first profiling week (no intervention) of all participants.

(B) As in (A) for a participant from the predictor arm. See also Figure S7 for changes in all participants.

(C) Heatmap of taxa with opposite trends of change in RA between ‘‘good’’ and ‘‘bad’’ intervention weeks that was consistent across participant and statistically

significant (Mann-Whitney U-test between changes in the ‘‘good’’ and ‘‘bad’’ weeks, p < 0.05, FDR corrected). Left and right column blocks shows bacteria

increasing and decreasing in their RA following the ‘‘good’’ diet, respectively, and conversely for the ‘‘bad’’ diet. Colored entries represent the (log) fold change

between the RA of a taxon (x axis) between days 4–7 and 0–3 within each participant (y axis). Asterisks indicate a statistically significant fold change.

See also Figure S7 for all changes.

(legend continued on next page)
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direction of our associations are consistent with previous asso-

ciations reported between these taxa and higher-level pheno-

types such as dietary habits, obesity and overall glycemic

control (Wu et al., 2011; Xiao et al., 2014), raising testable hy-

potheses about how these taxa may mediate these host meta-

bolic effects. However, in most other cases we identify yet un-

known associations with particular biosynthesis pathways or

transport and secretion systems, which may be contributed by

different taxa in different individuals. These correlations thus pro-

vide concrete new pointers for further mechanistic research,

aimed at establishing causal roles for these bacterial taxa and

functional pathways in determining PPGRs.

Our study further attempts to analyze real-life meals that are

consumed in complex food combinations, at different times of

the day, and in varying proximity to previous meals, physical ac-

tivity, and sleep. While clearly of higher translational relevance,

the use of ‘‘real-life’’ nutritional input also introduces noise into

the meal composition data. Despite that, our results show that

predictions for such meals can be made informative by inte-

grating data from a large cohort into a carefully structured pre-

dictor. Even better predictions can likely be achieved with further

research.

Our algorithm takes as input a comprehensive clinical and mi-

crobiome profile and employs a data-driven unbiased approach

to infer the major factors that are predictive of PPGRs. Intro-

specting the resulting algorithm shows that its predictions inte-

grate multiple diverse features that are unrelated to the content

of the meal itself. These include contents of previous meals,

time since sleep, proximity to exercise, and several micro-

biome-based factors. With respect to microbiome factors, our

algorithm identifies multiple functional pathways and bacterial

taxa as either beneficial or non-beneficial, such that in partici-

pants with increasing levels for these factors the algorithm pre-

dicts a lower or higher PPGR, respectively. In many such cases,

microbiome factors found to be beneficial with respect to PPGRs

are also negatively associated with risk factors such as HbA1c%

and cholesterol levels.

Dietary interventions based on our predictor showed signifi-

cant improvements in multiple aspects of glucose metabolism,

including lower PPGRs and lower fluctuations in blood glucose

levels within a short 1-week intervention period. It will be inter-

esting to evaluate the utility of such personalized intervention

over prolonged periods of several months and even years. If suc-

cessful, prolonged individualized dietary control of the PPGR

may be useful in controlling, ameliorating, or preventing a set

of disorders associated with chronically impaired glucose con-

trol, including obesity, prediabetes, TIIDM, and non-alcoholic

fatty liver disease (Grundy, 2012). These intriguing possibilities,

and the microbiome changes that accompany them, merit

further studies. Of equal interest and importance, our individual-

ized nutritional study protocols may be applicable to address

other clinically relevant issues involving nutritional modifications,

such as TIIDM and TIDM patient-specific determination of medi-

cation (e.g., insulin and oral hypoglycemics) dosing and timing.

Employing similar individualized prediction of nutritional ef-

fects on disease development and progression may also be

valuable in rationally designing nutritional interventions in a vari-

ety of inflammatory, metabolic, and neoplastic multi-factorial

disorders. More broadly, accurate personalized predictions of

nutritional effects in these scenarios may be of great practical

value, as they will integrate nutritional modifications more exten-

sively into the clinical decision-making scheme.

EXPERIMENTAL PROCEDURES

Human Cohorts

Approved by Tel Aviv Sourasky Medical Center Institutional Review Board

(IRB), approval numbers TLV-0658-12, TLV-0050-13 and TLV-0522-10; Kfar

Shaul Hospital IRB, approval number 0-73; andWeizmann Institute of Science

Bioethics and Embryonic Stem Cell Research oversight committee. Reported

to http://clinicaltrials.gov/, NCT: NCT01892956.

Study Design

Study participants were healthy individuals aged 18–70 able to provide

informed consent and operate a glucometer. Prior to the study, participants

filled medical, lifestyle, and nutritional questionnaires. At connection week

start, anthropometric, blood pressure and heart-rate measurements were

taken by a CRA or a certified nurse, as well as a blood test. Glucose was

measured for 7 days using the iPro2 CGM with Enlite sensors (Medtronic,

MN, USA), independently calibrated with the Contour BGM (Bayer AG, Lever-

kusen, Germany) as required. During that week participants were instructed to

record all daily activities, including standardized and real-life meals, in real-

time using their smartphones; meals were recorded with exact components

and weights. Full inclusion and exclusion criteria are detailed in Supplemental

Experimental Procedures. Questionnaires used can be found in Data S1.

Standardized Meals

Participants were given standardizedmeals (glucose, bread, bread and butter,

bread and chocolate, and fructose), calculated to have 50 g of available carbo-

hydrates. Participants were instructed to consume these meals immediately

after their night fast, not to modify the meal, and to refrain from eating or per-

forming strenuous physical activity before, and for 2 hr following consumption.

Stool Sample Collection

Participants sampled their stool following detailed printed instructions. Sam-

pling was done using a swab (n = 776) or both a swab and an OMNIgene-

GUT (OMR-200; DNA Genotek) stool collection kit (n = 413, relative abun-

dances (RA) for the same person are highly correlated (R = 0.99 p < 10�10) be-

tween swabs and OMNIIgene-GUT collection methods). Collected samples

were immediately stored in a home freezer (�20�C), and transferred in a pro-

vided cooler to our facilities where it was stored at �80�C (�20�C for OMNII-

gene-GUT kits) until DNA extraction. All samples were taken within 3 days of

connection week start.

Genomic DNA Extraction and Filtering

Genomic DNA was purified using PowerMag Soil DNA isolation kit (MoBio)

optimized for Tecan automated platform. For shotgun sequencing, 100 ng of

purified DNAwas sheared with a Covaris E220X sonicator. Illumina compatible

libraries were prepared as described (Suez et al., 2014). For 16S rRNA

sequencing, PCR amplification of the V3/4 region using the 515F/806R 16S

(D) For Bifidobacterium adolescentis, which decreased significantly following the ‘‘good’’ diet interventions (see panel C), shown is the average and standard

deviation of the (log) fold change of all participants in each day of the ‘‘good’’ (top) diet week relative to days 0–3 of the ‘‘good’’ week. Same for the ‘‘bad’’ diet week

(bottom) in which B. adolescentis increases significantly (see panel C). Grey lines show fold changes (log) in individual participants.

(E) As in (D), for Roseburia inulinivorans.
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rRNA gene primers was performed followed by 500 bp paired-end sequencing

(Illumina MiSeq).

Microbial Analysis

We used USearch8.0 (Edgar, 2013) to obtain RA from 16S rRNA reads. We

filtered metagenomic reads containing Illumina adapters, filtered low quality

reads and trimmed low quality read edges.We detected host DNA bymapping

with GEM (Marco-Sola et al., 2012) to the Human genome with inclusive pa-

rameters, and removed those reads. We obtained RA from metagenomic

sequencing via MetaPhlAn2 (Truong et al., 2015) with default parameters.

We assigned length-normalized RA of genes, obtained by similar mapping

with GEM to the reference catalog of (Li et al., 2014), to KEGG Orthology

(KO) entries (Kanehisa and Goto, 2000), and these were then normalized to a

sum of 1. We calculated RA of KEGG modules and pathways by summation.

We considered only samples with >10K reads of 16S rRNA, and >10 M meta-

genomic reads (>1.5 M for daily samples in diet intervention cohort).

Associating PPGRs with Risk Factors and Microbiome Profile

We calculated the median PPGR to standardized meals for each participant

who consumed at least four of the standardized meals and correlated it with

clinical parameters (Pearson).We also calculated themean PPGR of replicates

of each standardizedmeal (if performed) and correlated (Pearson) these values

with (a) blood tests; (b) anthropometric measurements; (c) 16S rRNA RA at the

species to phylum levels; (d) MetaPhlAn tag-level RA; and (e) RA of KEGG

genes. We capped RA at a minimum of 1e-4 (16S rRNA), 1e-5 (MetaPhlAn)

and 2e-7 (KEGG gene). For 16S rRNA analysis we removed taxa present in

less than20%ofparticipants. CorrelationsonRAswereperformed in logspace.

Enrichment analysis of higher phylogenetic levels (d) and KEGG pathways

and modules (e) was performed by Mann-Whitney U-test between �log(p val-

ue)*sign(R) of above correlations (d, e) of tags or genes contained in the higher

order groups and�log(p value)*sign(R) of the correlations of the rest of the tags

or genes.

FDR Correction

FDR was employed at the rate of 0.15, per tested variable (e.g., glucose stan-

dardized PPGR) per association test (e.g., with blood tests) for analyses in Fig-

ure 2G and Figure S4; per phylogenetic level in Figure 6 and Figure S7; and on

the entire association matrix in Figure 4G.

Meal Preprocessing

We merged meals logged less than 30 min apart and removed meals logged

within 90 min of other meals. We also removed very small (<15 g and <70 Cal-

ories) meals and meals with very large (>1 kg) components, meals with incom-

plete logging and meals consumed at the first and last 12 hr of the connection

week.

PPGR Predictor

Microbiome derived features were selected according to number of estimators

using them in an additional predictor run on training data. For detailed feature

list see Supplemental Experimental Procedures. We predicted PPGRs using

stochastic gradient boosting regression, such that 80% of the samples and

40% of the features were randomly sampled for each estimator. The depth

of the tree at each estimator was not limited, but leaves were restricted to

have at least 60 instances (meals). We used 4000 estimators with a learning

rate of 0.002.

Microbiome Changes during Dietary Intervention

Wedetermined the significantly changing taxa of each participant by aZ test of

fold-change in RA between the beginning and end of each intervention week

against a null hypothesis of no change and standard deviation calculated

from at least 25-fold changes across the first profiling week (no intervention)

of corresponding taxa from all participants with similar initial RA. We checked

whether a change was consistent across the cohort for each taxa by perform-

ing Mann-Whitney U-test between the Z statistics of the ‘‘good’’ intervention

weeks and those of the ‘‘bad’’ intervention weeks across all participants.

A detailed description of methods used in this paper can be found in the

Supplemental Experimental Procedures.
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SUMMARY

There is considerable heterogeneity in immunolog-
ical parameters between individuals, but its sources
are largely unknown. To assess the relative contribu-
tion of heritable versus non-heritable factors, we
have performed a systems-level analysis of 210
healthy twins between 8 and 82 years of age. We
measured 204 different parameters, including cell
population frequencies, cytokine responses, and
serum proteins, and found that 77% of these are
dominated (>50% of variance) and 58% almost
completely determined (>80% of variance) by non-
heritable influences. In addition, some of these pa-
rameters becomemore variable with age, suggesting
the cumulative influence of environmental exposure.
Similarly, the serological responses to seasonal influ-
enza vaccination are also determined largely by non-
heritable factors, likely due to repeated exposure to
different strains. Lastly, in MZ twins discordant for
cytomegalovirus infection, more than half of all pa-
rameters are affected. These results highlight the
largely reactive and adaptive nature of the immune
system in healthy individuals.

INTRODUCTION

The study of monozygotic (MZ) and dizygotic (DZ) twin pairs has

provided a powerful means for separating heritable from non-

heritable influences on measured traits for almost 100 years

(Jablonski, 1922). Such studies have been used to study autoim-

mune diseases, vaccine responses (Jacobson et al., 2007),

serumcytokines (de Craen et al., 2005), or the frequencies ofma-

jor immune cell populations (Clementi et al., 1999; Evans et al.,

2004). Most of these studies have found that both heritable

and non-heritable factors contribute to the resulting phenotype.

Recent advances in technology now allow much more compre-

hensive surveys to be conducted across themany different com-

ponents of the immune system, and thus we performed a very

broad ‘‘systems-level’’ study in which we measured 51 serum

cytokines, chemokines, and growth factors; the frequencies of

95 different immune cell subsets; and cellular responses to cyto-

kine stimulation (Figure 1A). Our results show that these func-

tional units of immunity vary across individuals primarily as a

consequence of non-heritable factors, with a generally limited in-

fluence of heritable ones. This indicates that the immune system

of healthy individuals is very much shaped by the environment

and most likely by the many different microbes that an individual

encounters in their lifetime.

RESULTS

A Systems-Level Analysis of the Immune System in
Healthy Twins
Our study cohort was recruited from the Twin Research Registry

at SRI International (Krasnowet al., 2013) in the years 2009–2011,

with demographic data detailed in Table S1 (available online). The

subjects were all apparently healthy, without any symptoms of

disease (Experimental Procedures, ‘‘Twin Cohort’’). To minimize

biological variability, the time between blood sampling of each

twin in a pair was kept to a minimum (Experimental Procedures,

‘‘Blood Sampling, PBMC Preparation, and Zygosity Testing’’).

Immunological assays were performed by the Human Immune

Monitoring Center, where assays are continually benchmarked

to minimize technical variability (http://iti.stanford.edu/himc/)

(Maecker et al., 2005).However, some technical variability is inev-

itable, and thus we corrected for this in all of our models. We did

this by analyzing aliquots of the same control sample many (>17)

times to estimate the technical variance and subtracted this from

our estimates of heritability (Experimental Procedures, ‘‘Correc-

tion of Model Estimates for Technical Variability’’). We also

analyzed longitudinal samples in an unrelated cohort over 2–5
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consecutive, yearly samplings and found that the variation was

largely due to technical variability (Table S2). A total of 204

different immune measurements were included in our analyses.

Estimating Heritable and Non-Heritable Influences
Heritability for each parameter was estimated by comparing

observed MZ and DZ covariance matrices to the expected

values based on a structural equation model that partitioned

the observed variance into three components: heritable (A),

shared (C), and unique (E) non-heritable factors. This model is

based on the assumptions that: (1) heritable factors correlate

perfectly between MZ twins (rMZ = 1) but only to 50% between

DZ twins (rDZ = 0.5) and (2) that shared non-heritable influences

are equally similar (rMZ = rDZ) between MZ and DZ twin pairs

A B

C

Cell populations 
(Mass and Flow Cytometry)

Figure 1. Systems-Level Analysis of Healthy Human Twins

(A) Overview of data collected covering the functional units of the immune system, the cells, and proteins in circulation.

(B) Summary of all heritability estimates for 72 immune cell population frequencies as determined by flow (2009) and mass cytometry (2010–2011) (Experimental

Procedures, section 3). See also Table S3.

(C) Heritability estimates of 43 serum proteins as determined by a fluorescent bead assay. See also Table S4. Error bars represent 95% confidence intervals for

the heritability estimate. Gray area is heritability <0.2, our detection limit.
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(Experimental Procedures, ‘‘Structural Equation Modeling to

Estimate Heritable and Non-Heritable Influences’’). For each

measurement, we subtracted the technical variance estimate

from the e-component prior to normalization to correct for noise

(Experimental Procedures, ‘‘Correction of Model Estimates for

Technical Variability’’). We also corrected all measurements for

the effects of age (Dorshkind et al., 2009) and gender (Furman

et al., 2014) by regressing out such effects and using only resid-

ual variance for estimating heritability. Finally, we performed

jackknife bootstrapping tests to obtain 95% confidence intervals

(Experimental Procedures, ‘‘Structural Equation Modeling to

Estimate Heritable and Non-Heritable Influences’’). Importantly,

as our model estimates heritability by comparing MZ and DZ

twins, heritable influences include genomic and shared epige-

netic traits (Bell and Spector, 2011), and non-heritable influences

include environmental factors and stochastic epigenetic

changes (Fraga et al., 2005).

We first ran a simulation experiment to verify that our cohort

size of 210 twins (78 MZ and 27 DZ pairs) would be enough to

test our hypothesis that most immunological traits are explained

more by non-heritable than by heritable influences. We found

this to be the case, and we estimate 20% heritability to be our

detection limit, under which we cannot distinguish small herita-

ble influences from zero (Figure S1).

Most Cell Population Frequencies and Serum Proteins
Are Dominated by Non-Heritable Influences
Although it is well known that the frequencies of different types of

immune cells in blood often vary widely between individuals, in

most cases it is not known how much of this can be attributed

to heritable or non-heritable factors, respectively. To address

this question, we used antibodies against cell surface markers

to quantify 95 different cell subset frequencies but used the 72

most non-redundant ones and estimated the influence of herita-

ble and non-heritable factors on their variation (Experimental

Procedures, ‘‘Immune Cell Phenotyping by Mass Cytometry

and Flow Cytometry’’). Among these, a few had very strong influ-

ences from heritable factors, especially naive, CD27+, and cen-

tral memory CD4+ T cells (Figure 1B and Table S3), but for

most, non-heritable influences were clearly dominant. In fact,

for 61% of all cell populations, the influence of heritable factors

was undetectable (<20% of the total variation) (Figure 1B and

Table S3). This was true of both adaptive (T and B cells) and

innate cell types (granulocytes, monocytes, and NK-cells).

Serum cytokines and chemokines also have important func-

tions as immune mediators and biomarkers of disease (Villeda

and Wyss-Coray, 2013), and thus we measured 51 serum pro-

teins but eliminated eight that were often at or below the limits

of detection (Experimental Procedures, ‘‘Serum Protein Quanti-

fication’’). This left 24 cytokines, 10 chemokines, 6 growth fac-

tors, and 3 other serum proteins for which we estimated the

influences of heritable and non-heritable factors (Figure 1C and

Table S4). Some cytokines were particularly heritable, such as

IL-12p40 (Figure 1C and Table S4). Interestingly, variants in the

IL12B gene that contribute to the IL-12p40 protein have been

associated with immune-mediated diseases such as psoriasis

(Nair et al., 2009) and asthma (Morahan et al., 2002). In the latter

condition, the susceptibility locus was also associated with a

reduced serum concentration of IL-12p40 (Morahan et al.,

2002). For many other measurements, such as IL-10 and a group

of chemokines, the heritable influence was low (Figure 1C and

Table S4).

Homeostatic Cytokine Responses Are Largely Heritable,
whereas Most Other Cell Responses Are Highly
Non-Heritable
Because these serum proteins often regulate immune cells, we

assessed the responses of eight different cell populations stim-

ulated in vitro with seven different cytokines for the phosphory-

lation of three important transcription factors, STAT1, 3, and 5,

using phospho-specific antibodies in flow cytometry (Krutzik

andNolan, 2006).We performed a total of 192 different measure-

ments but focused on the 24 baseline measurements and the

65 strongest induced responses (Experimental Procedures,

‘‘Immune Cell Signaling Experiments’’). Baseline measurements

were generally driven by non-heritable factors, with possible

minor contributions fromheritable factors (Figure 2A). The impor-

tant homeostatic cytokines IL-2 and IL-7, known to stimulate the

proliferation and differentiation of T cells, were found to induce

STAT5 phosphorylation in both CD4+ and CD8+ T cell popula-

tions, and these responses were highly heritable (Figure 2A

and Table S5). In contrast, most signaling responses such as

interferon-induced STAT1 phosphorylation and, in particular,

the IL-6-, IL-21-, and regulatory IL-10-induced phosphorylation

of STAT3,were dominated by non-heritable influences (Figure 2A

and Table S5). In total, 69% of all signaling responses had no

detectable heritable influence (e.g., <20%) (Figure 2A and Table

S5). This lack of heritability was not related to the strength of

responses or explained by a bias toward weak and variable

responses (Figure S2).

Non-Heritable Influences Are Major Factors
Determining Immune Variation
Taken together, these results show that variation in blood cell

frequencies and functions and soluble factors is largely driven

by non-heritable factors, with 58% of all measurements having

<20% of their total variance explained by heritable influences

(Figure 2B). There was no relationship between the absolute

degree of measurement variability in the cohort and estimated

heritability (Figure S3), and we could also rule out any underesti-

mation of heritability due to the skewed ratio of MZ/DZ twin pairs

in our cohort by a resampling test. In brief, by creating 1,000 syn-

thetic data sets with uniform heritability and the same MZ/DZ

ratio as in our cohort, we estimated heritability and found that

none of the 1,000 data sets ever had >40% of measurements

with an estimated heritability < 0.2 (p < 0.001) (Figure 2C), thus

suggesting that the low heritability estimates obtained are not

a result of study design or overall measurement variation in the

cohort.

Heritable and Non-Heritable Measurements Are
Interrelated in the Immune Network
Our analysis also allowed us to analyze the interrelationships

between the different components of the immune system. To

construct such a network model, we calculated a precision ma-

trix derived from a Spearman correlation matrix (Liu et al., 2012).
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A matrix of this type captures partial correlations between vari-

ables and avoids spurious, indirect interactions that might occur

in standard correlation analyses. By penalizing non-zero entries

in this matrix (Friedman et al., 2008), we could pursue what is

referred to as a sparse (rather than dense) network model, mak-

ing it more interpretable. After removing unconnected nodes and

validating the edges by a permutation test (Experimental Proce-

dures, ‘‘Identification of Pairwise Dependencies between Mea-

surements and the Creation of an Immune Network Model’’),

this model consists of 126 nodes and 142 edges (Figure 3A

and Table S6). An interactive version is available online (http://

www.brodinlab.com/twins.html). We found that heritable nodes

(yellow) were generally connected to non-heritable nodes (pur-

ple) throughout the network (Figure 3A). One example shows

how the weakly heritable cytokine IL-10 and CD161�CD45RA+

regulatory T cells are connected to the strongly heritable fre-

quency of naive CD4+ T cells (Figure 3B). We found that all

hubs in the networkwere dominated by non-heritable influences,

like the network as a whole, showing that heritable factors are

not isolated by themselves but are buffered by connected non-

heritable ones (Figure 3A and 3B). This may explain why the

many gene polymorphisms found (for example, CTLA4 [Gre-

gersen et al., 2009]) outside of the HLA locus that are associated

with immune-mediated disease only explain a small fraction of

the total disease risk (Todd, 2010).

With Age, Genetically Identical Twins Diverge as a
Consequence of Non-Heritable Influences
As a major source of non-heritable influence is likely to be envi-

ronmental, particularly microbial exposure, we reasoned that

such influences would increase with time. To this end, we

compared twin-twin correlations for all immune measurements

between the oldest (>60 years; median, 72 years) and the youn-

gest (<20 years; median, 13 years) MZ pairs in our cohort. Here,

we also note that twins in the younger (<20 years) cohort are in

most cases living together, whereas the older (>60 years) twins
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Figure 2. Heritable Factors Explain Only a Fraction of the Variation for Most Immune Measurements

(A) Heritability estimates for immune cell signaling states upon stimulation with the indicated cytokines. Only unstimulated controls and induced responses >1.5-

fold are shown. See also Table S5.

(B) The overall distribution of heritability for all 204 measurements.

(C) The maximum number of measurements with heritability <0.2 across 1,000 synthetic data sets with the same MZ/DZ ratio as in our twin cohort is <40%,

significantly less than our results of 58% of measurements with heritability <20% (gray bar). p < 0.001.
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have lived apart for decades, so concordance can also be a

result of either shared environment and/or shared exposure, in

addition to genetic similarity. For several cell population fre-

quencies, we found much reduced correlations with age (Fig-

ure 4A). In the most striking example, the frequency of Tregs

between the youngest MZ twins correlated very strongly at

0.78 but was highly uncorrelated at 0.24 between the oldest

MZ twin pairs (Figure 4A). Similarly, several serum proteins

showed remarkably reduced correlations between older as

compared to younger MZ twins (Figure 4B). In particular, the

chemokine CXCL10/IP10 showed a strong correlation (0.79) be-

tween the youngest MZ twins but was greatly reduced (0.18) in

the older MZ twins (Figure 4B). Similar patterns were found for

many cell signaling responses (data not shown), suggesting

that this immune divergence between genetically identical twins

with age is a common phenomenon, consistent with a major role

for environmental exposure in driving variation, although some

epigenetic changes could also contribute (Fraga et al., 2005).

Cytomegalovirus Infection Has a Broad Influence on
Immune Variation
As we postulate that microbial exposure is a likely driver of im-

mune variation with age, a particularly interesting example is

cytomegalovirus (CMV), a lifelong viral infection that has striking

effects on the immune phenotypes of both humans and rhesus

macaques (Sylwester et al., 2005). In our twin cohort, 16 MZ

pairs were discordant for CMV seropositivity, and we compared

their twin-twin correlations for all measurements to those of 26

CMV concordant (negative) MZ pairs. Here, we found that the

CMV discordant MZ twins showed greatly reduced correlations

Network ofk Immune measurements
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tween Immune Measurements

(A) Undirected network model of the healthy

human immune system showing 126 nodes

(measurements), connected by 142 undirected

edges illustrating conditional measurement de-

pendencies. Nodes are colored by their estimated

heritability and sized by their number of edges.

(B) Subnetwork exemplifying direct relationships

between heritable and non-heritable nodes.

Solid edges represent positive relationships, and

dashed edges represent negative relationships.

The edge weight represents the strength of re-

lationships.

See also Table S6.

formany immune cell frequencies such as

effector CD8+ and gamma-delta T cells

(Figure 5A), as compared to CMV-nega-

tive MZ twins. The same was true for

cell signaling responses, especially in

response to IL-10 and IL-6 stimulation

(Figure 5B), as well as the concentrations

of these same cytokines in serum (Fig-

ure 5C). In general, the influence of CMV

was very broad, affecting 119 of all

204 measurements (58%) dispersed

throughout the immune network (Fig-

ure 5D) and illustrating how at least one type of microbial expo-

sure can dramatically modulate the overall immune profile of

healthy individuals.

Antibody Responses to Seasonal Flu Vaccines in Adults
Have No Detectable Heritable Component
Finally, we immunized all of the subjects with seasonal flu vac-

cines in the year of participation (2009, 2010, or 2011) and as-

sessed antibody responses using a standard hemagglutination

inhibition (HAI) assay (Experimental Procedures, ‘‘Hemaggluti-

nation Inhibition Assays’’). We were surprised to find no detect-

able contribution from heritable factors on any of these vaccine

responses (Table 1). As pre-existing antibodies are known to in-

fluence flu vaccine responses (Sasaki et al., 2008), we excluded

subjects with a pre-vaccination titer above 40 but were still un-

able to find any heritable influences (Table 1). Though preliminary

due to a small sample size, this result suggests that responses to

seasonal flu vaccines in healthy adults (median age, 44 years) are

dominantly influenced by non-heritable factors, likely due tomul-

tiple previous vaccinations and/or infections involving this path-

ogen (Table 1).

In summary, our findings strongly suggest that a healthy human

immune system adapts to non-heritable influences such as path-

ogens, nutritional factors, and more and that this overshadows

the influences of most, although not all, heritable factors.

DISCUSSION

The vertebrate immune system consist of thousands of different

components, and the application of systems biology (Davis,
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2008; Duffy et al., 2014; Li et al., 2014; Querec et al., 2009;

Sekaly, 2008; Tsang et al., 2014) holds great promise as a way

to understand the interactions between these during immune

health and disease. Here, we combine a classical twin study

approach with the most recent advances in immune monitoring

technologies to assess the balance between heritable and non-

heritable influences on the functional units of the immune

system, namely serum proteins and cell populations. In every

category, we find that non-heritable influences dominantly influ-

ence 77% of all measurements (>50% of variance) and almost

exclusively drive 58% of the measurements (>80% of the vari-

ance). Because most measurements made in this study focus

on the adaptive immune system, partly due to the availability of

reagents, one possibility is that these low levels of heritability

are related to the stochastic nature of antigen receptor recombi-

nation. Indeed, previous work has shown that there are signifi-

cant differences in the immunoglobulin-sequence repertoires

of MZ twins (Glanville et al., 2011). But this is unlikely, as we

find low heritability estimates also for many innate immune cell

frequencies (NK cells, monocytes, and granulocytes [Figure 1B])

and differences within and between CD4+ and CD8+ subsets of

T cells, which share the same antigen receptor apparatus.

Although this study is not powered to completely rule out all

heritable influences on any of themeasurementsmade, the over-

all dominance of non-heritable factors is independent of this. The

low estimates of heritable influences are also not explained by

technical noise, as this is rigorously corrected for in our models

(Figure S6A). We are also able to rule out that measurement vari-

ability over time is an important source of bias (Figure S6B).

Therefore, the low heritability estimates for the majority of mea-

surements cannot be explained by either technical noise or bio-

logical variability over time.

Given the concordance rates for common autoimmune dis-

eases between 25% and 50% (Cooper et al., 1999) and the

many studies finding associations between specific genetic var-

iants and immunological traits and disorders, we were surprised

to find such a dominance by non-heritable factors on these func-

tional units of the immune system. Several large population

studies have associated specific loci with white blood cell

counts, showing some heritable influence though the amount

of variation explained is typically low (Okada et al., 2011; Reiner

et al., 2011). A recent study by Orrù et al. estimated the heritabil-

ity of 272 immune cell traits from a non-twin cohort of healthy in-

dividuals on the island of Sardinia. They found that 220 of these

(�81%) had an estimated heritability lower than 50% (Orrù et al.,

2013), which is comparable to our results. Although all the most

heritable subpopulations identified by Orrù et al. expressed the

marker CD39, which was not analyzed in our study, a number

of the cell populations gave quite similar values, although others

were different, such as NKT cells and central memory CD8+

T cells (Table S7), possibly reflecting different environments

(Bell and Spector, 2011) or a more diverse Palo Alto cohort

versus a less diverse Sardinian one.

It is important to note that the twins in our cohort are healthy

and without any known immunological deficiencies. Interest-

ingly, two serious immunodeficiency syndromes are caused by

defects in the genes IRAK-4 and MyD88 and are associated

with invasive bacterial infections due to defects in TLR or IL-1R

signaling (von Bernuth et al., 2008; Ku et al., 2007). Despite being

associated with severe and often lethal infections in young chil-

dren, both of these conditions improve significantly with age,

starting in late childhood (von Bernuth et al., 2008; Ku et al.,

2007). Although this could be explained by developmental imma-

turity, an alternative explanation for the improvement with age

could be that these children’s immune systems become more

capable with greater environmental exposure.

A striking example of how broad the influence from one non-

heritable factor can be is shown here for CMV, influencing

58% of all parameters measured in discordant MZ twins. These

striking differences illustrate how non-heritable factors, alone or

in combination, can affect the immune system broadly. We sug-

gest that repeated environmental influences like herpes viruses

and other pathogens, vaccinations, and nutritional factors cause

shifts in immune cell frequencies and other parameters and, with

time, outweigh most heritable factors. As an example, the life-

long need to control CMV seems to cause a broad shift in the

magnitude and complexity of many cell subsets (Chidrawar

et al., 2009; Wills et al., 2011), and �10% of all T cells in CMV+

individuals can be directed against this virus (Sylwester et al.,

2005). The microbiome also clearly has a major influence on

the immune system (Hooper et al., 2012; Mazmanian et al.,

2005), and shifts in its composition might cause significant

changes in the immune system. Also interesting in the context

of how infectious disease exposure can shape subsequent im-

munity are the influenza vaccine results, in which we could not

detect any heritable influence on the antibody responses to

Serum Proteins
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Figure 4. Increased Variability in the Im-

mune System with Age

(A) Twin-twin correlations (Spearman’s rank) for all

cell frequencies within the youngest MZ twin pairs

(%20 years; median, 13.5; n = 25 pairs), and the

oldest MZ twin pairs (R60 years; median, 72

years; n = 16).

(B) Twin-twin correlations (Spearman’s rank) for all

serum protein concentrations within the youngest

MZ twin pairs (%20 years; median, 13 years;

n = 26) and the oldest MZ twin pairs (R60 years;

median, 73 years; n = 13).
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influenza vaccination (Table 1). This recalls the ‘‘original anti-

genic sin’’ hypothesis (Francis, 1960), wherein it was postulated

that previous encounters with influenza strains strongly impact

the response to a novel strain. But our finding contrasts with

other vaccine studies in twins, most often performed in very

young children and involving vaccines against pathogens less

frequently encountered in the population (Table 1) (Jacobson

et al., 2007). Specifically, vaccines against mumps, measles,

rubella (Tan et al., 2001), oral polio, tetanus, and diphtheria vac-

cines (Newport et al., 2004) have all been shown to be strongly

heritable (Table 1) in studies with young children. The one study

that we know of from adult twins is a study of hepatitis A/B vac-

cine responses and was conducted across a similar age range

(18–65 years) as ours and reported a heritable influence of

36% for hepatitis A and 61% for hepatitis B antibody responses

(Table 1). However, two other studies of hepatitis B vaccine re-

sponses performed in young children showed much higher esti-

mates of heritability of 91% (Yan et al., 2013) and 77% (Newport

et al., 2004), respectively. In addition, responses to vaccines

given at birth (oral polio vaccine [OPV] and Bacillus Calmette–

Guérin [BCG]) are more heritable than even those administered

only 2 months later (diphtheria and tetanus) (Newport et al.,

2004; O’Connor and Pollard, 2013). In addition, Evans et al.

analyzed 12-year-old twins in Australia (Evans et al., 1999).

Although there are only six broad categories of immune cell sub-

sets that can be comparedwith our study and those of Orrù et al.,

it is interesting that, in all cases, the estimates of heritability in the

12-year-old twins were higher than either ours or Orrù et al., in
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Figure 5. Broad Non-Heritable Influences in

the Healthy Immune System

(A) Twin-twin correlations (Spearman’s rank) for

all cell frequency measurements made in CMV

concordant negative (neg/neg) MZ twin pairs

(n = 26 pairs) and CMV discordant (pos/neg) MZ

twin pairs (n = 16 pairs).

(B and C) (B) Twin-twin correlations (Spearman’s

rank) for cell signaling responses to cytokine

stimulation and (C) serum protein measurements

between CMV neg/neg and CMV pos/neg MZ twin

pairs.

(D) 58% of all 126 nodes in the immune network

model with reduced correlations in CMV pos/neg

as compared to CMV neg/neg MZ twin pairs.

which the mean age is about 38 and 40

years, respectively (Table S7). These ob-

servations are consistent with our data

(Figure 4), showing an increasing non-

heritable influence on many variables

with age, and suggest quite strongly that

many if not most of the less heritable traits

that we measure here in our mostly adult

population may be much more heritable

if measured in young children.

Before the advent of childhood vac-

cines, antibiotics, and improvements in

human hygiene, almost half of all children

younger than 5 years of age died of infec-

tious diseases. Casanova and colleagues have proposed a

genetic theory of infectious disease to account for the interindi-

vidual differences in susceptibility (Alcaı̈s et al., 2009). Our data

and the vaccine studies cited here suggest that such genetic

predisposition would be most pronounced in young children

but that, later on, the adaptive nature of the immune system is

able to overcome many defects. This is similar to the hypothesis

proposed by Alcais and colleagues to explain the discrepancies

in genetic lesions underlying the susceptibility to primary and

secondary infections, respectively (Alcaı̈s et al., 2010). Adapta-

tions of the immune system with time could be the result of

well-known immune mechanisms, such as specific antibodies

and T cells or cross-reactive immunity (Su et al., 2013), or

some as yet to be defined maturational process. We would

also speculate that the immune system may have feedback

mechanisms that allow it to skew its mix of cell types and

functional properties in order to compensate for a given individ-

ual’s particular mix of gene polymorphisms and microbial

exposures.

In summary, we find that, in an examination of many of the

component parts of the immune system, as well as some

response metrics, much of the considerable variation in human

beings is driven by non-heritable influences. This variation in-

creases with age and is likely due in large part to exposure to

pathogens and other microbes, as we see for CMV discordant

MZ twins and in the responses to influenza vaccination. Lastly,

we expect that other complex systems in higher organisms,

such as the nervous system, will also show this pronounced
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influence of non-heritable factors, as there is also a need (and

ability) of such systems to adapt to environmental stimuli.

EXPERIMENTAL PROCEDURES

Twin Cohort

In collaboration with the Twin Research Registry at SRI International (Krasnow

et al., 2013), 105 healthy twin pairs were recruited over the years 2009, 2010,

and 2011. The study protocol was approved by the Stanford University Admin-

istrative Panels on Human Subjects in Medical Research, and written informed

consent was obtained from all participants. We excluded anyone having

received the seasonal influenza vaccine in the last 6 months, anyone with

known or suspected impairment of immunologic function, with clinically signif-

icant liver disease, diabetes mellitus treated with insulin, moderate to severe

renal disease, or any other chronic disorder, including autoimmune diseases

or severe hypertension. We also excluded anyone who had received blood

products in the last 6 months and pregnant or lactating women. The complete

inclusion/exclusion criteria are available (Data S1).

Blood Sampling, PBMC Preparation, and Zygosity Testing

Blood samples were collected in heparinized vacutainer tubes by venipuncture

at day 0 (and day +28 for HAI responses after seasonal influenza vaccination)

at the Clinical and Translational Research Unit, Stanford University Hospital.

Whole blood collected in sodium heparin tubes was either analyzed immedi-

ately using our whole-blood flow cytometry protocol below or enriched for

PBMCs using 15 ml of Ficoll-Paque PLUS (GE Health Care) and frozen

at �80�C overnight, transferred to liquid nitrogen, and stored until further

analysis. Zygosity was determined by comparing 384 SNP loci using a discrim-

inatory DNA polymerase and ligase assay (GoldenGate genotyping Assay,

Illumina) and were performed by IGenix. Twins were considered fraternal if

similarities in DNA markers were below 99.0%. Twins of the same pair were

almost exclusively analyzed in the same experimental batch, irrespective of

technology used in order to minimize technical variation.

Immune Cell Phenotyping by Mass Cytometry and Flow Cytometry

All experiments were performed by the Human Immune Monitoring Center at

Stanford University. For years 2010 and 2011, 2 million thawed PBMCs were

stained without prior resting or fixation using a panel of 26 different metal-

tagged probes to surface antigens and DNA (Data S2A). After repeated

washes, cells were analyzed by mass cytometry (CyTOF, Fluidigm) with the

following instrument settings: high-resolution mode analysis with cell length

set to 10–75 pushes, a lower deconvolution threshold of 10, and instrument

run in dual-count detection mode and noise reduction turned off. FCS3.0 files

were manually analyzed using FlowJo v9.3 (TreeStar), as shown in Figure S4.

Year 2009 PBMC samples were similarly processed but were instead analyzed

using a set of custom-made Lyoplates (BD Biosciences) covering seven

different antibody panels of fluorescently labeled antibodies (Data S2B and

S2C). These samples were acquired using a LSRII flow cytometer (BD Biosci-

ences) and were similarly analyzed manually using the same FlowJo v9.3

(TreeStar).

Immune Cell Signaling Experiments

PBMCswere thawed in warmmedia, washed twice, and resuspended at 0.53

106 viable cells/microliter. 200 ml of cells were plated per well in 96-well deep-

well plates. After resting for 1 hr at 37� C, cells were stimulated by addition of

50 ml solutions of cytokines: IFNa, IFNg, IL-6, IL-7, IL-10, IL-2, or IL-21

(Data S2D), respectively, and incubated at 37�C for 15 min. Cells were then

immediately fixed in 1.6% paraformaldehyde, permeabilized with 100% cold

methanol, and kept at �80� C overnight. Each well was barcoded by a unique

combination of Pacific Orange and Alexa-750 dye concentrations (Invitrogen/

Life Technologies), and the cells were washed with FACS buffer (PBS supple-

mented with 2% FBS and 0.1% sodium azide) and stained with our phospho-

Flow antibody panel (Data S2E). Finally, cells were washed and resuspended

in FACS buffer, and 100,000 cells per stimulation condition were collected

using DIVA 6.0 software on an LSRII flow cytometer (BD Biosciences). Data

analysis was performed using FlowJo v9.3 (TreeStar), as shown in Figure S5,

and the mean fluorescence intensity (MFI) of the 90th percentile was used for

downstream analysis. All stimulated samples were compared to unstimulated

control (baseline) samples, and fold changes were calculated. Responses

above 1.5 fold change as well as baseline MFI values were used for heritability

estimates.

Serum Protein Quantification

Blood samples were centrifuged and stored at �80�C awaiting analysis.

Human 51-plex were purchased from Affymetrix and were used according

to the manufacturer’s recommendations with modifications as described

below. In brief, samples were mixed with antibody-linked polystyrene beads

Table 1. Influenza Vaccine Responses in Adults Are Determined Mainly by Non-Heritable Factors

Vaccine Responseacc e espo seVaccine Response Age at Vaccinationge a acc a oAge at Vaccination Heritabilitye ab yHeritability CommentCo eComment

Measleseas esMeaslesMeasles 1–6 years6 yea s1 6 years1 6 yearsa 89%89%89%89% (Tan et al 2001)( a e a , 00 )(Tan et al., 2001)(Tan et al., 2001)

Polio (oral vaccine)o o (o a acc e)Polio (oral vaccine)Polio (oral vaccine) <1 yearyea<1 year<1 year 60%60%60%60% (Newport et al 2004)( e po e a , 00 )(Newport et al., 2004)(Newport et al., 2004)

H influenzae bue ae bH. influenzae bH. influenzae b <1 yearyea<1 year<1 year 51%5 %51%51% (Lee et al 2006)( ee e a , 006)(Lee et al., 2006)(Lee et al., 2006)

Diphtheriap e aDiphtheriaDiphtheria <1 yearyea<1 year<1 year 49%9%49%49% (Newport et al 2004)( e po e a , 00 )(Newport et al., 2004)(Newport et al., 2004)

Rubellaube aRubellaRubella 1–6 years6 yea s1 6 years1 6 yearsa 46%6%46%46% (Tan et al 2001)( a e a , 00 )(Tan et al., 2001)(Tan et al., 2001)

Tetanuse a usTetanusTetanus <1 yearyea<1 year<1 year 44%%44%44% (Newport et al 2004)( e po e a , 00 )(Newport et al., 2004)(Newport et al., 2004)

Mumpsu psMumpsMumps 1–6 years6 yea s1 6 years1 6 yearsa 39%39%39%39% (Tan et al 2001)( a e a , 00 )(Tan et al., 2001)(Tan et al., 2001)

Combined hepatitis A/BCo b ed epa s /Combined hepatitis A/BCombined hepatitis A/B 18–65 years8 65 yea s18 65 years18 65 years 36% (HAV)/61% (HBsAg)36% ( )/6 % ( s g)36% (HAV)/61% (HBsAg)36% (HAV)/61% (HBsAg) (Ho( o(Ho(Hohler et al 2002)e e a , 00 )hler et al., 2002)hler et al., 2002)

Hepatitis B virusepa s usHepatitis B virusHepatitis B virus <1 yearyea<1 year<1 year 77%/91%%/9 %77%/91%77%/91% (Newport et al 2004; Yan et al 2013)( e po e a , 00 ; a e a , 0 3)(Newport et al., 2004; Yan et al., 2013)(Newport et al., 2004; Yan et al., 2013)

B/Brisbane/60/2008/ sba e/60/ 008B/Brisbane/60/2008B/Brisbane/60/2008 12–82 years (median 45)8 yea s ( ed a , 5)12 82 years (median, 45)12 82 years (median, 45) 0% (<20%)0% ( 0%)0% (<20%)0% (<20%)

AA/Cal/07/2009 (H1N1)/Ca /0 / 009 ( )A/Cal/07/2009 (H1N1)A/Cal/07/2009 (H1N1) 12–82 years (median 44)8 yea s ( ed a , )12 82 years (median, 44)12 82 years (median, 44) 0% (<20%)0% ( 0%)0% (<20%)0% (<20%)

AA/Perth/16/2009 (H3N2)/ e / 6/ 009 ( 3 )A/Perth/16/2009 (H3N2)A/Perth/16/2009 (H3N2) 12–82 years (median 44)8 yea s ( ed a , )12 82 years (median, 44)12 82 years (median, 44) 0% (<20%)0% ( 0%)0% (<20%)0% (<20%)

B/Brisbane/60/2008/ sba e/60/ 008B/Brisbane/60/2008B/Brisbane/60/2008 13–77 years (median 49)3 yea s ( ed a , 9)13 77 years (median, 49)13 77 years (median, 49) 0% (<20%)0% ( 0%)0% (<20%)0% (<20%) Pre-vaccine titer < 40e acc e e 0Pre vaccine titer < 40Pre vaccine titer < 40

AA/Cal/07/2009 (H1N1)/Ca /0 / 009 ( )A/Cal/07/2009 (H1N1)A/Cal/07/2009 (H1N1) 12–76 years (median 45)6 yea s ( ed a , 5)12 76 years (median, 45)12 76 years (median, 45) 0% (<20%)0% ( 0%)0% (<20%)0% (<20%) Pre-vaccine titer < 40e acc e e 0Pre vaccine titer < 40Pre vaccine titer < 40

AA/Perth/16/2009 (H3N2)/ e / 6/ 009 ( 3 )A/Perth/16/2009 (H3N2)A/Perth/16/2009 (H3N2) 12–82 years (median 44)8 yea s ( ed a , )12 82 years (median, 44)12 82 years (median, 44) 0% (<20%)0% ( 0%)0% (<20%)0% (<20%) Pre-vaccine titer < 40e acc e e 0Pre vaccine titer < 40Pre vaccine titer < 40

Table of published heritability estimates for vaccine responses to various vaccines as well as the seasonal influenza vaccine responses analyzed in this

study with or without the removal of subjects with a pre-vaccine antibody titer R40.
aVaccine responses analyzed between 2 and 18 years of age.
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on 96-well filter-bottom plates and incubated at room temperature for 2 hr fol-

lowed by overnight incubation at 4�C. Room temperature incubation steps

were performed on an orbital shaker at 500–600 rpm. Plates were vacuum

filtered and washed twice with wash buffer and were then incubated with bio-

tinylated detection antibody for 2 hr at room temperature. Samples were then

filtered and washed twice as above and were resuspended in streptavidin-PE.

After incubation for 40 min at room temperature, two additional vacuum

washes were performed and the samples resuspended in reading buffer.

Each sample was measured in duplicate. Plates were read using a Luminex

200 instrument with a lower bound of 100 beads per sample per protein.

Each sample was measured in duplicate. Plates were read using a Luminex

LabMap200 instrument with a lower bound of 100 beads per sample per pro-

tein per well. The Luminex LabMap200 outputs the fluorescence intensity of a

given protein in a sample. For each well, we considered the median fluores-

cence intensity (MFI) for a serum protein as its abundance and averaged the

MFI of these replicates. To ignore low-abundance proteins, only measure-

ments with mean concentrations higher than a negative control serum were

included in our analysis.

Hemagglutination Inhibition Assays

The HAI assay was performed on sera from day 0 and day 28 post influenza

vaccination. Fold changes day 28/day 0 were used for analyses. In one anal-

ysis, subjects with a pre-vaccination titer of 40 or more were excluded

(Table 1). Serially diluted 25 ml aliquots of serum samples in PBS were mixed

with 25 ml aliquots of virus, corresponding to four HA units, in V-bottom 96-

well plates (Nunc). These were then incubated for 15min at room temperature.

At the end of the incubation, 50 ml of 0.5% chicken red blood cells (cRBC) were

added and the plate incubated for 1 hr at room temperature, and HAI activity

was read as follows: (1) postive result: hemagglutination is present, the well is

hazy with no cRBC button or (2) negative result: hemagglutination is absent,

the well is relatively clear with cRBC button. The HAI titer is defined as the

reciprocal of dilution of the last well that inhibits hemagglutination.

Structural Equation Modeling to Estimate Heritable and

Non-Heritable Influences

For all of the measurements made, a structural equation modeling approach

was used to estimate heritability (Rijsdijk and Sham, 2002). This classical

twin modeling approach is based on the assumption that MZ twins are genet-

ically identical, whereas DZ twins share�50% of their polymorphic genes and

that MZ and DZ twin pairs are equally similar with respect to their shared envi-

ronmental influence. The covariancematrix for eachmeasurementmade inMZ

and DZ twin pairs can then be decomposed into three parameters: (1) additive

genetic parameter, (2) common environmental parameter, and (3) environ-

mental parameter unique to one twin. A linear ACE model then estimates the

contribution of each of these parameters by maximum likelihood. After cor-

recting the E-parameter for technical measurement errors, as described in

detail below, all parameters were scaled as a proportion of the total variance

(A+C+E). All data was corrected for age and gender prior to ACE modeling.

We performed resampling tests on all heritability estimates, using a jackknife

resampling approach leaving one twin pair out of the calculation in each itera-

tion and using the mean values of all such iterations as our final estimate with

95% confidence intervals. All calculations were performed using both our own

implementation of ACE fitting in MATLAB, version 8.3 and the openMX library

version 1.4 running in R version 3.0.3. Both platformswere used in order to pre-

vent any bias due to the software used.

Correction of Model Estimates for Technical Variability

For all measurements, standard samples were analyzed repeatedly (>17

times). These were either PBMC aliquots frozen at the same time and thawed

for every experiment or pooled serum used as standards for Luminex and HAI

assays. By calculating pooled variance estimates for these technical replicates

and subtracting this from the E-component in our ACEmodels prior to normal-

ization, we prevented the underestimation of heritability due to such stochastic

measurement errors. This procedure overestimates the technical noise level of

the actual twin samples by being collected across multiple batches, whereas

twin samples compared were always analyzed within the same batch, and

after correction, no relationship between technical variability and heritability

estimates is seen (Figure S6A). We also assessed the biological variability

over time in an unrelated cohort by calculating coefficients of variance (CVs)

from longitudinal samples drawn once yearly for 2–5 years. No relationship be-

tween longitudinal CVs and estimated heritability was found (Figure S6B).

Identification of Pairwise Dependencies between Measurements

and the Creation of an Immune Network Model

To identify meaningful relationships between measurements, we used the

recently developed non-paranormal SKEPTIC approach (Liu et al., 2012),

with a transformed Spearman/rank correlation matrix as input. To make the

network model interpretable, we pursued sparse precision matrices with a

graphical lasso approach penalizing non-zero entries in the matrix (Friedman

et al., 2008). A zero entry in the precision matrix encodes conditional indepen-

dencies of pairs of measurements given the state of all other measurements

and is less sensitive to spurious indirect connections as compared to simple

correlation analyses. To validate the inferred structural relationships, two tests

were performed. (1) A permutation of samples on per phenotype basis was

done to obtain null distributions for entries of the precision matrix. By repeat-

edly producing permuted samples and running our procedure on those sam-

ples, we obtain a distribution of precision matrices that is mostly dominated

by very sparse, diagonal matrices but that also has occurrences of precision

matrices that have non-zero entries. The non-zero entries thus obtained

were false positive, and hence we can estimate which entries obtained on

the actual data exceed the size of these false positives. (2) Given relative infre-

quent occurrences of non-zero entries when fitting sparse precision matrices,

we opted to estimate confidence intervals for each entry in the precision

matrix. We deemed entries whose confidence interval contained 0 insignifi-

cant. To obtain these confidence intervals, we performed bootstrap analysis

by resampling the real samples.

CMV Serology

CMV serology was determined using a commercially available ELISA kit (CMV

IgG, Gold Standard Diagnostics) as per manufacturer’s instructions. In brief,

sera stored at�80�Cwere thawed to room temperature (20–25�C) and diluted

1:51 in kit diluent. Diluted samples were added to wells coated with CMV

antigen from strain AD169 and were incubated at room temperature for

30 min. Wells were washed and drained, followed by the addition of goat

anti-human IgG antibodies labeled with calf alkaline phosphatase, and incu-

bated at room temperature for 30 min. Wells were again washed and drained,

followed by addition of p-nitrophenyl phosphate substrate, and incubated at

room temperature for 30 min. After the addition of 0.5 M trisodium phosphate

stop solution, the absorbance of each well at 405 nm was read and results

analyzed using the manufacturer’s instructions.

MZ Twin-Twin Correlations

All measurements performed in the youngest set of MZ twin pairs (<20 years)

and oldest MZ twin pairs (>60 years) was extracted, and Spearman’s rank

correlation coefficients were calculated and compared between these inde-

pendent groups for every measurement made. Similarly, CMV serologically

negative/negative MZ-twin pairs were compared to CMV positive/negative

(discordant twins).
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SUMMARY

We describe automated technologies to probe the
structure of neural tissue at nanometer resolution
and use them to generate a saturated reconstruction
of a sub-volume of mouse neocortex in which all
cellular objects (axons, dendrites, and glia) and
many sub-cellular components (synapses, synaptic
vesicles, spines, spine apparati, postsynaptic den-
sities, and mitochondria) are rendered and itemized
in a database. We explore these data to study phys-
ical properties of brain tissue. For example, by
tracing the trajectories of all excitatory axons and
noting their juxtapositions, both synaptic and non-
synaptic, with every dendritic spine we refute the
idea that physical proximity is sufficient to predict
synaptic connectivity (the so-called Peters’ rule).
This online minable database provides general ac-
cess to the intrinsic complexity of the neocortex
and enables further data-driven inquiries.

INTRODUCTION

The cellular organization of the mammalian brain is more compli-

cated than that of any other known biological tissue. As a result,

much of the nervous system’s fine cellular structure is unex-

plored. While it has been known for more than a century that a

directional network interconnects many kinds of nerve cells (Ca-

jal, 1899), and that this network underlies behaviors (Sherrington,

1906), for the most part, the precise relationships between the

brain’s many cellular components are not known. Several labo-

ratories are now beginning to generate such data in mammals

using electron microscopy (EM). This work has provided new in-

sights into the visual system (Anderson et al., 2011; Helm-

staedter et al., 2011; Kim et al., 2014; Briggman et al., 2011;

Bock et al., 2011; see also Takemura et al., 2013; Mishchenko

et al., 2010). Descriptions of neuronal network structure could

also be important if derangements in networks underlie psychi-

atric or developmental disorders and/or if modifications to these

networks store learned information (i.e., memories). Exploring

such possibilities may require methods for obtaining detailed

synaptic-level connectomic data.

A reconstruction effort on the scale ofmammalian brains, how-

ever, would be enormously expensive and difficult to justify

without assurances that this kind of informationwould be of value

(Marblestone et al., 2013; Plaza et al., 2014; Lichtman et al.,

2014). Substantial savings in effort could come if the connectivity

of the cerebral cortex could be ascertained without looking at

every single synapse. For example, if the overlap of axons and

dendrites at light microscope resolution provides sufficient infor-

mation to infer connectivity (Hill et al., 2012), hugedata sets of EM

images of cerebral cortexmight be superfluous.We thus decided

to reconstruct all the connectivity within a very small piece of

neocortical tissue (1,500 mm3 at a resolution allowing identifica-

tion of every synaptic vesicle) to be in a better position to decide

whether or not obtaining complete brainmaps at such a fine level

of resolution reveals interesting properties that cannot be inferred

from either lower resolution or more sparse analyses.

Previous connectomic studies of retina and hippocampus

concluded that connectivity was not entirely predictable from

the proximity of presynaptic elements to postsynaptic targets

(Briggman et al., 2011; Mishchenko et al., 2010; Helmstaedter

648 Cell 162, 648–661, July 30, 2015 ª2015 Elsevier Inc.



et al., 2013). We wished to examine this question again but now

in neocortex for several reasons. First, a large effort is underway

tomodel and simulate neocortical processing based on stochas-

tic connectivity based on spatial overlap of axons and dendrites

(Markram et al., 2012). Second, the retina and the hippocampus

(archicortex) are phylogenetically older than neocortex and may

have evolved deterministic targeting mechanisms that could

explain why overlap is insufficient to predict connectivity in those

regions. In neocortex, however, less is known and it remains

possible that spatial overlap is sufficient to explain synaptic con-

nections between particular pairs of axons and dendrites. Third,

in analyzing our data, we have found significant redundancies in

the synaptic connections andwanted to know if these were acci-

dental. For all these reasons, we have attempted to analyze the

connectivity of each of many axons and dendrites by looking at

not only the synapses each axon establishes but also the occur-

rences when axons and dendrites get close with potential post-

synaptic targets but do not establish synapses.

Even for such a small volume, however, we found consider-

able technical challenges standing in the way of doing such an

analysis. After ‘‘saturating’’ the segmentation of a sub-region in

the middle of the imaged volume in which all intracellular space

was assigned to one or another cellular entity, we then needed to

catalog all the connectivity and structural information into a

minable database before analyses. Surprisingly, analysis of the

connectomic data turned out to be even more challenging than

creating the image data or annotating it.

This ‘‘omics’’ approach provided a wealth of data for potential

analysis. Here, we investigate aspects of the connectivity of

excitatory axons and find interesting patterns that would have

been difficult to detect with lower resolution methods. To assist

readers who wish to examine the data in detail, we serve out

the images and their segmentations and annotated databases

that link to the image data, as well as all the software we devel-

oped for the display and analysis (described herein http://

openconnecto.me/Kasthurietal2014/).

RESULTS

The results are divided into two parts. We first describe the tech-

nical approaches for acquiring and analyzing this data and then

turn to some of the biological findings.

TECHNICAL DETAILS

Collecting Serial Brain Tissue Sections on Tape
We built an automatic tape-collecting ultramicrotome (ATUM)

that retrieves brain sections from the water boat of a diamond

knife immediately as they are cut via a continuous submerged

conveyor belt (Figure 1A; Movie S1). The tape’s pulling motion

and its adhesiveness cause the caught sections to lie flat on

the tape’s surface (Figure 1A, inset). To generate the cerebral

cortex image dataset in this paper, we collected 2,250 29-nm

coronal brain slices (each section �1 mm2, total volume

0.13 mm3) from somatosensory cortex of a young adult mouse

on �6.5 m of Kapton tape (Figure 1B). We generated 1,000 sec-

tions per 24 hr. We chose 29 nm as section thickness in order to

trace the finest neuronal wires (Mishchenko, 2009), and with a

Figure 1. Automatic Tape Collection of

Ultrathin Brain Sections

(A) Diagram of the automated tape-collecting ul-

tramicrotome (ATUM). Thebottom reel of theATUM

contains a plastic tape that is fed into the knife boat

of a diamond knife mounted on a commercial ul-

tramicrotome.The tape iscollectedona takeup reel

(top). (Red inset)Close-upviewof the tapeconveyor

positioned in the knife boat. Thediamond knifeboat

(dark blue) is filled with water (light blue). The dia-

mond knife (green rectangle) is at the opposite end

of the knife boat from the tapingmechanism. It cuts

serial ultrathin sections from tissue embedded in a

plastic block. The sections then float on the surface

of the water in the knife boat until they adhere to the

moving tape (see Movie S1).

(B) �10 m of Kapton tape with �2,000 sections

collected. Four of the 29-nm sections (red rect-

angle) are shown at a higher magnification at the

bottom of the panel.

(C) The reel of tape is then cut into individual strips

and mounted on silicon wafers for poststaining

and/or carbon coating. A low-power scanning

electron microscopy image of part of a wafer

containing 85 brain sections is shown. One of the

sections (red rectangle) is shown at a higher

magnification in the next panel.

(D) One 29-nm section containing neocortex and

hippocampus. The region that was studied at high

resolution is the dark-looking box (red arrow).

Scale bar, 1 mm.

See also Movie S1.
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sharp knife we have successfully sectioned >10,000 sections

from a small block without missing a cut and importantly manual

segmentation is nearly flawless at this thickness (see below).

Following section collection, the tape was cut into strips and

placed on silicon wafers that were then photographed (Fig-

ure 1C). The wafer image was used to map the positions of the

sections on the wafer for automated EM (Hayworth et al.,

2014). Once mapped, the wafers constitute an ultrathin section

library for repeated imaging of the sections at a range of resolu-

tions (Figures 1D and 2; Movies S2, S3, S4, and S5).

Image Acquisition
Sections were imaged with a scanning electron microscope us-

ing backscattered electron detection (9–10 keV incident electron

energy), which had sufficient resolution and contrast to detect in-

dividual synaptic vesicles (red arrows, Figure 2A). In this study,

reduced osmium tetroxide-thiocarbohydrazide (TCH)-osmium

(ROTO) was used as stain (Friedman and Ellisman, 1981; Tapia

et al., 2012). The ROTO stain highlights a tubular organelle

coursing through most unmyelinated axons, aiding in recon-

struction of fine processes (blue arrows, Figure 2A) (Sinha

et al., 2013; Movies S4 and S5). The plasma membranes with

this staining protocol were 6–8 nm in width. We acquired high-

resolution images with 3-nm pixels, ensuring that membrane

boundaries would be oversampled for easier reconstruction.

The same sample was imaged at lower resolutions (30 or

2,000 nm) to rapidly acquire images of larger tissue volumes (Fig-

ure 2B). Image acquisition scan rate was 1M pixels per s. Time is

also spent moving the stage from one section to another and

automatic focusing each successive section, roughly halving

the overall throughput.

Speed-up can be achieved in several ways, including imaging

different wafers in parallel on multiple microscopes, use of

secondary electron detection (with 1.5–3 keV incident electron

energy and speeds of up to 40 M pixels per s; Figure S1A),

and by imaging in a new microscope that parallelizes imaging

by use of multiple scanning beams (Eberle et al., 2015;

Figure S1B).

Generating a Multi-Scale Dataset from Cerebral Cortex
We created amulti-scale digital volume in order to provide tissue

context surrounding the region in which we did circuit recon-

struction. We first imaged all the sections in their entirety at

low resolution (2 mm/pixel). We also imaged a sub-volume

(a radial strip of cerebral cortex extending from the pia to white

matter, 500 mm wide and 1 mm long) at 29 nm/pixel and finally

we imaged an �80,000 mm3 box (40 3 40 3 50 mm3) that trans-

ected the apical dendritic bundle of a cortical mini-column

(Krieger et al., 2007) at high resolution (3 nm/pixel) (Figure 2B;

Movies S4 and S5).

VAST
A manual tool to segment neuronal processes in the image

data: we developed a computer-assisted manual space-

filling segmentation and annotation program (‘‘VAST,’’ http://

openconnecto.me/Kasthurietal2014/Code/VAST/). VAST al-

lowed us to work with EM images online, avoiding the need for

their local storage, to ‘‘color’’ the images in at multiple scales

of resolution, to organize the results in a flexible annotation

framework, to export results for 3D visualization and analysis,

and to do these tasks without being limited by working memory.

We tested the accuracy of this manual tracing approach,

by analyzing saturated segmentations in which every mem-

brane-bound object in every section was colored in. We used

Figure 2. Imaging Brain Sections on Tape
(A) A section of somatosensory neocortex imaged in a scanning electron mi-

croscope. The red arrow shows synaptic vesicles. The blue arrow shows a

strongly labeled membranous tube found in unmyelinated axons.

(B) The strategy for placing high-resolution images in a larger anatomical

context by re-imaging sections at multiple resolutions. The sections used for

all of the subsequent analysis in this paper are �2.5 mm2.

See also Figure S1 and Movies S2, S3, S4, and S5.
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a Matlab script (http://openconnecto.me/Kasthurietal2014/

Code/findOrphans) to find ‘‘orphans’’ (i.e., segmented objects

that were not connected to parent axons and dendrites; see

the Supplemental Experimental Procedures for details). The

analysis found that in a�500 mm3 cylinder surrounding an apical

dendrite (see below), there were no axonal or dendritic orphans

in the volume, which included a total of 568 spines and 601 ter-

minal axon branches. With the VAST manual reconstructions,

miswiring errors (e.g., connecting the spine head or terminal

axon varicosity to the wrong parent process) were also appar-

ently rare because there was substantial agreement between

two experienced tracers working independently in the assign-

ment of the finest processes to their parent dendrites or axons

(spine necks >99%; 565/568 agreement and axonal terminal

branches >99%; 598/601 agreement). In the six cases of

disagreement, the two tracers reached consensus once they

compared results, meaning there were no places in which the

axonal and dendritic data were actually ambiguous. However,

for the astrocytic cytoplasm (Figure 3J), there were many glial

fragments for which experts could not agree on how they were

connected.

RhoANA
Suite of automatic tracing tools: based on the tracing, we found

6.4 profiles per mm2 in a section and estimated that in the

64,000 um3 high-resolution volume there are 13.7 million cell

profiles in its 1,850 sections. Experienced tracers require about

15 min to trace the �200 cell profiles in 1 mm3 so about two

people-years of 24/7 tracing would be required to segment

out all the profiles in this volume. We therefore developed

ways to generate more rapid and automated segmentation of

neural processes (details and software are available at http://

www.rhoana.org/). To aid this effort, we manually traced all

of the cellular objects in several small volumes (�150 mm3)

and used this ‘‘stained glass’’ segmented image data (Fig-

ure 3B) to train automated reconstruction methods (Fusion:

Vazquez-Reina et al., 2011; Kaynig et al., 2013; GALA: Nu-

nez-Iglesias et al., 2014). Based on this training, we produced

automated segmentations of all the cellular processes within

a high-resolution volume with dimensions of 30.7 3 30.7 3

33.7 mm (via the RhoANA pipeline using random forest mem-

brane probabilities and graph-cut segmentations with the

Fusion segmentation algorithm). In a sub-volume of the cube

centered on the ‘‘red’’ neuronʼs apical dendrite (see below),

we produced a different segmentation (via RhoANA using the

Maxout deep-learning convolutional neural network for mem-

brane probabilities and the GALA segment agglomeration algo-

rithm). These automatically segmented volumes are available

at http://openconnecto.me/Kasthurietal2014/data/automatic_

segmentation (Figure 3C; Movie S7).

We found that although fully automated methods are

improving rapidly, they are still only first passes and require hu-

man assistance to correct merge and split errors. In single im-

ages, we found that 92.6% of the pixels or 87.6% (of 92,747)

of the profiles were correctly segmented with a fully automated

segmentation algorithm (RhoANA with Maxout and GALA; Fig-

ures S2A and S2B). However, despite the appearance of largely

correct two-dimensional data, whenwe analyzed cellular profiles

in three dimensions, we estimated the need for �0.9 split oper-

ations (to correct inappropriate mergers) and 5.8 merge opera-

tions (to correct splits) per mm3 (Figure S2C; Movie S8). We did

these corrections for a sub-volume of the full segmented dataset

(cylinder 3; see below), with a newly developed tool for com-

puter-assisted editing and rendering (Mojo and an online version

for this tool ‘‘Dojo’’; Haehn et al., 2014; available at http://www.

rhoana.org/). The most important metric for automated recon-

struction is the accuracy of the resulting connectivity matrix,

but we concluded that at present it is premature to generate fully

automated connectivity matrices.

Biological Analysis of the Serial EM Images of Cerebral
Cortex
In the medium resolution volume, we identified neuronal somata

in order to locate the cortical layer boundaries (Figure 3A) and re-

constructed the shapes of a subset of cells running in a cortical

mini-column (Figure 3A; Movie S6). Most (�70%, 21/30) of these

cells were pyramidal and the rest fell into several different cate-

gories, including putative interneurons, atypical excitatory cells,

and glial cells. We then fully annotated a sub-volume of somato-

sensory cortex within this same volume (Movie S9; http://

openconnecto.me/Kasthurietal2014/data/segments). Building

on work done previously in the hippocampus (Mishchenko

et al., 2010; Stepanyants and Chklovskii, 2005), we itemized all

the neuronal and non-neuronal cells in three cylindrical volumes

that encompass apical dendrite segments of two cortical pyra-

midal cells, including their spines (Movie S10).We selected these

particular apical dendrites because they ran very close to each

other (see pink arrow in Figures 3A and 3D) and originated

from nearby neuronal somata (in upper layer 6; red and green

arrows in Figures 3A and 3D). Thus, they appeared to be in the

same mini-column and perhaps participated in the same neural

processing unit (Mountcastle, 1997). The three cylinder site was

in layer 5, 100 mm and 135 mm superficial to the pseudo-colored

‘‘red’’ and ‘‘green’’ neuronal somata, respectively. Cross-sec-

tions of the annotations of two cylinders are shown in Figures

3B and 3D; reconstruction of the three cylinders is shown in Fig-

ure 3E; and the location of all three cylinders in the full volume is

shown with pink arrows in Figures 3A, 3D, and 3O. These three

slightly overlapping �600 mm3 cylinders, two of which (cylinders

1 and 3) are centered on the ‘‘red’’ neuron’s apical dendrite and

one (cylinder 2) on the ‘‘green’’ apical dendrite, provided a

total reconstructed volume of 1,500 mm3. In cylinder 3, rather

than tracing the objects manually, we edited the computer-

segmented data (Figure 3C). All of the 193 dendrites in this

volume were traced out into the surrounding high-resolution

cube, and some were traced onto the medium resolution data

to locate somata (n = 30; Figure 3O).

Parts List: 3 Cylinder Volume

The 1,500 mm3 3 cylinder volume contains parts of many cells

(Movies S10 and S11) and of a variety of types (Figures 3E–3N;

Movie S11), including 193 dendrites, 92% spiny, the rest rela-

tively smooth (Figures 3K and 3N), and 1,407 unmyelinated

axons. Based on synapse appearance, 93% of the axons are

excitatory (Figure 3I), and most of the remainder are inhibitory

(Figure 3L). A few axons (5; �0.5%), despite possessing

vesicle-filled varicosities, did not establish classic close synaptic

Cell 162, 648–661, July 30, 2015 ª2015 Elsevier Inc. 651



Figure 3. Multi-Scale Reconstruction in Neocortex

(A) Cortical neuronal somata reconstruction to aid in cortical layer boundaries (dotted lines) based on cell number and size. Large neurons are labeled red;

intermediate ones are labeled yellow; and small ones are labeled blue. The site of the saturated segmentation is in layer V (pink arrow). These two layer VI

pyramidal cell somata (red and green arrows) give rise to the apical dendrites that form the core of the saturated cylinders.

(B) A single section of the manually saturated reconstruction of the high-resolution data. The borders of the cylinders encompassing the ‘‘red’’ and ‘‘green’’

apical dendrites are outlined in this section as red and green quadrilaterals. This section runs through the center of the ‘‘green’’ apical dendrite (full data stack in

Movie S9).

(C) A single section of a fully automated saturated reconstruction of the high-resolution data (full data stack in Movie S7). Higher magnification view (lower left

inset) shows 2D merge and split errors (for 3D errors see; Figure S1).

(D) The two pyramidal cells (red and green arrows) whose apical dendrites lie in the centers of the saturated reconstructions. Dendritic spines reconstructed in the

high-resolution image stack only.

(legend continued on next page)
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junctions with postsynaptic cells. In total, there were 1,700 syn-

apses at a density of one synapse per 1.13 mm3 (Table S1). We

also observed astrocytic processes (Figure 3J), myelinated

axons (Figure 3F), oligodendrocyte processes (Figure 3G),

and about 20 entities that we could not as easily classify (Fig-

ure 3M). Neuronal processes (axons and dendrites) occupy

92% of the cellular volume with glial processes, occupying

much of the remaining 8% (Movies S9 and S10). The non-cellular

(extracellular) space accounts for 6% of the total volume, less

than half the extracellular space estimates from living brains,

probably because of fixation-induced swelling (Vanharreveld

et al., 1965).

The �7-fold disparity between the number of axons and den-

drites (1,407 versus 193) likely reflects a real difference in the

numbers of pre- and postsynaptic cells that send processes

into the volume. We analyzed the shape of the 660 excitatory

axons that entered cylinder 1 and found that only three of them

(0.5%) established branches that were non-terminal within the

volume (Figure S3). To estimate the number of axons that

branched outside the cylinders and sent more than one branch

in, we analyzed axonal arbors from light microscopy reconstruc-

tions of mouse neocortical pyramidal neurons (NeuroMorpho.

org; see the Methods) by superimposing them on the cylindrical

volumes at random locations. The result of this analysis argues

that only �8 of the 1,308 excitatory axons (< 1%) in the volume

are likely to be branches originating from the same parent

neuron. Also, the dendrites in the cylinder only rarely originated

from the same neuron: we found two dendritic shafts in cylinder 1

that were from the same neuron (out of 100). Presumably,

therefore, axons extend into a 7-fold greater volume than den-

drites, on average. The�1,600 different neurons within this small

region of mammalian brain (several billionths of the volume of a

whole brain) is more than five times as many neurons as are

contained within the entire nervous system of a Caenorhabditis

elegans (White et al., 1986).

Synapses in the Reconstructed Volume

We created a spreadsheet of the 1,700 synaptic connections

in the volume, providing the location of each, its pre- and

postsynaptic partners, and a wide variety of other informa-

tion (Table S1; http://openconnecto.me/Kasthurietal2014/view/

highResAnnotated; http://openconnecto.me/Kasthurietal2014/

data/synapses).

The spreadsheet shows that the connectivity is highly skewed

toward excitatory elements: 92% (177/193) of the dendrites are

spiny and purportedly excitatory (Figure 3K; DeFelipe and Fa-

riñas, 1992), and 93% (1,308/1,407) of the axons are excitatory.

Looking at each presynaptic varicosity, we found that 95%

(1,610/1,700) of them also meet the criteria for being excitatory.

Each excitatory axon establishes slightly more synapses in the

volume than each inhibitory axon (�1.2 synapses/excitatory

axon versus �0.9 synapses/inhibitory). The excitatory-to-inhibi-

tory-synapse ratio (van Vreeswijk and Sompolinsky, 1996; Wehr

and Zador, 2003) is 20.2 for the dendrites of excitatory neurons

(1,494 excitatory synapses versus 74 inhibitory synapses),

whereas the ratio is only 9.7 (116 excitatory synapses and 12

inhibitory synapses) for the input to inhibitory dendrites. These

ratios are in line with what has been described in hippocampal

studies (Gulyás et al., 1999; Megı́ası et al., 2001).

Most (71%; n = 1,207/1,700) of the synapses in the volume

derive from varicosities along axons (en passant synapses),

and the rest are at the end of short branches (terminal synapses).

18% of excitatory, and 43% of the inhibitory, axonal varicosities

are presynaptic to multiple partners (Figure 4A). Multi-synaptic

excitatory varicosities were previously described in the hippo-

campus (Chicurel and Harris, 1992; Popov and Stewart, 2009).

The most extreme example in this dataset is a large excitatory

en passant bouton innervating five different postsynaptic targets

(Figure 4B). Tracing ten randomly chosen axons (with 78 varicos-

ities) into the larger surrounding volume showed all but one axon

had at least one multi-synaptic varicosity, suggesting that axons

in general establish both mono- and multi-synaptic varicosities.

Excitatory axons establish synapses mostly on spines (94%;

n = 1,406/1,700), and inhibitory axons establish mostly on

shafts (81%, n = 70/86). A few (1%; n = 7) of the unmyelinated

axons, despite having vesicle-filled varicosities, do not make

traditional close synaptic contacts with any target cell within

the volume (listed as ‘‘2’’ in column 12 in Table S1). Some of

these axons have relatively large vesicles that match the des-

cription of cortical aminergic axons (see, for example, http://

openconnecto.me/Kasthurietal2014/view/bigVesicles) (Smiley

and Goldman-Rakic, 1993). We also notice that glial processes

associate with synapses in an uneven way (Figure 3J; Movies

S9 and S10): �50% of synapses were not adjacent to any glial

process.

We did not find evidence of electrical connections in the three

cylinder volume. Gap junction proteins are seen in inhibitory

neurons in layers 4 and 6, but not so much in layer 5, where

this study was carried out (Deans et al., 2007).

Synaptic Vesicles

In cylinder 1, we identified the location of each synaptic vesicle

at 774 synapses (Figures 4A, 4B, 5A, and 5B; Table S1; http://

openconnecto.me/Kasthurietal2014/view/highResAnnotated;

http://openconnecto.me/Kasthurietal2014/data/vesicles). The

counts were similar (±4.6%) when two expert tracers indepen-

dently counted the same synapses, and they likely reflect the

actual number per synapses (Figure S4). The number of vesicles

per synaptic varicosity range from 2 to 1,366 for varicosities

with one postsynaptic target (mean = 153 ± 127), with signifi-

cantly greater numbers of vesicles at multi-synaptic varicosities

(mean = 200 ± 173; Wilcoxon rank-sum test; p = 0.0005). The

(E) The saturated reconstruction volume.

(F–N) The ‘‘parts list’’ of the saturated volume.

(O) Reconstruction of 30 dendrites contained within cylinder 1 (pink arrow) that were traced back to their cell bodies. These dendrites were predominantly apical

dendrites of pyramidal cells (gold), several basal dendrites of pyramidal cells (blue), and in one case both a branch of the apical and a basal dendrite branch of the

same pyramidal cell entered the volume (green) and a small number of non-pyramidal cell dendrites (red). The somata of the red and green apical dendrites that lie

at the centers of saturated reconstruction are shown at red and green arrows. Scale bars, 1 mm for (B) and (C) and 7 mm for (E).

See also Figures S2 and S3 and Movies S6, S7, S8, S9, S10, and S11.
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number of vesicles is not significantly different in excitatory and

inhibitory synapses.

Mitochondria Size and Density in Different Cells

We also identified 607 mitochondria in cylinder 1 with a density

of �1/mm3 (Figure 5C; mitochondrial dataset available http://

openconnecto.me/Kasthurietal2014/view/highResAnnotated and

http://openconnecto.me/Kasthurietal2014/data/mitochondria).

Mitochondria occupy twice as much volume in inhibitory

dendrites than in excitatory dendrites, perhaps related to the

metabolic demands associated with greater levels of activity

(Beierlein et al., 2003). In addition, mitochondria are present in

axonal varicosities, most typically varicosities that had large

numbers of vesicles (Table S1). Only very rarely (n = 3/1,425)

do mitochondria reside in dendritic spines, a surprising result

given the fact that mitochondria are transported to spines with

intense stimulation (Li et al., 2004). Among the threemitochondria

that enter spines, two were continuations of mitochondria in

the parent dendrite (http://openconnecto.me/Kasthurietal2014/

view/spineMito1; http://openconnecto.me/Kasthurietal2014/

view/spineMito2; http://openconnecto.me/Kasthurietal2014/view/

spineMito3).

Spine Numbers and Sizes

We itemized 1,425 dendritic spines in the 3 cylinder volume.

They occupy �9% percent of the intracellular space. Although

each of the three cylinders was constructed around a single api-

cal dendrite to capture nearly all of its spines, there were many

more spines from other dendrites that invaded this territory,

i.e., the central ‘‘red’’ dendrite contributes only 12%; n = 77/

628 of the spines in cylinder 1. Furthermore, the central den-

drite’s spines were completely intermingled with the spines of

other dendrites (see Figure 7A; Movie S12).

In general, spines appear more densely packed (�51 spines

per 10 mm dendritic length for the red dendrite in cylinder 1)

and often of greater length (mean �1.8 ± 0.6 mm and longest

�3.8 mm; n = 77) than expected in mouse cortex based on pre-

vious reports (Benavides-Piccione et al., 2002). Perhaps this is a

consequence of the saturated method of reconstruction, where

no spine could be overlooked. The long neck lengths could

mean that some of these spines are electrically invisible to the

soma (Araya et al., 2006). Larger spine volumes were positively

correlated with spine apparati (r = 0.36; p < 0.000001), larger

postsynaptic densities (r = 0.77; p < 0.000001), larger numbers

of presynaptic vesicles (r = 0.58; p < 0.000001), and presynaptic

mitochondria (r = 0.141; p = 0.007).

Approximately 5% (39/780) of spines belonging to the central

dendrite were not innervated by an axon. They appeared longer

and thinner than spines that were innervated and often did not

terminate in ‘‘heads’’ (Figure S5). These are termed filopodia

(Purpura, 1975). Individual filopodia occupied less volume

(0.03 ± 0.02 mm3) than innervated spines (0.10 ± 0.08 mm3) and

only �30% of them have spine apparati versus 60% of inner-

vated spines.

Connectivity Patterns of Excitatory Axons

We examined excitatory axonal input to dendritic spines that

account for three-quarters of the synapses (n = 1,286/1,700) in

the 3 cylinder volume and quickly found by mining the data in

the synapse spread sheet (Table S1) a potential anatomical

correlate of the physiological finding that different excitatory

axons can have strikingly different strength connections with

the same dendrite (Markram et al., 1998; Song et al., 2005).

There were many instances in which the same axon innervated

the same dendrite at multiple different spines. Such multiple

contacts have been described in the hippocampus (Chicurel

and Harris, 1992) and inferred from light microscopy of cortex

(Markram et al., 1997). In cylinder 1, the 77 excitatory spine

synapses onto its central (red) apical dendrite came from only

63 different axons because eight axons innervated two spines

each and three axons innervated three spines (Movie S13).

In cylinder 2, 12 of a total of 84 axons innervated two spines of

the green dendrite, accounting for 22%of that dendrite’s spines.

Such multiple contacts were not restricted to apical dendrites

because themost extreme example was an axon that innervated

Figure 4. Multi-Synaptic Varicosities Are Commonplace in the Reconstructed Volume of Neocortex

(A) Ten axonal varicosities, which were presynaptic to multiple dendritic spines, are shown. In most cases a single large cluster of vesicles served the multiple

synapses. In some cases two spines from the same dendrite were postsynaptic to the same varicosity (e.g., the two purple spines in #5).

(B) An axonal varicosity (blue) that was presynaptic to four dendritic spines (red, orange, yellow, and gold) and one dendritic shaft (green). Inset shows that this

was an en passant varicosity of an axon. Scale bar, 1 mm in (A) and (B).
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five different spines of a basal pyramidal dendrite (Figure 6). The

spines innervated by the same axon were not by rule adjacent

either in terms of the location of the spine heads or their origins

from the dendritic shaft (Figure 6). In cylinder 1 there were 34

instances in which an axon established synapses on two spines

of the same dendrite, 4 instances in which an axon innervated

three spines on the same dendrite, and the 1 instance of

five just mentioned. Therefore, 46 synapses were ‘‘redundant’’

in the sense that these synapses replicated synaptic connec-

tions that were already established by a different synapse of

the same axon on the same target cell. For all spines in cylinders

1–3, we counted 97 redundant synapses. However, given the

shape of the volume, only the red and green dendrites had all

their spines assayed, and thus themeasured redundancy almost

certainly underestimates the actual amount.

Next, we consider potential reasons for why multiple spine

synapses between an axon and a dendrite exist. One idea is

that, by virtue of having substantially more branches or a more

convoluted path through the volume, some axons have a greater

opportunity to establish multiple synapses with the same

dendrite than simpler axons. However, there was only a weak

correlation between the total length of excitatory axons that

crossed through cylinder 1 and the number of synapses they

established with its central dendrite (n = 63 axons, 77 synapses;

Figure 5. Reconstruction of Subcellular

Organelles

(A) A reconstruction of a single synapse showing

the innervating excitatory axon and its en passant

varicosity (purple), postsynaptic dendritic spine

(green), synaptic vesicles (yellow), a presynaptic

mitochondrion (blue), the postsynaptic density

(white), and spine apparatus (red).

(B) All of the synaptic vesicles in cylinder 1 (n =

162,259) and their corresponding postsynaptic

densities (white) are shown. Vesicles with the

same color belong to the same axon (full data at

http://openconnecto.me/Kasthurietal2014/view/

highResAnnotated).

(C) All of the mitochondria (n = 635) contained in

cylinder 1 from side view of the cylinder (left) and

end-on view (right). Three tables show mitochon-

drial metrics for cell and process types. Colors of

mitochondria in the rendering refer to the classes

listed. Scale bars, 1 mm for (A), 7 mm for (B), and

3 mm for (C).

See also Figure S4.

correlation = 0.16; Figure S6A). Alterna-

tively, some axons may have a strong

affinity to run near the spines of particular

dendrites. We therefore looked at the

trajectory of each excitatory axon in

greater detail to see if we could discover

any differences between the axons that

innervated the central (‘‘red’’) dendrite in

cylinder 1 and a cohort of excitatory

axons that did not innervate the central

dendrite in the cylinder but at least

passed immediately adjacent to at least one of its spines (con-

tactswe call ‘‘touches,’’ see theMethods for details).Many axons

touched each spine (8.9 ± 4.3 excitatory axons touched each

spine), but in almost all cases (�99%) only one excitatory axon

innervated each (Figure 7B; Movie S14; http://openconnecto.

me/Kasthurietal2014/data/touchSynapse). The analysis of axons

making touches and those that innervated the central dendrite ar-

gues against the idea that the trajectory axons predict their syn-

aptic connectivity. First, for the 77 dendritic spines of the central

dendrite in cylinder 1, we found little correlation (correlation coef-

ficient = 0.0001) between the number of these spines that an

excitatory axon touches versus the number of synapses it estab-

lishes on these spines, as would be expected if synapse proba-

bility is just related to the number of opportunities based on prox-

imity to spines (Figure S6B). Second, we found no evidence to

support the idea that axons that established the synapses with

the central dendrite grew in closer proximity to that dendrite

than the axons that touched but did not establish synapses.

We compared the length of axons that entered the cylinder and

touched a spine of the central dendrite without establishing any

synapses with it to the lengths of axons that established synap-

ses with the central dendrite. The axons that touched, but did

not establish synapseswith the central dendrite, were on average

slightly longer in the volume than the axons that established
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synapses (mean 9.9 ± 6.6 mm synapsing versus mean 10.8 ±

5.18 mm touching), providing no support for the idea that inner-

vating axons had a greater affinity to grow along the central

dendrite than axons that passed by but did not innervate it (Ste-

panyants et al., 2004).

We tested whether the axon-spine connectivity observed

could be based on purely stochastic mechanisms. Specifically,

did redundant excitatory synapses originate by synapse forma-

tion among a random subset of the close encounters (i.e.,

touches) between excitatory axons and dendritic spines? This

analysis tests a high-resolution version of the so called Peters’

rule (see discussion). We analyzed the 7,505 spine touches

and 1,037 synapses between all the excitatory axons (n = 916)

with dendritic spines (n = 1,036) in cylinders 1 and 2. For each

axon we itemized all the spines that it touched and the subset

of these that were actual synapses (Figure 7C). If synaptic

connections occurred randomly among the close encounters

of axons and spines then a randomization of the synapses

among the spine touches should not significantly change

the number of times the same axon innervates a dendrite

more than once. To assure that each axon in the randomization

still established the identical number of synapses as it did in

the actual data and that each spine was still innervated by only

one excitatory axon (or in 10 cases, two excitatory axons),

we developed an algorithm that essentially solved a Sudoku ma-

trix of axons and spines in that it kept the numbers of synapses

in the rows and columns unchanged from the actual data (http://

openconnecto.me/Kasthurietal2014/Code/touchSynapse; see

also the Methods). In this randomization, both the quantitative

aspects of the synaptic connectivity of each axon and each

dendrite and the spatial overlap of all axons and dendrites

are identical to the actual data. The only change made is the

particular identity of which of the close axon-spine touches are

synaptic. We calculated for each randomization the number of

redundant synapses. In a run of 80,000 randomization trials,

none of the randomized connectivity patterns had as many

redundant synapses as the 78 found in the actual dataset of

cylinder 1+2 (simulation median = 52 redundant synapses;

p < 0.00001; Figure 7D). Thus axon-dendrite adjacency, while

of course necessary for synapses to form, is insufficient

to explain why some axons establish multiple synapses on

some dendrites and not others. This is an explicit refutation of

Peters’ rule. Rather this result argues that there are different

probabilities for synapses between particular dendrites and

particular excitatory axons.

To further explore this idea that excitatory axons show prefer-

ences in terms of the dendritic spines they innervate (and those

they don’t) among the larger population of dendritic spines with

which they come into close proximity, we carried out an addi-

tional test. We analyzed two cohorts of axons from cylinder 1:

the 63 axons that innervated the central dendrite’s spines within

the cylinder (cohort 1) and 63 different excitatory axons that

touched the same number of its spines, but did not innervate

the central dendrite’s spines in the cylinder (cohort 2). Inside

the cylinder, the 63 axons in cohort 1 as already described, inner-

vated multiple spines on the central dendrite whereas axons in

cohort 2 did not innervate any spines of the central dendrite

(by definition) despite both groups having the same access to

that dendrite’s spines. We then traced these two sets of axons

into the surrounding high-resolution volume to see if their synap-

tic preferences within the cylinder predicted their connectivity

preferences outside the cylinder. The results were clear: axons

in cohort 1 continued to innervate the central dendrite in the large

surrounding volume, adding an additional 11 synapses onto its

spines. Axons in cohort 2 however, added only 1 synapse

on the central dendrite (Figures 7E and 7F; p �0.003; from the

binomial distribution, see the Methods). These data show that

axons have intrinsic preferences for the spines of some den-

drites as opposed to others. However, even among those axons

that innervate the central dendrite in the cylinder, some appear

better matched to it than others based on their behavior outside

the cylinder. Among the axons innervating the central dendrite

in the cylinder their likelihood to form additional synapses with

it outside the cylindrical volume was in rough proportion to

the number of synapses they formed with it in the cylinder. The

cohort of axons that established one synapse with the central

dendrite in cylinder 1 (n = 52) add 0.13 synapses per axon with

it in the larger volume (i.e., excluding the cylinder); those that

established two synapses on the central dendrite in the cylinder

(n = 8) added 0.38 additional synapses per axon and those axons

that established three synapses with the central dendrite in the

cylinder (n = 3) added 0.67 additional synapses per axon. Impor-

tantly however, these three groups of axons did not differ in

their tendency to establish synapses on the sum of all their other

dendritic targets indicating that the different synapse biases

related to the central dendrite was not accounted for by intrinsi-

cally different tendencies to establish synapses among these

three cohorts. When all the 63 axons that innervated the central

dendrite were considered as a single population �30% (18/63)

of them innervate the central dendrite multiple times. Thus in

this region of cortex at least, axons forming multiple synapses

Figure 6. Multiple Synapses of the Same Axon Innervate Multiple

Spines of the Same Postsynaptic Cell

An extreme example in which one axon (blue) innervates five dendritic spines

(orange, labeled 1–5) of a basal dendrite (green) is shown. Arrows point to other

varicosities of this axon that are innervating dendritic spines of other neurons

(data not shown). Scale bar, 2 mm.
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on the same dendrite are commonplace and the tendency ap-

pears to be graded: some axons consistently avoid synapses

with some dendrites, and among those that do form synapses

with a dendrite, there appear to be a range of tendencies from

weak to strong.

Synapses with Identical Activity

The high incidence of multiple synapses of one axon on one

dendrite offers an opportunity to study spine synapses with

nearly identical pre- and postsynaptic activity patterns. Are

structural properties of synapses regulated by activity patterns?

Such tests have been carried out in the hippocampus suggesting

that they do (Sorra et al., 1998) and here we examine if the

trends are the same in neocortex. We use the synapse dataset

(Table S1) to compare five structural features of pairs of synap-

ses established by the same axon on pairs of dendritic spines

of the same dendrite. To assess whether synapses of the

same axon on the same dendrite show more similarity than

would be expected if synapse structures at each site are

independently and randomly determined, we compared the

measured values between the actual pairs with randomly chosen

pairs from the same cohort by doing a permutation test.

The overall conclusion we reach is that pairs of excitatory syn-

apses that have identical pre- and postsynaptic partners tend

to be more similar than randomly chosen pairs from the same

cohort for 4 of the 5 metrics (mitochondria in the synaptic termi-

nal being the exception) but that for our data sample, this only

reaches statistical significance for measures of the volume of

dendritic spines. The evidence for similarity is stronger at pairs

Figure 7. Specificity of Spine Innervation by Excitatory Axons

(A) A rendering demonstrating the high density and intermixing of spines from the red dendrite (red) and many other dendrites (gray) in the cylinder surrounding

the ‘‘red’’ apical dendrite. See also Movie S13.

(B) A reconstruction showing 12 additional excitatory axons in the immediate vicinity of a dendritic spine (arrow) and its innervating axon (arrow). See also

Movie S14.

(C) A reconstruction showing the nine spines (blue) that ‘‘touch’’ one excitatory axon (green) and the three spines (orange) that are innervated by it.

(D) A histogram showing the number of redundant synapses (see text) in 80,000 randomizations of the synapses among the touches of each axon. In none of

these trials was the number of redundant synapses equal to, or greater than, the actual number (red line).

(E) Sites in which the axons that form synapses with the ‘‘red’’ dendrite’s spines inside the cylinder establish 11 additional synapses with this dendrite outside the

cylinder (yellow spheres). Axons that only touched the ‘‘red’’ dendrite spines in the cylinder form only one synapse with it outside of the cylinder (blue sphere).

(F) A graph showing the result described in (E) (p = 0.003). Scale bars, 2 mm for (A) and 15 mm for (E).

See also Figures S5 and S6 and Movies S12, S13, and S14.
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sharing both the same axon and the same dendrite than pairs

sharing either just the same axon (on different dendrites) or just

the same dendrite (but from different axons).

DISCUSSION

The aim of this work was to turn EM images of brain into a

minable dataset for multiple analyses without the need for new

image data for each question (Figure S7). The vast majority of

our effort occurred after generating the segmented images as

we learned how to transform images into a database and analyze

it. The synapse database (Table S1) provides such a resource for

the connections within the volume as demonstrated by some of

the queries and results in this paper.

In the last few years there have been a number of detailed

analyses of neural ultrastructure and its relation to functional

properties of neurons. In this paper we depart from this approach

in that there were no antecedent functional studies to focus

our analysis. The goal rather was to see what could be learned

from a saturated connectomic analysis per se in neocortex.

Part of the motivation was to explicitly consider the fact

that connectomics can reveal structure where functional infor-

mation is not available in analogy to the way genomics reveals

sequences of genes whose function are not yet known. To

allow for further inquiries and analyses in the high-resolution

volume (80,000 mm3) we provide access to all the image data

via the Open Connectome Project (http://openconnecto.me/

Kasthurietal2014/), the 2D and 3D visualization, tracing, and

editing tools, many of which were developed specifically for

this project. Moreover, much of the analytic software developed

for this project is also available (http://openconnecto.me/

Kasthurietal2014/Code).

We analyzed the synapses of excitatory axons with dendritic

spines, the most plentiful synapses in the saturated volume to

learn if their connectivity could be predicted by simply knowing

the degree of physical overlap of axons and dendrites. This

idea underpins theoretical approaches to understanding the

brain (Braitenberg and Schuz, 1998; da Costa and Martin,

2013). Explaining synaptic connectivity by physical overlap is

an attractive idea because of the obviously laminated organiza-

tion of many regions of the brain including the cerebral cortex.

Evidence supports the idea that molecular cues guide inner-

vating terminal axon branches and perhaps postsynaptic den-

drites to particular regions where they can form synapses with

each other (Williams et al., 2010). It is thus possible that synaptic

specificity in the cortex is explained in large part by axon and

dendrite guidance mechanisms that put pre- and postsynaptic

elements in close proximity (i.e., the same layer or sub-layer). If

so, this would simplify the analysis of cortical connectivity and

support models based largely on areal projections of axons

and the classes of dendrites in their terminal fields. Such statis-

tical approaches potentially provide a way to model brains

without requiring knowing the exact details of every neuron’s

connections (Binzegger et al., 2004; Hill et al., 2012). This

concept, called Peters’ Rule, after Alan Peters (despite his insis-

tence that he disputes it—A. Peters, personal communication)

has been examined in retina and hippocampus. In retina some

data support the idea that, to at least some degree, the contacts

(probably synapses) between neurons can be accounted for by

their proximity, in support of Peters’ Rule (Kim et al., 2014). How-

ever even that work found the numbers of contacts were skewed

from what one would expect if proximity were the only factor

guiding contacts. In a different piece of work from the same serial

dataset the directional selectivity of individual amacrine den-

drites looked to be arranged in a way that was incompatible

with random contacts (Briggman et al., 2011). In hippocampus,

support for the idea that connectivity was not explicable simply

by proximity has also been obtained (Mishchenko et al., 2010;

Druckmann et al., 2014). The previous results do not explicitly

test the degree to which actual proximity of each individual

axon to all the postsynaptic sites in a volume explains the con-

nectivity patterns observed.

We therefore used the saturated reconstruction to identify

each place each excitatory axon comes within touching distance

to a dendritic spine. We discovered that each spine is closely

apposed by about nine different axons (of which typically only

one establishes a synapse). This means that one must use

some caution in light microscopy when claiming an axon and a

nearby dendritic spine are making synaptic contact. Our results

argue for the idea that cellular identity, and not proximity, guides

the connections between excitatory axons and dendritic spines.

The best predictor of whether an axonwould establish a synapse

with a particular dendrite was its synaptic connectivity with that

dendrite at other sites. An excitatory axon that established a

spine synapse with a dendrite, had a 40% probability of estab-

lishing another synapse on the same dendrite whereas excit-

atory axons that only came adjacent to, but did not innervate,

a dendrite’s spine had a 25-fold lower probability (�1.6%) of

establishing a synapse with that dendrite at another site. Thus

while physical overlap of axons and dendrites is necessary, it

is not sufficient to generate the pattern of synaptic connections

in this region of cerebral cortex, refuting Peters’ rule.

The abundance of multiple spine synapses of the same excit-

atory axon on the same dendrite suggests that the strength of

excitatory connections here, as elsewhere in the brain, is based

on the number of synapses between them and can range from

zero to a potentially large number. Changes in the number of

spine synapses between an axon and a dendrite could be down-

stream of short term alterations in synaptic efficacy (such as by

changes in neurotransmitter receptor number or spine shape

at individual synapses). In distinction to synaptic efficacy, such

numerical changes in connectivity may be longer lasting and

may be less reversible. Indeed, developmental synapse elimina-

tion in the peripheral nervous system occurs in this way: changes

in efficacy are followed by addition of new synaptic sites (Colman

et al., 1997). If comparable developmental processes of synapse

elimination and compensatory synapse addition that are known

to occur in the peripheral nervous system, and some parts of

the CNS (Hashimoto and Kano, 2005; Walsh and Lichtman,

2003), are also occurring in the cerebral cortex, then the pattern

of connectivity seen here might occur as a consequence of

similar activity-dependent mechanisms. In particular, if synapse

elimination removes some of the axonal input converging on a

pyramidal cell, then remaining inputs might locally sprout

to occupy vacated spines in much the same way remaining

motor axons takeover sites vacated by eliminated axons at
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the developing neuromuscular junction (Walsh and Lichtman,

2003; Turney and Lichtman, 2012). Saturated reconstructions

of neural circuits in younger cerebral cortex may therefore be

informative.

Finally, given the many challenges we encountered and those

that remain in doing saturated connectomics, we think it is fair

to question whether the results justify the effort expended.

Whatafter all havewegained fromall this highdensity reconstruc-

tion of such a small volume? In our view, aside from the realization

that connectivity is not going to be easy to explain by looking at

overlap of axons and dendrites (a central premise of the Human

Brain Project (Markram et al., 2012), we think that this ‘‘omics’’

effort lays bare the magnitude of the problem confronting neuro-

scientists who seek to understand the brain. Although technolo-

gies, such as the ones described in this paper, seek to provide

a more complete description of the complexity of a system,

they do not necessarily make understanding the system any

easier. Rather, this work challenges the notion that the only thing

that stands in theway of fundamental mechanistic insights is lack

of data. The numbers of different neurons interacting within each

miniscule portion of the cortex is greater than the total number of

different neurons inmany behaving animals. Somemay therefore

read this work as a cautionary tale that the task is impossible.

Our view is more sanguine; in the nascent field of connectomics

there is no reason to stop doing it until the results are boring.

EXPERIMENTAL PROCEDURES

A detailed description is available in the Supplemental Experimental

Procedures.

Data Acquisition

An anesthetized adult mouse was perfused transcardially with a fixative solu-

tion containing glutaraldehyde, paraformaldehyde, and CaCl2 in cacodylate

buffer. The brain was removed and maintained overnight at 4�C in the same

fixative solution. A 200-mm vibratome section encompassing part of the so-

matosensory cortex was then removed, washed, and stained with reduced

osmium tetroxide-thiocarbohydrazide (TCH)-osmium (‘‘ROTO’’) and infiltrated

with Epon (for details, see Tapia et al., 2012). The cured block was trimmed to a

2 3 3 mm rectangle and a depth of 200 mm and then readied for automated

serial sectioning. The automated, unattended collection of 29.4-nm serial

sections was accomplished using a custom tape collection device attached

to a commercial ultramicrotome (ATUM). The sections were collected on

plasma-treated polyamide (Kapton, Sheldahl) 8-mm-wide tape. The tape

was then cut into strips and attached to silicon wafers (Figure 1). The wafers

with sections were then coated with�10 nm of carbon to ensure conductivity.

An automated protocol to locate and image sections on the wafers was used

(Hayworth et al., 2014; see also Tomassy et al., 2014) with a Sigma scanning

electron microscope (Carl Zeiss), equipped with the ATLAS software (Fibics).

The serial section images were acquired using backscattered electron detec-

tion. Single images using secondary electron detection were acquired using

the FEI Magellan thru-the-lens detector or the Zeiss MultiSEM 505. Sections

collected on carbon-coated Kapton were required for secondary electron

detection.

For the medium- and high-resolution data sets, alignment was accom-

plished by affine image transformations using custom Matlab scripts. The

high-resolution image stack (1,850 images) was aligned using a single affine

transformation per image. The aligned images were then manually segmented

using a custom Direct3D-based Windows volume annotation and segmenta-

tion tool (VAST; http://openconnecto.me/Kasthurietal2014/Code/VAST). The

segmented images and metadata were processed for data analysis with

Matlab scripts and 3D rendering withMatlab scripts for computation of surface

meshes and 3 dsMax (Autodesk) for the rendering steps. We also developed

RhoANA, a processing pipeline, to generate automatic segmentations, and

Mojo, a proofreading tool. All code is open source and available online at

http://www.rhoana.org/. In order to scale to large data sets, we designed

the processing pipeline to run on a computer cluster.

Data Analysis

Excitatory (E) and inhibitory (I) synapses were classified according to estab-

lished criteria (Peters et al., 1991). If a particular synapse was ambiguous,

additional synapses of the same axon were found and analyzed until a clear

assignment could bemade. In any section synaptic vesicles were only counted

that showed a clear center, and this is an accuratemeasure of the total number

of vesicles (Figure S4). We utilized the Open Connectome Project, which

has developed the Reusable Annotation Markup for Open coNnectomics

(RAMON), a spatial database to store large-scale images and co-registered

annotation datasets (Burns et al., 2013). To assess whether the observed num-

ber of ‘‘redundant’’ synapses (defined as the number of synapses in excess

of one that an axon and dendrite ‘‘share’’), we used Monte Carlo reassignment

of the synapses (the Sudoku algorithm) among all the close contacts each

axon established with dendritic spines described in detail in the Supplemental

Experimental Procedures. To estimate the numberof objectswithin the cylinder

that are likely to be branches of the same axon, we used a set of cortical axon

skeletons available at the NeuroMorpho web site (Ascoli et al., 2007) and a

Monte Carlo simulation in which the cylinder is randomly translated so that at

least one branch overlaps, and we count the number of times a second branch

is also in the cylinder. To assess the similarity of pairs of synapses made by the

same axon on the same dendrite, we select all the pairs of synapses shared

by the same axon and same dendrite (SASD) from the spreadsheet in Table

S1 and use the values of five morphological metrics for statistical analysis.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

7 figures, 1 table, and 14 movies and can be found with this article online at

http://dx.doi.org/10.1016/j.cell.2015.06.054.
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SUMMARY

Genetic screens are powerful tools for identifying
genes responsible for diverse phenotypes. Here we
describe a genome-wide CRISPR/Cas9-mediated
loss-of-function screen in tumor growth and metas-
tasis. We mutagenized a non-metastatic mouse can-
cer cell line using a genome-scale library with 67,405
single-guide RNAs (sgRNAs). The mutant cell pool
rapidly generates metastases when transplanted
into immunocompromised mice. Enriched sgRNAs
in lung metastases and late-stage primary tumors
were found to target a small set of genes, suggesting
that specific loss-of-function mutations drive tumor
growth and metastasis. Individual sgRNAs and a
small pool of 624 sgRNAs targeting the top-scoring
genes from the primary screen dramatically accel-
erate metastasis. In all of these experiments, the ef-
fect of mutations on primary tumor growth positively
correlates with the development of metastases. Our
study demonstrates Cas9-based screening as a
robust method to systematically assay gene pheno-
types in cancer evolution in vivo.

INTRODUCTION

Cancer genomes have complex landscapes of mutations and

diverse types of genetic aberrations (Lawrence et al., 2013;

Weinberg, 2007). A major challenge in understanding the cancer

genome is to disentangle alterations that are driving the pro-

cesses of tumor evolution from passenger mutations (Garraway

and Lander, 2013). Primary tumor growth and metastasis are

distinct yet linked processes in the progression of solid tumors

(Nguyen et al., 2009; Valastyan andWeinberg, 2011; Vanharanta

and Massagué, 2013). It has been observed in the clinic that the

probability of detecting metastases in a patient correlates posi-

tively with the size of a primary tumor (Heimann and Hellman,

1998). Several possible explanations have been suggested: met-

astatic properties may only be acquired in late-stage tumors,

larger tumors may seed proportionally more cells into circulation

that eventually migrate to other sites, or cells with a strong ability

to proliferate may also have enhanced ability to metastasize

(Weinberg, 2007). In early studies using random insertional

mutagenesis, it was observed that metastatic cell subpopula-

tions overgrow to complete dominance in the primary tumor,

suggesting progressive selection at both sites (Korczak et al.,

1988; Waghorne et al., 1988).

Genetic screens are powerful tools for assaying phenotypes

and identifying causal genes in various hallmarks of cancer pro-

gression (Hanahan andWeinberg, 2011). RNAi and overexpres-

sion of open reading frames (ORFs) have been utilized for

screening cancer genes in several models of oncogenesis in

mice (Schramek et al., 2014; Shao et al., 2014; Zender et al.,

2008). Recently, the Cas9 nuclease (Barrangou et al., 2007; Bo-

lotin et al., 2005; Chylinski et al., 2013, 2014; Deltcheva et al.,

2011; Garneau et al., 2010; Gasiunas et al., 2012; Jinek et al.,

2012; Sapranauskas et al., 2011) from the microbial type II

CRISPR (clustered regularly interspaced short palindromic re-

peats) system has been harnessed to facilitate loss-of-function

mutations in eukaryotic cells (Cong et al., 2013; Mali et al.,

2013). When the Cas9 nuclease is targeted to specific locations

in the genome, DNA cleavage results in double-stranded

breaks (DSBs), which are repaired via non-homologous end-

joining (NHEJ) (Rouet et al., 1994). NHEJ repair results in inser-

tion or deletion (indel) mutations that can cause loss of function

if the DSB occurs in a coding exon. The Cas9 nuclease can be

guided to its DNA target by a single-guide RNA (sgRNA) (Jinek

et al., 2012), a synthetic fusion between the CRISPR RNA

(crRNA) and trans-activating crRNA (tracrRNA) (Deltcheva

et al., 2011). In cells, Cas9-mediated gene disruption requires

the full-length tracrRNA (Cong et al., 2013; Mali et al., 2013),

in which secondary structures at the 30 end of tracrRNA are
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critical for Cas9-mediated genome modification (Cong et al.,

2013; Hsu et al., 2013).

Screens utilizing Cas9 have identified genes that are essential

for cell survival and genes involved in drug resistance in various

cell lines (Shalem et al., 2014; Wang et al., 2014; Koike-Yusa et

al., 2014; Zhou et al., 2014). In vivo pooled screens are chal-

lenging due to many factors, such as the complexity of the

library, limitations of virus delivery and/or cell transplantation,

uniformity of viral transduction at a low MOI, and the complex

dynamics and interactions of cells in animals. In this study, we

report a genome-wide Cas9 knockout screen in a mouse model

of tumor evolution. This screen provides a systematic pheno-

typic measurement of loss-of-function mutations in primary tu-

mor growth and metastasis.

RESULTS

CRISPR/Cas9 Library-Mediated Mutagenesis
Promotes Metastasis
We derived and cloned a cell line (Chen et al., 2014) from a

mouse non-small-cell lung cancer (NSCLC) (Kumar et al.,

2009). This cell line possesses an oncogenic Kras in conjunction

with homozygous p53 and heterozygous Dicer1 loss of function

(Kras(( G12D/+;p53�/�;Dicer1+/�, denoted KPD) and is capable of

inducing tumors when transplanted into immunocompromised

mice (Chen et al., 2014; Kumar et al., 2009). We transduced

this cell line with a lentivirus carrying a Cas9 transgene fused

to a GFP and generated clonal cell lines (Cas9-GFP KPD) (Exper-

imental Procedures) (Figures S1A and S1B). A clonal Cas9-GFP

KPD cell line (clone 5) was selected to provide genetic and

cellular homogeneity for subsequent screens.

We utilized a pooled genome-wide mouse sgRNA library

(termed mouse genome-scale CRISPR knockout library A, or

mGeCKOa) containing 67,405 sgRNAs targeting 20,611 pro-

tein-coding genes and 1,175 microRNA precursors in the mouse

genome (Sanjana et al., 2014). The library also contains 1,000

control sgRNAs (termed non-targeting sgRNAs) designed to

have minimal homology to sequences in the mouse genome

(Sanjana et al., 2014; Shalem et al., 2014). We transduced the

Cas9-GFP KPD cell line with the mGeCKOa library in three inde-

pendent infection replicate experiments; for each replicate, the

library representation (cells per lentiviral CRISPR construct)

was greater than 4003 (Figure 1A) (Experimental Procedures).

After in vitro culture for 1 week, we subcutaneously trans-

planted 3 3 107 cells into the flanks of immunocompromised

Nu/Nu mice (Figure 1A). We transplanted the cells from each

infection replicate into four mice, using one mouse for early

tumor sequencing and three mice for sequencing of late-stage

primary tumor and metastases (Figure 1A). Both mGeCKOa-

transduced and untransduced Cas9-GFP KPD cells formed tu-

mors at the injection site (Figure 1B). Like most subcutaneously

transplanted tumors, these tumors were poorly differentiated.

The primary tumors induced by mGeCKOa-transduced cells

grew slightly faster than tumors from the untransduced cells at

an early stage (Figure 1C) (2 weeks post-transplantation) (paired

two-tailed t test, p = 0.05), but at late stages all tumors were

similar in size (paired two-tailed t test, p = 0.18 for data at

4 weeks, p = 0.6 for data at 6 weeks) (Figure 1C).

At 6 weeks post-transplantation, we imaged the mice using

micro-computed tomography (mCT) and found tumors in the

lungs of the mice transplanted with mGeCKOa-transduced

Cas9-GFPKPD cells (mGeCKOamice), but not in themice trans-

planted with untransduced Cas9-GFP KPD cells (control mice)

(Figure 1D, Figure S1C). Mice were sacrificed and examined

for metastases in various organs. Under a fluorescent stereo-

scope at 63 magnification, metastases were visually detected

in the lung in 89% (8/9) of the mGeCKOa mice (Figure S1D).

The mGeCKOa mice on average had 80% of their lung lobes

positive for metastases (Figure 1E). In contrast, none (0/3) of

the control mice developed detectable metastases in the lung

(Figure 1E). At this time, metastases were not detected in the

liver, kidney, or spleen in either group (Figure 1F). These data

indicated that mGeCKOa library transduction enhanced the abil-

ity of the Cas9-GFP KPD cells to form metastases in the lung.

Dynamic Evolution of sgRNA Library Representation
during Tumor Growth and Metastasis
To investigate the sgRNA representation through different stages

of tumor evolution and to identify genes where loss of function

confers a proliferative or metastatic phenotype, we used deep

sequencing to readout the sgRNA representation (see Data S1

in Dataset S1). At 6 weeks post transplantation, we sequenced

the late-stage primary tumor and three random lobes from the

lung of each of the ninemGeCKOamice (Figure 1A) (Experimental

Procedures). In parallel, we also sequenced the mGeCKOa input

plasmid library, the pre-transplantation mGeCKOa-transduced

Cas9-GFP KPD cells (cultured in vitro for 7 days after trans-

duction), and early-stage primary tumors (2 weeks post trans-

plantation, one mouse from each infection replicate). In the cell

samples, the sgRNA representations showed high concordance

between technical replicates (correlation, r = 0.95 on average,

n = 3) and biological infection replicates (correlation, r = 0.84

on average, n = 3) (Figures 2A, S2A, S2B, and S2E). The sgRNA

representation of cell samples correlates highly with the plasmid

representation (correlation, r = 0.93 on average, n = 3) (Figures

2A, S2C, and S2E). Furthermore, different sgRNAs that target

the samegene are correlated in termsof rank change (correlation,

r = 0.49 on average, n = 3) (Figure S2D). Using gene set enrich-

ment analysis (GSEA), we found that the sgRNAs with signifi-

cantly decreased abundance in cells compared to plasmid are

enriched for genes involved in fundamental cellular processes,

such as ribosomal proteins, translation factors, RNA splicing fac-

tors, andRNA processing factors, indicating selection against the

loss of these genes after 1 week in culture (Figure S2F).

To investigate the sgRNA library dynamics in different sample

types (plasmid, pre-transplantation cells, early primary tumor,

late primary tumor, and lung metastases), we compared the

overall distributions of sgRNAs from all samples sequenced.

Cell samples clustered tightly with each other and the plasmid,

forming a cell-plasmid clade (Figures 2A and S2E). Early primary

tumor samples also clustered with each other and then with the

cell-plasmid clade, whereas late tumors and lung metastases

clustered together in a distinct group (Figures 2A and S2E).

The overlap of detected sgRNAs between different pre-trans-

plantation infection replicates is over 95% (Figure S3A). The de-

tected sgRNAs in the three infection replicates of early tumor
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samples overlap 63%–76% with each other (Figure S3B). Early

primary tumors retained less than half (32%–49%) of the sgRNAs

found in the transplanted cell populations (Figures 2B, 2C, S3C,

and S3D). Compared to the cell populations, sgRNAs whose

targets are genes involved in fundamental cellular processes

are further depleted in early tumors (Table S1).

Interestingly, only a small fraction of sgRNAs (less than 4% of

all sgRNAs, or less than 8% of sgRNAs in the early primary tumor

of the corresponding replicate) were detected in the late-stage

primary tumor samples (Figures 2B, 2C, S3C, and S3D). The

sgRNA diversity (i.e., number of different sgRNAs detected)

further decreased in samples from lung metastases (Figures

2B, 2C, S3C, and S3D). The lung samples retained %0.4% of

all sgRNAs in the mGeCKOa library, or%1.1% of sgRNAs found

in the early primary tumor of the corresponding replicate, with a

subset of highly enriched sgRNAs (Figures 2B, 2C, S3C, and

S3D). The global patterns of sgRNAdistributions in different sam-

ple types are distinct, as is evident in the strong shifts in the

respective cumulative distribution functions (Kolmogorov-Smir-

nov [KS] test, p < 10�15 for all pairwise comparisons) (Figure 2D).

Enriched sgRNAs in Primary Tumors
Late primary tumors retain few sgRNAs (on average 813 ± 264

sgRNAs, n = 9 mice), with even fewer at high frequencies

A

B

E

Figure 1. Tumor Growth and Metastasis in Transplanted Cas9-GFP KPD Cells with mGeCKOa Library
(A) Schematic representation of the loss-of-function metastasis screen using the mouse genome-scale CRISPR/Cas9 knockout library (mGeCKOa).

(B) Representative H&E stains of primary tumor from Nu/Numice subcutaneously transplanted with a Cas9-GFP KrasG12D/+;p53�/�;Dicer1+/� (KPD) NSCLC cell

line that was either untransduced or transduced with the mGeCKOa lentiviral library. Scale bar, 200 mm.

(C) Primary tumor growth curve ofNu/Numice transplantedwith untransduced cells (n = 3mice) ormGeCKOa-transduced Cas9-GFPKPD cells (n = 9mice). Error

bars indicate SEM.

(D) MicroCT 3D reconstruction of the lungs of representative mice transplanted with control (untransduced) and mGeCKOa-transduced (mGeCKOa) cell pools.

Lung metastases were identified and traced in each 2D section (green).

(E) Percent of lobes with metastases visible after dissection under a fluorescence stereoscope in Nu/Nu mice transplanted with untransduced Cas9-GFP KPD

cells (n = 3 mice) or mGeCKOa-transduced Cas9-GFP KPD cells with three independent infection replicate experiments (1, 2, and 3; n = 3 mice per replicate).

Error bars indicate SEM.

(F) Representative H&E stains from various organs of Nu/Nu mice subcutaneously transplanted with untransduced and mGeCKOa-transduced Cas9-GFP KPD

cells. Yellow arrow indicates a lung metastasis. Scale bar, 40 mm.

See also Figure S1.
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(4 ± 1 sgRNAs with >5% of total reads) in each mouse (Figures

2B, 2C, S2C, S2D, 3A, and S4H). We used three methods to

identify enriched sgRNAs in late primary tumors: (1) sgRNAs

above a certain threshold, (2) top-ranked sgRNAs in the tumor

of each mouse, and (3) using false discovery rate (FDR), i.e.,

sgRNAs enriched compared to the distribution of the 1,000

non-targeting sgRNAs. All three methods generated similar re-

sults (Figure S4A). Taking the results from (3) as an example, a

total of 935 sgRNAs (targeting 909 genes) are enriched over

the non-targeting controls (FDR cutoff = 0.2%) in the late primary

tumor of one or more mice (Figures 3B and 3C). These sgRNAs

are targeting genes highly enriched in apoptosis pathways (Table

S2), with many of them being pro-apoptotic, such as BH3 inter-

acting-domain death agonist (Bid(( ), phosphatase and tensin ho-dd

molog (Pten(( ), cyclin-dependent kinase inhibitor 2a (Cdkn2a),

and O-6-methylguanine-DNA methyltransferase (Mgmt(( ),tt sug-

gesting strong selection for mutations that inactivate apoptosis

in primary tumor cells.

We identified 24 candidate genes that were targeted by two or

more independent sgRNAs enriched in late primary tumors

A

C D

B

Figure 2. Representation of mGeCKOa Library at Different Stages of Tumor Growth and Metastasis

(A) Pearson correlation coefficient of the normalized sgRNA read counts from the mGeCKOa plasmid library, transduced cells before transplantation (day 7 after

spinfection), early primary tumors (�2 weeks after transplantation), late primary tumors (�6 weeks after transplantation), and lung metastases (�6 weeks after

transplantation). For each biological sample type, three independent infection replicates (R1, R2, and R3) are shown. n = 1 mouse per infection replicate for early

primary tumors; n = 3 mice per infection replicate for late primary tumors and lung samples.

(B) Number of unique sgRNAs in the plasmid, cells before transplantation, early and late primary tumors, and lung metastases as in (A). Error bars for late primary

tumors and lung metastases denote SEM for n = 3 mice per infection replicate.

(C) Boxplot of the sgRNA normalized read counts for the mGeCKOa plasmid pool, cells before transplantation, early and late primary tumors, and lung me-

tastases as in (A). Outliers are shown as colored dots for each respective sample. Gray dots overlaid on each boxplot indicate read counts for the 1,000 control

(non-targeting) sgRNAs in the mGeCKOa library. Distributions for late primary tumors and lung metastases are averaged across individual mice from the same

infection replication.

(D) Cumulative probability distribution of library sgRNAs in the plasmid, cells before transplantation, early and late primary tumors, and lung metastases as in (A).

Distributions for each sample type are averaged across individual mice and infection replications.

See also Figures S2 and S3.
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(Figures 3B and 3C). These genes were found to be mutated in

patients in many previously reported cancer sequencing studies

curated by cBioPortal (Cerami et al., 2012; Gao et al., 2013) (Fig-

ure S5A). For example, in somatic mutations identified by The

Cancer Genome Atlas (TCGA) for NSCLC, including adenocarci-

noma (LUAD) (Cancer Genome Atlas Research Network, 2014)

and lung squamous cell carcinoma (LUSC) (Cancer Genome

Atlas Research Network, 2012), 36% (107/407) of patients

have one or more of these 24 genes mutated (Figures S5B and

S5C). Several candidates were well-known tumor suppressors,

such as Pten, cyclin-dependent kinase inhibitor 2b (Cdkn2b),

neurofibromin 2 (Nf2(( /Merlin// ), alpha-type platelet-derived growth

factor receptor (Pdgfra(( ), and integrin alpha X (Itgax(( ).xx

Enriched sgRNAs in Metastases
Wealso sequenced the sgRNAdistributions from three lung lobes

for each mouse transplanted with mGeCKOa-transduced

Cas9-GFP KPD cells. In each lobe, the sgRNA representation is

dominated by one or a few sgRNAs (Figures 4A, S3D, and S4I).

In each mouse, the lung sgRNA representation (average of

A

B C

Figure 3. Enriched sgRNAs from the mGeCKOa Screen in Primary Tumors

(A) Pie charts of the most abundant sgRNAs in the primary tumors (at �6 weeks post-transplantation) of three representative mice (one from each replicate

mGeCKOa infection). The area for each sgRNA corresponds to the fraction of total reads from the primary tumor for the sgRNA. All sgRNAs with R2% of total

reads are plotted individually.

(B) Number of genes with 0, 1, 2, or 3 significantly enriched (FDR < 0.2% for at least onemouse) mGeCKOa sgRNAs targeting that gene. For genes/miRs with 2 or

more enriched sgRNAs, genes/miRs are categorized by howmany sgRNAs targeting that gene/miR are enriched as indicated in the colored bubbles adjacent to

each bar.

(C) Inset: waterfall plot of sgRNAs where multiple sgRNAs targeting the same gene are significantly enriched in primary tumors. Each sgRNA is ranked by the

percent of mice in which it is enriched. Only sgRNAs enriched in two or more mice are shown in the main panel. Main panel: enlargement and gene labels for

sgRNAs at the top of the list from the inset (boxed region).

See also Figures S3, S4, and S5.

1250 Cell 160, 1246–1260, March 12, 2015 ª2015 Elsevier Inc.



normalized sgRNA representations from three lobes) is also domi-

nated by a small number of sgRNAs (on average, 3.4 ± 0.4

sgRNAs with >5% of total reads) (Figure 4B), suggesting that me-

tastases were seeded by a small set of cells, which grew to domi-

nance over this timescale. Non-targeting sgRNAswere occasion-

ally detected in the metastases but were never observed at high

frequency (<0.1% of total reads in any lobe; Figures 2C, 4A and

4B, and S4I). These observations are consistent with our finding

that untransduced tumors are notmetastatic (Figure 1E), suggest-

ing that specific sgRNA-mediated mutations led to metastasis.

The sgRNA representations in the lung metastases are similar

to those in the late-stage primary tumors in several ways. First,

the detected sgRNAs in lung samples overlap significantly with

those in late tumor samples (chi-square test, p < 10�15) (Fig-

ure S3E). Second, the number of sgRNAs detected in lung sam-

ples correlates, albeit weakly, with the number of sgRNAs

detected in late primary tumor samples (r = 0.42, F test, p =

0.097) (Figure S3F). Third, the abundance (number of reads) of

sgRNAs in the lung correlates positively with that in the late

primary tumors of the same mouse (correlation, r = 0.18 on

average, F test, p < 0.01, n = 9) (Figure S3G). Fourth, in most

mice (8/9), the lung metastasis enriched sgRNAs also occupy a

large fraction of reads in the late primary tumor of the same

mouse (Figure 4C, left panel), significantly larger than a random

sampling of the same number of sgRNAs from the mGeCKOa li-

brary (Figure 4C, right panel). These data indicate that mutants

with preferential ability to proliferate in late primary tumors are

more likely to dominate the metastases.

The three methods (threshold, rank, or FDR) of finding en-

riched sgRNAs in the lung metastases yield similar results (Fig-

ure S4B). Using the non-targeting sgRNA distribution to set a

FDR-based cutoff for enrichment, the enriched sgRNAs in

different lobes of the same mouse overlap with each other by

62% ± 5% (chi-square test, p < 10�15) (Figure S4C), while

different mice show greater variability while still overlapping

significantly (29% ± 3%, chi-square test, p < 10�15) (Figure S4D).

The overlap between sgRNAs in different biological/infection

replicate experiments when pooling enriched sgRNAs from all

mice in the same replicate is 54% (chi-square test, p < 10�15)

(Figure S4E), suggesting that pooling sgRNAs from mice in the

same experiment facilitates the identification of shared hits.

These data suggest that the three independent experiments

reproducibly captured a common set of hits and provide a pic-

ture for in vivo experimental variation between different lobes,

different animals, and different infection replicates.

We found 147 sgRNAs enriched in more than one lobe, and

105 sgRNAs enriched in the lung of more than one mouse (Fig-

ures 4D and 4E). These include sgRNAs targeting Nf2, Pten,

tripartite motif-containing protein 72 (Trim72), fibrinogen alpha

chain (Fga(( ), Bid, cyclin-dependent kinase inhibitor 2a (Cdkn2a),

zinc finger FYVE domain-containing 28 (Zfyve28(( ), reproductive

homeobox 13 (Rhox13(( ), and BRISC and BRCA1 A complex

member 1 (Babam1(( ), as well as microRNA genes miR-152 and

miR-345. Intriguingly, a few sgRNAs targeting the Pol II subunits

and olfactory receptor are also enriched in the lung, possibly due

to off-target effects or unknown roles of these genes. For most

sgRNAs detected in lung metastases, the relative abundance

in metastases is lower than that in the late primary tumor of the

same mouse, with a metastasis-primary ratio (MPR) less than 1

(Figure S4F), likely due to more skewed distributions of sgRNAs

in the metastases compared to those in the late primary tumors.

A small subset of sgRNAs, however, are more abundant in me-

tastases than in primary tumors (MPR > 1) in multiple mice,

e.g., sgRNAs targeting Nf2, Trim72, prostaglandin E synthase 2

(Ptges2(( ), or ubiquitin-conjugating enzyme E2G 2 (Ube2g2)

(Figure 4F).

For four genes, Nf2, Pten, Trim72, and Zfyve28, two indepen-

dent sgRNAs targeting different regions of the same gene were

enriched in lung metastases (Figure 4G). One of the Zfyve28-tar-

geting sgRNAs, however, is enriched in only one mouse,

whereas Nf2, Pten, and Trim72 all have two sgRNAs enriched

in multiple mice (Figure 4H). These three genes, several repre-

sentative genes with one frequently enriched sgRNA (Cdkn2a,

Fga, and Cryba4), and the two top-scoring microRNAs (miR-((

152 and miR-345) were chosen to assay individually for primary

tumor growth and metastases formation.

Validation In Vivo Using Individual sgRNAs
For these eight genes (Nf2(( , Pten, Trim72, Cdkn2a, Fga, Cryba4,

miR-152, and miR-345), we cloned multiple sgRNAs targeting

each of them into the lentiGuide-Puro vector and transduced

them into the Cas9-GFP KPD cell line (Figure 5A) (Experimental

Procedures). As expected, these sgRNAs generated a broad

distribution of NHEJ-mediated indels at the target site when

examined 3 days post-transduction, with a bias toward deletions

(Figure 5B). For protein-coding genes, the majority (>80%) of in-

dels are out of frame, which potentially disrupts the protein func-

tions. For miR-152 and miR-345, the sgRNAs generated mostly

deletions (>90% of indels are deletions, average indel size –7 bp)

(Figure 5B), overlapping with the loop or mature microRNA se-

quences in the hairpins, which are structures required for matu-

ration of microRNAs. For proteins where specific antibodies are

available (Nf2 and Pten), we found that the majority of the protein

products were significantly reduced 1 week after lentiviral

sgRNA infection (Figure S6A).

When these single-sgRNA-transduced cells were trans-

planted into the flanks of immunocompromised mice, they all

formed tumors in situ. With two mice injected per sgRNA and

three sgRNAs per gene, all genes tested showed increased

lung metastasis formation compared to controls (untransduced

and non-targeting sgRNAs), with the most significant ones being

Nf2, Pten, and Cdkn2a (Fisher’s exact test, one-tailed, p < 10�3)

(Figures 5C and 5D). Fga and Trim72 also have effects onmetas-

tasis acceleration (Fga(( p = 0.001, Trim72 p = 0.046). Cryba4 is

not statistically different from controls (p = 0.1). sgRNAs target-

ingmiR-345 ormiR-152 significantly increased the rate ofmetas-

tasis (miR-345(( p = 0.01,miR-152 p = 0.046). These data suggest

that loss-of-function mutations in any of Nf2, Pten, Cdkn2a,

Trim72, Fga, miR345, or miR-152 are sufficient to accelerate

the rate of metastasis formation in this genetic background.

Most genes targeted by single sgRNAs also contributed to

accelerated primary tumor growth compared to controls (Fig-

ure 5E). Nf2 and Pten loss of function dramatically speed up tu-

mor growth (KS test, p < 0.001) (Figure 5E); Cdkn2a-, Trim72-,

and Fga-targeting sgRNAs slightly accelerate primary tumor

growth (KS test, p = 0.003–0.01); Cryba4 has a marginal effect
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Figure 4. Enriched sgRNAs from the mGeCKOa Screen in Lung Metastases
(A) Pie charts of the most abundant sgRNAs in three individual lobes of the lungs of two representative mice transplanted with mGeCKOa-transduced cells. The

area for each sgRNA corresponds to the fraction of total reads from the lobe for the sgRNA. All sgRNAs with R2% of total reads are plotted individually.

(B) Pie charts of the most abundant sgRNAs in the lung (averaged across three individual lobes) for the two mice shown in (A). All sgRNAs withR2% of average

reads are plotted individually.

(C) Left: percentage of late tumor reads for the significantly enriched (FDR < 0.2%) mGeCKOa sgRNAs found in the lung metastases (averaged across three

dissected lobes). Right: in purple, the percentage of late tumor reads for the significantly enriched (FDR < 0.2%) mGeCKOa sgRNAs found in the lungmetastases

(average across all mice, n = 9mice). In gray, the percentage of late tumor reads for random, size-matched samplings of sgRNAs present in the late tumor (n = 100

samplings). Error bars indicate SD.

(legend continued on next page)
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(KS test, p = 0.08); and neither miR-152- nor miR-345-targeting

sgRNAs promote primary tumor growth (KS test, p > 0.1). Over-

all, for the targets we examined using individual sgRNAs, the

number of lobes with lung metastases strongly correlates with

the terminal volume of the late primary tumor (or average primary

tumor growth rate) (correlation, r = 0.83, F test, p < 0.01) (Fig-

ure 5F), indicating at a single-gene level that mutant cells with

a stronger ability to promote primary tumor growth generate me-

tastases faster.

To analyze blood samples for the presence of circulating tu-

mor cells (CTCs), we designed a microfluidic device based on

the physical size of the Cas9-GFP KPD cells (Figures S6B and

S6C). We performed CTC capture with terminal blood samples

from mice injected with Cas9-GFP KPD cells transduced with

sgRNAs targeting Nf2, Pten, Trim72, Cdkn2a, and miR-152

and from mice injected with Cas9-GFP KPD control cells (un-

transduced or non-targeting sgRNA) (Figures S6C and S6D).

Mice transplanted with cells transduced with sgRNAs targeting

Nf2, Pten, Trim72, or Cdkn2a had a higher concentration of

CTCs as compared to controls (Figures S6D–S6G), consistent

with the higher rate of lung metastasis formation.

Competitive Dynamics of Top Hits Assessed Using
an sgRNA Minipool
To better understand the relative metastatic potential of multiple

genes from our genome-wide screen, we designed a targeted

pooled screen with a smaller library. This small library (termed

validation minipool) contains 524 sgRNAs targeting 53 genes

that had highly enriched sgRNAs in lung metastases in the

genome-wide screen (ten sgRNAs per gene for most genes)

plus 100 non-targeting sgRNAs.We also created a size-matched

library containing 624 non-targeting sgRNAs (termed control

minipool) (Figure 6A). Lentiviruses from these two pools were

used to transduce the Cas9-GFP KPD cells, which were cultured

in vitro for 1 week and then transplanted into Nu/Nu mice (Fig-

ure 6A). Both validation minipool- and control minipool-trans-

duced cells induced primary tumor growth at a similar rate

(Figure 6B). However, mice transplanted with validation minipool

cells had a dramatically elevated rate of lung metastasis forma-

tion (Figure 6C).

We sequenced the validation minipool plasmid library and the

transduced cells pre-transplantation, as well as the late-stage

primary tumors and whole lungs of the mice at 5 weeks post-

transplantation (see Data S2 in Dataset S1). The sgRNA repre-

sentations correlate strongly between technical replicates of

the transduced cell pool, late primary tumors, and lung metasta-

ses (Figures S7A and S7D). The sgRNA representation in the cell

sample strongly correlatedwith the plasmid (correlation, r = 0.91)

(Figures S7B and S7D). Almost all (99.4%) sgRNAs were recov-

ered in the plasmid and the cell population (Figure S7C). The

late primary tumors retained less than half of the sgRNAs, and

the metastases in the whole lung retained only a small fraction

(2%–7%) of all sgRNAs (Figure S7C). Enriched sgRNAs from

lung metastases clustered with each other and with late primary

tumors (Figure S7D). Similar to the genome-wide library, in this

validationminipool, the plasmid and cell samples had a unimodal

distribution of sgRNAs, whereas the late primary tumors and lung

metastases contained a bimodal distribution, with the majority of

sgRNAs being absent and a small fraction spanning a large range

of non-zero read counts (Figure 6D). Intriguingly, two mice re-

tained relatively high sgRNA diversity in late primary tumors (Fig-

ure 6D), likely due to dormant or slowly proliferating cells that

remained in low numbers during tumor growth. Similar to the

genome-wide library, large shifts in the sgRNA distribution exist

between different sample types (KS test, p < 10�15 for pairwise

comparisons between the cell, primary tumor, and lung metasta-

ses, p = 0.02 between plasmid and cell) (Figure 6E).

In the validation minipool, the sgRNAs detected in the late

primary tumors or the lungs of five different mice significantly

overlap with each other (Figures S7E and S7F). The late primary

tumors and lung metastases are dominated by a few sgRNAs

(Figures 7A and S7G–S7I), suggesting that these sgRNAs

outcompete others during tumor growth and metastasis. With

the validation library, the sgRNA representations are highly

correlated between late primary tumors and lung metastases

(correlation, r = 0.55 on average, F test, p < 0.01, n = 5) (Fig-

ure 7B). The late primary tumors and lung metastases have

dozens of sgRNAs at moderate to high frequencies (Figures 7B

and 7C). Several genes have multiple independent sgRNAs

that are enriched in the lung over the primary tumor (MPR > 1),

such as Nf2 (eight sgRNAs), Pten (four sgRNAs), Trim72 (three

sgRNAs), Ube2g2 (three sgRNAs), Ptges2 (two sgRNAs), and

ATP-dependent DNA ligase IV (Lig4(( ) (two sgRNAs) (Figures 7C

and 7D). Two Cdkn2a sgRNAs were present in both late primary

tumors and lungmetastases in twomice, but withMPR< 1. Fga-,

Cryba4-, miR-152-, and miR-345-targeting sgRNAs were not

found at high frequency in either late primary tumors or lung

metastases, suggesting that they are outcompeted by other

loss-of-function mutations (such as Nf2), which agrees with the

relatively reduced metastasis formation of these genes in the

(D) Inset: all sgRNAs found in individual lung lobes, ordered by the percent of lobes inwhich a particular sgRNAwas among the significantly enriched (FDR < 0.2%)

sgRNAs for that lobe. Only sgRNAs enriched in two or more lobes are shown. Main panel: enlargement and gene labels for sgRNAs at the top of the list from the

inset (boxed region).

(E) Inset: all sgRNAs found in individual mice (averaged across three dissected lobes), ordered by the percent of mice in which a particular sgRNAwas among the

significantly enriched (FDR < 0.2%) sgRNAs for that mouse. Only sgRNAs enriched in two or more mice are shown. Main panel: enlargement and gene labels for

sgRNAs at the top of the list from the inset (boxed region).

(F) Bottom:metastasis primary ratio (MPR) for the sgRNAs inmGeCKOawith enrichment inmetastases over late tumors (MPR > 1) observed in at least threemice.

The sgRNAs are sorted by the number of mice in which the MPR for the sgRNA is greater than 1. Top: number of mice in which the MPR for this sgRNA is greater

than 1. In both panels, individual sgRNAs are labeled by gene target.

(G) Number of genes with 0, 1, 2, or 3 significantly enriched (FDR < 0.2% for at least one mouse) mGeCKOa sgRNAs in the lung metastases. For genes with 2

enriched sgRNAs, gene names are indicated in the colored bubble adjacent to the bar.

(H) Number of mice and percentage of mice in which each sgRNA was enriched in the lung metastases for all genes with multiple enriched sgRNAs.

See also Figures S4 and S5.
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Figure 5. Validation of Target Genes and MicroRNAs from mGeCKOa Screen Using Individual sgRNAs

(A) Schematic representation of lentiviral transduction of Cas9-GFP KPD cells with single sgRNAs designed to target one gene or miR. After puromycin selection,

the cell population was transplanted into Nu/Numice and also deep sequenced to examine the distribution of indels at the target site. After 5 weeks, the primary

tumor and lungs were examined.

(B) Histograms of indel sizes at the genomic locus targeted by a representative sgRNA for each gene/miR after 3 days of puromycin selection. Indels from sgRNAs

targeting the same gene were pooled (6 sgRNAs for each protein-coding gene; 4 sgRNAs for each miR).

(C) Representative H&E staining of lung lobes from uninjected mice (n = 3 mice), mice transplanted with cells transduced with Cas9 only (n = 5), and mice

transplanted with cells containing Cas9 and a single sgRNA (n = 6). Single sgRNAs are either control/non-targeting sgRNAs (n = 6 mice for control sgRNAs, 3

distinct control sgRNAs with 2 mice each) or targeting sgRNAs (n = 6 mice for each gene/miR target, 3 sgRNAs per target with 2 mice each). Blue arrows indicate

lung metastases. Scale bar, 10 mm.

(D) Percent of lung lobes with metastases after 6 weeks for the mice in (C). Error bars indicate SEM.

(E) Primary tumor growth curve ofNu/Numice transplanted with NSCLC cells transduced with Cas9 only (n = 5) or single sgRNAs (n = 6mice per gene/miR target,

3 sgRNAs per target with 2 mice each; n = 6 mice for control sgRNAs, 3 control sgRNAs with 2 mice each). Error bars indicate SEM.

(F) Correlation between primary tumor volume and percent of lobes with metastases for each gene in (D) and (E). Error bars indicate SEM.

See also Figure S6.
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individual sgRNA validation. These results further validate

several of the top hits from the primary screen, using either

sgRNA dominance (e.g., Nf2, Pten, Trim72) or MPR (e.g., Nf2,

Trim72, Ube2g2, Ptges2). This validation minipool reveals the

dynamics of multiple competing mutants chosen from the pri-

mary screen hits and indicates that mutants with strong pro-

growth effects tend to enhance metastasis (Figure 7E).

TCGA Gene Expression of Screen Hits in Human
Lung Cancer
To assess the relevance of our mGeCKOa and validation mini-

pool screen hits (genes targeted by sgRNAs enriched in lung

metastases) to pathological metastasis in human cancer, we

performed gene expression analysis of the human orthologs

of these genes. We compared mRNA levels in metastatic

compared to non-metastatic primary tumors in patient samples

using TCGAmRNA sequencing data. We found that most (61%–

75%) of these genes are downregulated in metastatic tumors in

NSCLC patients (Figures S5D and S5E; Table S6). These data

suggest that downregulation of these genes is selected for in

metastatic tumors from patients.

DISCUSSION

Pooled Mutagenesis in a Metastasis Model
Distal metastases develop as primary tumors shed CTCs into the

circulation, from which CTCs travel to the destination site, move

out of the blood or lymphatic vessels, and initiate clonal growth

(Valastyan and Weinberg, 2011; Vanharanta and Massagué,

2013; Weinberg, 2007). In this study, cancer cells transplanted

into the flanks of mice form primary tumors in situ, and cells

from this mass undergo the intravasation-circulation-extravasa-

tion-clonal growth cascade to form distal metastases (Francia

et al., 2011). The initial lung cancer cell line has little capacity to

form metastases; in contrast, after being mutagenized with the

mGeCKOa genome-scale Cas9 knockout library, the cell

A

B E

Figure 6. Tumor Evolution and Library Representation in Transplanted Cas9-GFP KPD Cells with Minipool Libraries

(A) Schematic representation of the loss-of-function metastasis minipool screen. Briefly, Cas9-GFP KPD cells were transduced with either validation minipool

(524 gene-targeting + 100 non-targeting sgRNAs) or control minipool (624 non-targeting sgRNAs). After puromycin selection, the cell pools were transplanted into

Nu/Nu mice. After 5 weeks, validation minipool sgRNAs were sequenced from primary tumor and lung samples.

(B) Primary tumor growth curve of Nu/Numice transplanted with Cas9 vector + validation minipool cells (n = 5 mice) or Cas9 + control minipool cells (n = 5 mice).

Error bars indicate SEM.

(C) Percent of lung lobes with metastases after 6 weeks for the mice in (B). C, control minipool; V, validation minipool. Error bars indicate SEM.

(D) Boxplot of the sgRNA normalized read counts for the plasmid library, cells before transplantation, primary tumors, and lung metastases using the validation

minipool.

(E) Cumulative probability distribution of library sgRNAs in the validation plasmid pool, cells before transplantation, primary tumors, and lung metastases.

Distributions of primary tumor and lung metastases are averaged across five mice.

See also Figure S7.
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Figure 7. Enriched sgRNAs from the Validation Minipool Screen in Primary Tumors and Lung Metastases

(A) Pie charts of the most abundant sgRNAs in the primary tumor and the whole lung of two representative mice transplanted with validation minipool-transduced

Cas9-GFP KPD cells. The area for each sgRNA corresponds to the fraction of total reads from the tissue (primary tumor or lung metastases) for the sgRNA.

All sgRNAs with R2% of total reads are plotted individually.

(legend continued on next page)
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population formshighlymetastatic tumors. Thus, thesemutations,

acting in simple or complex pleiotropic ways, accelerate metas-

tasis. In this model, the effect of mutations onmetastasis strongly

correlates with their abundance in late-stage primary tumors.

sgRNA Dynamics during Tumor Evolution
The dynamics of the sgRNA population changed dramatically

over the course of tumor development andmetastasis, reflecting

the selection and bottlenecks of cellular evolution in vitro and

in vivo. After a week in culture, cells retained most of the sgRNAs

present in the plasmid library, with decreases in sgRNAs target-

ing genes involved in fundamental cellular processes. The distri-

bution of non-targeting control sgRNAs is almost identical to

those targeting genes, suggesting that the selective pressure

of in vitro culture alone does not radically alter sgRNA represen-

tation, similar to previous observations in humanmelanoma cells

(Shalem et al., 2014).

In contrast, less than half of the sgRNAs survive in an early-

stage primary tumor. This loss of representation occurs with

both gene-targeting sgRNAs and non-targeting control sgRNAs,

suggesting that random sampling influences sgRNA dynamics

during the transplantation and tumor initiation processes,

although we cannot exclude that some of the non-targeting

sgRNAs might have detrimental or pro-growth effects. We also

detected further dropout of genes involved in fundamental

cellular processes in early tumor samples compared to cell sam-

ples. Thus, it is likely that the sgRNA dynamics are influenced by

a combination of selection and random sampling during trans-

plantation and tumor initiation.

As primary tumors grow, the mutant cells proliferate and

compete as a pool. This creates strong selection for sgRNAs tar-

geting anti-apoptotic genes and other tumor suppressors. The

majority of the genetic diversity in early tumors is lost during the

subsequent 4 weeks of primary tumor growth in mice. Accord-

ingly, sequencing revealed a smaller set of dominant sgRNAs,

usually on the order of hundreds to a few thousand per mouse.

In addition, almost all of non-targeting sgRNAs are lost during pri-

mary tumorgrowth,which is consistentwith selection for cellswith

special growth and survival properties. This observation is also

consistent with earlier transplantation studies by Kerbel and col-

leagues using small pools of randomly mutagenized cells, which

found that the majority of clonal variants detectable by Southern

blot disappearedwithin 6 weeks of primary tumor growth, leaving

one dominant clone (Korczak et al., 1988; Waghorne et al., 1988).

Each step toward metastasis has a bottleneck effect. In the

lung metastases, we detected very few sgRNAs at high abun-

dance. As with the primary tumor, we found only a few non-tar-

geting sgRNAs at low frequencies in metastases. Their presence

could be due to unknown off-target effects of these sgRNAs,

random shedding of CTCs in the primary tumor, or clustering

together with other strongly selected CTCs during metastasis

(Aceto et al., 2014).

Relevance of Screen Hits to Human Cancer
Several of the genes enriched in late-stage primary tumors are

associated with cancer, but their functions in tumor growth are

poorly understood. For example, Mgmt, a gene with two en-

riched sgRNAs, is required for DNA repair and is thus crucial

for genome stability (Tano et al., 1990). Mutation, silencing, or

promoter methylation of MGMT is associated with primary glio-

blastomas (Jesien-Lewandowicz et al., 2009). Med16, another

gene with two enriched sgRNAs, encodes a subunit of the

mediator complex of transcription regulation, which has been

recently implicated in cancer (Huang et al., 2012; Schiano

et al., 2014).

We found that the genes that are significantly enriched in lung

metastases largely overlap with those found in abundance in the

late primary tumor. Several of these hitswere validated in vivo us-

ing multiple individual sgRNAs, including Nf2, Pten, Cdkn2a,

Trim72, Fga, miR-152, and miR-345. Nf2, Pten, and Cdkn2a are

well-known tumor suppressor genes. Intriguingly, the NF2 locus

is mutated at only 1% frequency in primary tumors of human

NSCLC patients (LUAD and/or LUSC) (Cancer Genome Atlas

Research Network, 2012, 2014). Nf2 mutant mice develop a

range of highly metastatic tumors (McClatchey et al., 1998). It

is possible that NF2mutations influence metastases to a greater

degree than primary tumor growth, but this awaitsmetastasis ge-

nomics from patient samples. Pten mutations are also associ-

ated with advanced stages of tumor progression in a mouse

model of lung cancer (McFadden et al., 2014), and PTEN was

found to be mutated at 8% in adenocarcinoma patients

(LUAD). CDKN2A has been shown to be often inactivated in

lung cancer (Kaczmarczyk et al., 2012; Yokota et al., 2003).

Fga encodes fibrinogen, an extracellular matrix protein involved

in blood clot formation. Fgamutations have been found in various

cancer types in TCGA (Lawrence et al. 2013), as well as circu-

lating tumor cells (Lohr et al., 2014). Trim72 is an E3 ubiquitin

ligase, and its role in cancer metastasis is largely unknown.

Studies have shown that miR-152 and miR-345 are associated

with cancer and metastasis (Cheng et al., 2014; Tang et al.,

2011). FGF2 and BAG3, which promote metastasis, were pre-

dicted targets of miR-152 and miR-345; thus, loss of these

(B) Scatterplot of normalized sgRNA read counts in primary tumor and lung metastases for all sgRNAs in the validation minipool for each mouse (different color

dots indicate sgRNAs from different mice). log2 n.r., log2 normalized reads.

(C) log2 ratio of sgRNA abundance in the lung metastases over the primary tumor (MPR) plotted against the abundance in the lung metastases (n = 5 mice per

sgRNA). Green dots are the 100 control sgRNAs. Dots with black outlines are non-control sgRNAs that target genes or miRs. Red dots indicate non-control

sgRNAs for which more than one sgRNA targeting the same gene/miR is enriched in the lung metastases over the primary tumor (i.e., log2(MPR) > 0) and are

labeled with the gene/miR targeted. The lung-primary ratio is calculated for individual mice, and these quantities are averaged across mice.

(D) Number of genes with 0 to 10 significantly enriched validation minipool sgRNAs in lung metastases. For genes/miRs with 2 or more enriched sgRNAs, genes/

miRs are categorized by how many sgRNAs targeting that gene/miRs are enriched, as indicated in the colored bubbles adjacent to each bar.

(E) Schematic illustration of tumor growth andmetastasis in the library-transduced NSCLC transplant model. The initially diverse set of loss-of-functionmutations

in the subcutaneously transplanted pool is selected over time for mutations that promote growth of the primary tumor. A subset of these mutants also dominate

lung metastases.

See also Figure S7.
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microRNAs may lead to acceleration of metastases, likely due to

de-repression of these genes (Cheng et al., 2014; Tang et al.,

2011).

In our ownanalysis of TCGAsamples from lungcancer patients,

we observed downregulation of the human orthologs of the genes

identified in the genome-wide and validation minipool screens at

themRNA level inmetastatic tumors compared to non-metastatic

tumors, suggesting that these genesmay also be inactivated dur-

ing pathological metastasis. Human orthologs of these genes are

often found to be mutated in cancers. Moreover, these genes

have been implicated in various pathways and biological pro-

cesses in tumorigenesis and/or metastasis in human cancer (Ta-

bles S7A–S7C). However, most cancer sequencing studies

involve samples fromprimary tumors of patients. In the clinic, me-

tastases are rarely sampled. Future patient sequencing directly

from metastases may further connect genes identified in the

mousemodel to thosemutated or silenced in clinical metastases.

Future In Vivo Functional Genomic Screens
Our study provides a roadmap for in vivo Cas9 screens, and

future studies can take advantage of this model to explore other

oncogenotypes, delivery methods, or metastasis target organs.

Genome-scale CRISPR screening is feasible using a transplant

model with virtually any cell line or genetic background (e.g., mu-

tations in EGFR, KRAS, ALK, etc.), including a large repertoire of

human cell lines from diverse cancer types (Barretina et al.,

2012). Other cell delivery methods, such as intravenous injection

or orthotopic transplantation, may help identify genes regulating

extravasation and clonalization. Examining samples from other

stages or sites, such as CTCs or metastases to other organs,

can provide a more refined picture of tumor evolution.

In addition to these parameters, several aspects of the screen

perturbations themselves can also be modified. Targeted drug

therapies or immunotherapies can be applied in conjunction

with the in vivo screening strategy to identify genes involved in

acquired resistance. Other screening technologies, such as

Cas9-mediated activation (Gilbert et al., 2014; Konermann

et al., 2015), can identify metastasis-regulating factors that act

in a gain-of-function manner. Activation screens that identify on-

cogenes, as well as dropout screens that identify genetic depen-

dencies, may facilitate identification of novel therapeutic targets.

Targeted subpool strategies can be used to reduce the library

size and facilitate further confirmation of primary screens. In a

customized library, genes can be chosen based on genomic

analysis, pathways, or clinical relevance for focused screening li-

braries. Additionally, application of pooled sgRNA libraries using

individually barcoded cells will allow quantitative assessment of

the robustness and significance of each candidate hit and will

enable analysis of the competitive dynamics among different

perturbations. With these promising future directions and the re-

sults of our study, Cas9-based in vivo screening establishes a

new platform for functional genomics discovery.

EXPERIMENTAL PROCEDURES

Generation of Cas9-GFP Expression Vector

A lentiviral vector, lenti-Cas9-NLS-FLAG-2A-EGFP (lentiCas9-EGFP), was

generated by subcloning Cas9 into a lentiviral vector.

Pooled Guide-Only Library Cloning and Viral Production

The Cas9-GFP KPD cell line was transduced at a MOI of �0.4 with lentivirus

produced from a genome-wide lentiviral mouse CRISPR knockout guide-

only library (Sanjana et al., 2014) containing 67,405 sgRNAs (mGeCKOa,

Addgene 1000000053) with at least 400-fold representation (cells per

construct) in each infection replicate. A detailed viral production and infection

protocol can be found in Extended Experimental Procedures.

Animal Work Statement

All animal work was performed under the guidelines of the MIT Division of

Comparative Medicine, with protocols (0411-040-14, 0414-024-17, 0911-

098-11, 0911-098-14, and 0914-091-17) approved by the MIT Committee

for Animal Care, and were consistent with the Guide for the Care and Use of

Laboratory Animals, National Research Council, 1996 (institutional animal wel-

fare assurance no. A-3125-01).

Mice, Tumor Transplant, and Metastasis Analysis in the Primary

Screen

Untransduced or mGeCKOa-transduced Cas9-GFP KPD cells were injected

subcutaneously into the right side flank of Nu/Nu mice at 3 3 107 cells per

mouse. Transplanted primary tumor sizes were measured by caliper. At

6 weeks post-transplantation, mice were sacrificed and several organs (liver,

lung, kidney, and spleen) were dissected for examination of metastases under

a fluorescence stereoscope.

Mouse Tissue Collection

Primary tumors and other organs were dissected manually. For molecular

biology, tissueswere flash frozenwith liquidnitrogenandground in24-well poly-

ethylene vials with metal beads in a GenoGrinder machine (OPS Diagnostics).

Homogenized tissues were used for DNA/RNA/protein extractions using stan-

dard molecular biology protocols. Tissues for histology were then fixed in 4%

formaldehyde or 10% formalin overnight, embedded in paraffin, and sectioned

at6mmwithamicrotomeasdescribedpreviously (Chenet al., 2014). Sliceswere

subjected to H&E staining as described previously (Chen et al., 2014).

Genomic DNA Extraction from Cells and Mouse Tissues

Genomic DNA from cells and tissues (primary tumors and lungs) was ex-

tracted using a homemade modified salt precipitation method similar to

the Puregene (QIAGEN/Gentra) procedure. The sgRNA cassette was ampli-

fied and prepared for Illumina sequencing as described previously (Shalem

et al., 2014). A detailed readout protocol can be found in Extended Experi-

mental Procedures.

Individual Gene and MicroRNA Validation

Six sgRNAs per protein-coding gene and four sgRNAs per microRNA gene

were chosen for validation using individual sgRNAs (Table S4). For protein-

coding genes, we cloned both the three sgRNAs from the mGeCKOa library

and three additional sgRNAs to target each gene. For microRNAs, we used

all four sgRNAs from the mGeCKOa library.

Validation and Control Minipool Synthesis and In Vivo

Transplantation

Validation and control minipools (Table S5) were synthesized using

array oligonucleotide synthesis (CustomArray) and transduced at

>1,000-fold representation in Cas9-GFP KPD cells. After 7 days in

culture, Cas9-GFP KPD cells transduced with the validation minipool or con-

trol minipool were injected subcutaneously into the right side flank of Nu/Nu

mice at 3 3 107 cells per mouse with five replicate mice. After 5 weeks, mice

were sacrificed, and primary tumors and lungs were dissected.

ACCESSION NUMBERS

Genomic sequencing data have been deposited in the NCBI Sequence Read

Archive under accession number PRJNA273894. Plasmids and pooled

libraries have been deposited in Addgene (LentiCas9-EGFP: 63592, Metas-

tasis Validation Minipool library: 63594, Mouse Non-targeting Control Mini-

pool: 63595).
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SUMMARY

We use in situ Hi-C to probe the 3D architecture of
genomes, constructing haploid and diploid maps of
nine cell types. The densest, in human lymphoblas-
toid cells, contains 4.9 billion contacts, achieving 1
kb resolution. We find that genomes are partitioned
into contact domains (median length, 185 kb), which
are associated with distinct patterns of histone
marks and segregate into six subcompartments.
We identify �10,000 loops. These loops frequently
link promoters and enhancers, correlate with gene
activation, and show conservation across cell types
and species. Loop anchors typically occur at domain
boundaries and bind CTCF. CTCF sites at loop an-
chors occur predominantly (>90%) in a convergent
orientation, with the asymmetric motifs ‘‘facing’’
one another. The inactive X chromosome splits into
two massive domains and contains large loops
anchored at CTCF-binding repeats.

INTRODUCTION

The spatial organization of the human genome is known to play

an important role in the transcriptional control of genes (Cremer

and Cremer, 2001; Sexton et al., 2007; Bickmore, 2013). Yet

important questions remain, like how distal regulatory elements,

such as enhancers, affect promoters, and how insulators can

abrogate these effects (Banerji et al., 1981; Blackwood and

Kadonaga, 1998; Gaszner and Felsenfeld, 2006). Both phenom-

ena are thought to involve the formation of protein-mediated

‘‘loops’’ that bring pairs of genomic sites that lie far apart along

the linear genome into proximity (Schleif, 1992).

Various methods have emerged to assess the 3D architecture

of the nucleus. In one seminal study, the binding of a protein to

sites at opposite ends of a restriction fragment created a loop,

which was detectable because it promoted the formation of

DNA circles in the presence of ligase. Removal of the protein

or either of its binding sites disrupted the loop, eliminating this

‘‘cyclization enhancement’’ (Mukherjee et al., 1988). Subsequent

adaptations of cyclization enhancement made it possible to

analyze chromatin folding in vivo, including nuclear ligation

assay (Cullen et al., 1993) and chromosome conformation

capture (Dekker et al., 2002), which analyze contacts made by

a single locus, extensions such as 5C for examining several

loci simultaneously (Dostie et al., 2006), and methods such as

ChIA-PET for examining all loci bound by a specific protein (Full-

wood et al., 2009).

To interrogate all loci at once, we developed Hi-C, which com-

bines DNA proximity ligation with high-throughput sequencing in

a genome-wide fashion (Lieberman-Aiden et al., 2009). We used

Hi-C to demonstrate that the genome is partitioned into nu-

merous domains that fall into two distinct compartments. Subse-

quent analyses have suggested the presence of smaller domains

and have led to the important proposal that compartments are

partitioned into condensed structures �1 Mb in size, dubbed

‘‘topologically associated domains’’ (TADs) (Dixon et al., 2012;

Nora et al., 2012). In principle, Hi-C could also be used to

detect loops across the entire genome. To achieve this, how-

ever, extremely large data sets and rigorous computational

methods are needed. Recent efforts have suggested that this

is an increasingly plausible goal (Sexton et al., 2012; Jin et al.,

2013).

Here, we report the results of an effort to comprehensively

map chromatin contacts genome-wide, using in situ Hi-C, in

which DNA-DNA proximity ligation is performed in intact nuclei.

The protocol facilitates the generation of much denser Hi-C

maps. The maps reported here comprise over 5 Tb of sequence
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data recording over 15 billion distinct contacts, an order of

magnitude larger than all published Hi-C data sets combined.

Using these maps, we are able to clearly discern domain struc-

ture, compartmentalization, and thousands of chromatin loops.

In addition to haploid maps, we were also able to create diploid

maps analyzing each chromosomal homolog separately. The

maps provide a picture of genomic architecture with resolution

down to 1 kb.

RESULTS

In Situ Hi-C Methodology and Maps
Our in situ Hi-C protocol combines our original Hi-C protocol

(here called dilution Hi-C) with nuclear ligation assay (Cullen

et al., 1993), in which DNA is digested using a restriction enzyme,

DNA-DNA proximity ligation is performed in intact nuclei, and

the resulting ligation junctions are quantified. Our in situ Hi-C

protocol involves crosslinking cells with formaldehyde, permea-

bilizing them with nuclei intact, digesting DNA with a suitable

4-cutter restriction enzyme (such as MboI), filling the 50-over-
hangs while incorporating a biotinylated nucleotide, ligating

the resulting blunt-end fragments, shearing the DNA, capturing

the biotinylated ligation junctions with streptavidin beads, and

analyzing the resulting fragments with paired-end sequencing

(Figure 1A). This protocol resembles a recently published sin-

gle-cell Hi-C protocol (Nagano et al., 2013), which also per-

formed DNA-DNA proximity ligation inside nuclei to study

nuclear architecture in individual cells. Our updated protocol

has three major advantages over dilution Hi-C. First, in situ liga-

tion reduces the frequency of spurious contacts due to random

ligation in dilute solution—as evidenced by a lower frequency

of junctions between mitochondrial and nuclear DNA in the

captured fragments and by the higher frequency of random liga-

tions observed when the supernatant is sequenced (Extended

Experimental Procedures available online). This is consistent

with a recent study showing that ligation junctions formed in

solution are far less meaningful (Gavrilov et al., 2013). Second,

the protocol is faster, requiring 3 days instead of 7 (Extended

Experimental Procedures). Third, it enables higher resolution

and more efficient cutting of chromatinized DNA, for instance,

through the use of a 4-cutter rather than a 6-cutter (Data S1, I).

A Hi-C map is a list of DNA-DNA contacts produced by a Hi-C

experiment. By partitioning the linear genome into ‘‘loci’’ of fixed

size (e.g., bins of 1Mb or 1 kb), the Hi-Cmap can be represented

as a ‘‘contact matrix’’ M, where the entry Mi,jM is the number of

contacts observed between locus Li and locus LjL . (A ‘‘contact’’

is a read pair that remains after we exclude reads that are

duplicates, that correspond to unligated fragments, or that do

not align uniquely to the genome.) The contact matrix can be

visualized as a heatmap, whose entries we call ‘‘pixels.’’ An ‘‘in-

terval’’ refers to a set of consecutive loci; the contacts between

two intervals thus form a ‘‘rectangle’’ or ‘‘square’’ in the contact

matrix. We define the ‘‘matrix resolution’’ of a Hi-C map as the

locus size used to construct a particular contact matrix and

the ‘‘map resolution’’ as the smallest locus size such that 80%

of loci have at least 1,000 contacts. The map resolution is meant

to reflect the finest scale at which one can reliably discern local

features.

Contact Maps Spanning Nine Cell Lines Containing over
15 Billion Contacts
We constructed in situ Hi-C maps of nine cell lines in human

and mouse (Table S1). Whereas our original Hi-C experiments

had a map resolution of 1 Mb, these maps have a resolution of

1 kb or 5 kb. Our largest map, in human GM12878 B-lympho-

blastoid cells, contains 4.9 billion pairwise contacts and has a

map resolution of 950 bp (‘‘kilobase resolution’’) (Table S2). We

also generated eight in situ Hi-C maps at 5 kb resolution, using

cell lines representing all human germ layers (IMR90, HMEC,

NHEK, K562, HUVEC, HeLa, and KBM7) as well as mouse

B-lymphoblasts (CH12-LX) (Table S1). Each map contains be-

tween 395 M and 1.1 B contacts.

When we used our original dilution Hi-C protocol to generate

maps of GM12878, IMR90, HMEC, NHEK, HUVEC, and CH12-

LX, we found that, as expected, in situ Hi-C maps were superior

at high resolutions, but closely resembled dilution Hi-C at lower

resolutions. For instance, our dilution map of GM12878 (3.2

billion contacts) correlated highly with our in situ map at 500,

50, and 25 kb resolutions (R > 0.96, 0.90, and 0.87, respectively)

(Data S1, I; Figure S1).

We also performed112 supplementaryHi-C experiments using

three different protocols (in situ Hi-C, dilution Hi-C, and Tethered

Conformation Capture) while varying a wide array of conditions

such as extent of crosslinking, restriction enzyme, ligation vol-

ume/time, and biotinylated nucleotide. These include several

in situ Hi-C experiments in which the formaldehyde crosslinking

step was omitted, which demonstrate that the structural features

we observe cannot be due to the crosslinking procedure. In total,

201 independent Hi-C experimentswere successfully performed,

many of which are presented in Data S1 and S2.

To account for nonuniformities in coverage due to the number

of restriction sites at a locus or the accessibility of those sites to

cutting (Lieberman-Aiden et al., 2009; Yaffe and Tanay, 2011) we

use a matrix-balancing algorithm due to Knight and Ruiz (2012)

(Extended Experimental Procedures).

Adequate tools for visualization of these large data sets are

essential. We have therefore created the ‘‘Juicebox’’ visualiza-

tion system that enables users to explore contact matrices,

zoom in and out, compare Hi-C matrices to 1D tracks, superim-

pose all features reported in this paper onto the data, and

contrast different Hi-C maps. All contact data and feature sets

reported here can be explored interactively via Juicebox at

http://www.aidenlab.org/juicebox/.

The Genome Is Partitioned into Small Domains Whose
Median Length Is 185 kb
We began by probing the 3D partitioning of the genome. In our

earlier experiments at 1 Mb map resolution (Lieberman-Aiden

et al., 2009), we saw large squares of enhanced contact fre-

quency tiling the diagonal of the contact matrices. These

squares partitioned the genome into 5–20 Mb intervals, which

we call ‘‘megadomains.’’

We also found that individual 1 Mb loci could be assigned to

one of two long-range contact patterns, which we called com-

partments A and B, with loci in the same compartment showing

more frequent interaction. Megadomains—and the associated

squares along the diagonal—arise when all of the 1 Mb loci in
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Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb

Resolution in Human Lymphoblastoid Cells

(A) During in situ Hi-C, DNA-DNA proximity ligation is performed in intact nuclei.

(B) Contact matrices from chromosome 14: the whole chromosome, at 500 kb resolution (top); 86–96 Mb/50 kb resolution (middle); 94–95 Mb/5 kb resolution

(bottom). Left: GM12878, primary experiment; Right: biological replicate. The 1D regions corresponding to a contact matrix are indicated in the diagrams above

and at left. The intensity of each pixel represents the normalized number of contacts between a pair of loci. Maximum intensity is indicated in the lower left of each

panel.

(C) We compare our map of chromosome 7 in GM12878 (last column) to earlier Hi-Cmaps: Lieberman-Aiden et al. (2009), Kalhor et al. (2012), and Jin et al. (2013).

(D) Overview of features revealed by our Hi-C maps. Top: the long-range contact pattern of a locus (left) indicates its nuclear neighborhood (right). We detect at

least six subcompartments, each bearing a distinctive pattern of epigenetic features. Middle: squares of enhanced contact frequency along the diagonal (left)

indicate the presence of small domains of condensed chromatin, whose median length is 185 kb (right). Bottom: peaks in the contact map (left) indicate the

presence of loops (right). These loops tend to lie at domain boundaries and bind CTCF in a convergent orientation.

See also Figure S1, Data S1, I–II, and Tables S1 and S2.
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Figure 2. The Genome Is Partitioned into Contact Domains that Segregate into Nuclear Subcompartments Corresponding to Different

Patterns of Histone Modifications
We annotate thousands of domains across the genome (left, black highlight). To do so, we define an arrowhead matrix A (right) such that Ai,i+d = (M*(( i,i-d –

M*i,i+d)/(dd M*i,i-d + M*i,i+d), wheredd M* is the normalized contact matrix. This transformation replaces domains with an arrowhead-shaped motif pointing toward the

domain’s upper-left corner (example in yellow); we identify these arrowheads using dynamic programming. See Experimental Procedures.

(B) Pearson correlation matrices of the histone mark signal between pairs of loci inside and within 100 kb of a domain. Left: H3K36me3; Right: H3K27me3.

(C) Conserved contact domains on chromosome 3 in GM12878 (left) and IMR90 (right). In GM12878, the highlighted domain (gray) is enriched for H3K27me3 and

depleted for H3K36me3. In IMR90, the situation is reversed. Marks at flanking domains are the same in both: the domain to the left is enriched for H3K36me3 and

the domain to the right is enriched for H3K27me3. The flanking domains have long-range contact patterns that differ from one another and are preserved in both

(legend continued on next page)
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an interval exhibit the same genome-wide contact pattern.

Compartment A is highly enriched for open chromatin; compart-

ment B is enriched for closed chromatin (Lieberman-Aiden et al.,

2009; Kalhor et al., 2012; Sexton et al., 2012).

In our new, higher resolution maps (200- to 1,000-fold more

contacts), we observe many small squares of enhanced contact

frequency that tile the diagonal of each contact matrix (Fig-

ure 2A). We used the Arrowhead algorithm (see Experimental

Procedures) to annotate these contact domains genome-wide.

The observed domains ranged in size from40 kb to 3Mb (median

size 185 kb). As with megadomains, there is an abrupt drop in

contact frequency (33%) for pairs of loci on opposite sides of

the domain boundary (Figure S2G). Contact domains are often

preserved across cell types (Figures S3A and S3B).

The presence of smaller domains in Hi-C maps is consistent

with several other recent studies (Dixon et al., 2012; Nora

et al., 2012; Sexton et al., 2012). We explore the relationship be-

tween the domains we annotate and those annotated in prior

studies in the Discussion.

Contact Domains Exhibit Consistent Histone Marks
Whose Changes Are Associated with Changes in
Long-Range Contact Pattern
Loci within a contact domain show correlated histone modi-

fications for eight different factors (H3K36me3, H3K27me3,

H3K4me1, H3K4me2, H3K4me3, H3K9me3, H3K79me2, and

H4K20me1) based on data from the ENCODE project in

GM12878 cells (ENCODE Project Consortium, 2012). By

contrast, loci at comparable distance but residing in different do-

mains showed much less correlation in chromatin state (Figures

2B, S2I, and S2K; Extended Experimental Procedures). Strik-

ingly, changes in a domain’s chromatin state are often accompa-

nied by changes in the long-range contact pattern of domain loci

(i.e., the pattern of contacts between loci in the domain and other

loci genome-wide), indicating that changes in chromatin pattern

are accompanied by shifts in a domain’s nuclear neighborhood

(Figures 2C and S3C–S3E; Extended Experimental Procedures).

This observation is consistent with microscopy studies associ-

ating changes in gene expression with changes in nuclear local-

ization (Finlan et al., 2008).

There Are at Least Six Nuclear Subcompartments with
Distinct Patterns of Histone Modifications
Next, we partitioned loci into categories based on long-range

contact patterns alone, using four independent approaches:

manual annotation and three unsupervised clustering algorithms

(HMM, K-means, Hierarchical). All gave similar results (Fig-

ure S4B; Extended Experimental Procedures). We then investi-

gated the biological meaning of these categories.

When we analyzed the data at lowmatrix resolution (1 Mb), we

reproduced our earlier finding of two compartments (A and B). At

high resolution (25 kb), we found evidence for at least five ‘‘sub-

compartments’’ defined by their long-range interaction patterns,

both within and between chromosomes. These findings expand

on earlier reports suggesting three compartments in human cells

(Yaffe and Tanay, 2011). We found that the median length of an

interval lying completely within a subcompartment is 300 kb.

Although the subcompartments are defined solely based on their

Hi-C interaction patterns, they exhibit distinct genomic and epi-

genomic content.

Two of the five interaction patterns are correlated with loci in

compartment A (Figure S4E). We label the loci exhibiting these

patterns as belonging to subcompartments A1 and A2. Both

A1 and A2 are gene dense, have highly expressed genes, harbor

activating chromatin marks such as H3K36me3, H3K79me2,

H3K27ac, and H3K4me1 and are depleted at the nuclear lamina

and at nucleolus-associated domains (NADs) (Figures 2D, 2E,

and S4I; Table S3). While both A1 and A2 exhibit early replication

times, A1 finishes replicating at the beginning of S phase,

whereas A2 continues replicating into the middle of S phase.

A2 is more strongly associated with the presence of H3K9me3

than A1, has lower GC content, and contains longer genes

(2.4-fold).

The other three interaction patterns (labeled B1, B2, and B3)

are correlated with loci in compartment B (Figure S4E) and

show very different properties. Subcompartment B1 correlates

positively with H3K27me3 and negatively with H3K36me3, sug-

gestive of facultative heterochromatin (Figures 2D and 2E).

Replication of this subcompartment peaks during the middle of

S phase. Subcompartments B2 and B3 tend to lack all of the

above-noted marks and do not replicate until the end of S phase

(see Figure 2D). Subcompartment B2 includes 62% of pericen-

tromeric heterochromatin (3.8-fold enrichment) and is enriched

at the nuclear lamina (1.8-fold) and at NADs (4.6-fold). Subcom-

partment B3 is enriched at the nuclear lamina (1.6-fold), but

strongly depleted at NADs (76-fold).

Upon closer visual examination, we noticed the presence of a

sixth pattern on chromosome 19 (Figure 2F). Our genome-wide

clustering algorithm missed this pattern because it spans only

11 Mb, or 0.3% of the genome. When we repeated the algorithm

on chromosome 19 alone, the additional pattern was detected.

Because this sixth pattern correlates with the Compartment B

pattern, we labeled it B4. Subcompartment B4 comprises a

handful of regions, each of which contains many KRAB-ZNF su-

perfamily genes. (B4 contains 130 of the 278 KRAB-ZNF genes in

the genome, a 65-fold enrichment). As noted in previous studies

(Vogel et al., 2006; Hahn et al., 2011), these regions exhibit a

highly distinctive chromatin pattern, with strong enrichment for

cell types. In IMR90, the highlighted domain is marked by H3K36me3 and its long-range contact pattern matches the similarly-marked domain on the left. In

GM12878, it is decorated with H3K27me3, and the long-range pattern switches, matching the similarly-marked domain to the right. Diagonal submatrices, 10 kb

resolution; long-range interaction matrices, 50 kb resolution.

(D) Each of the six long-range contact patterns we observe exhibits a distinct epigenetic profile (data sources are listed in Table S3). Each subcompartment also

has a visually distinctive contact pattern.

(E) Each example shows part of the long-range contact patterns for several nearby genomic intervals lying in different subcompartments.

(F) A large contiguous region on chromosome 19 contains intervals in subcompartments A1, B1, B2, and B4.

See also Figures S2, S3, and S4 and Data S1, III–IV.
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Figure 3. We Identify Thousands of Chromatin Loops Genome-wide Using a Local Background Model

(A) We identify peaks by detecting pixels that are enrichedwith respect to four local neighborhoods (blowout): horizontal (blue), vertical (green), lower-left (yellow),

and donut (black). These ‘‘peak’’ pixels indicate the presence of a loop and are marked with blue circles (radius = 20 kb) in the lower-left of each heatmap. The

number of raw contacts at each peak is indicated. Left: primary GM12878 map; Right: replicate; annotations are completely independent. All contact matrices in

this and subsequent figures are 10 kb resolution unless noted.

(B) Overlap in peak annotations between replicates.

(C) Top: location of 3D-FISH probes used to verify a peak in the chromosome 17 contact map. Bottom: example cell.

(legend continued on next page)
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both activating chromatin marks, such as H3K36me3, and

heterochromatin-associated marks, such as H3K9me3 and

H4K20me3.

Approximately 10,000 Peaks Mark the Position of
Chromatin Loops
We next sought to identify the positions of chromatin loops by

using an algorithm to search for pairs of loci that show signifi-

cantly closer proximity with one another than with the loci lying

between them (Figure 3A). Such pairs correspond to pixels

with higher contact frequency than typical pixels in their neigh-

borhood. We refer to these pixels as ‘‘peaks’’ in the Hi-C contact

matrix and to the corresponding pair of loci as ‘‘peak loci.’’ Peaks

reflect the presence of chromatin loops, with the peak loci being

the anchor points of the chromatin loop. (Because contact fre-

quencies vary across the genome, we define peak pixels relative

to the local background.We note that some papers [Sanyal et al.,

2012; Jin et al., 2013] have sought to define peaks relative to

a genome-wide average. This choice is problematic because,

for example, many pixels within a domain may be reported as

peaks despite showing no locally distinctive proximity; see

Discussion.)

Our algorithm detected 9,448 peaks in the in situ Hi-C map for

GM12878 at 5 kb matrix resolution. These peaks are associated

with a total of 12,903 distinct peak loci (some peak loci are asso-

ciated with more than one peak). The vast majority of peaks

(98%) reflected loops between loci that are <2 Mb apart.

These findings were reproducible across all of our high-reso-

lution Hi-C maps. Examining the primary and replicate maps

separately, we found 8,054 peaks in the former and 7,484 peaks

in the latter, with 5,403 in both lists (see Figures 3A and 3B; Data

S1, V; Table S4). The differences were almost always the result of

our conservative peak-calling criteria (Extended Experimental

Procedures). We also called peaks using our GM12878 dilution

Hi-C experiment. Because the map is sparser and thus noisier,

we called only 3,073 peaks. Nonetheless, 65% of these peaks

were also present in the list of peaks from our in situ Hi-C data

set, again reflecting high interreplicate reproducibility.

To independently confirm that peak loci are closer than neigh-

boring locus pairs, we performed 3D-FISH (Beliveau et al., 2012)

on four loops (Table S5). In each case, we compared two peak

loci, L1 and L2, with a control locus, L3, that lies an equal

genomic distance away from L2 but on the opposite side (Fig-

ures 3C and S5B). In all cases, the 3D-distance between L1

and L2 was consistently shorter than the 3D-distance between

L2 and L3 (Extended Experimental Procedures).

We also confirmed that our list of peaks was consistent with

previously published Hi-C maps. Although earlier maps con-

tained too few contacts to reliably call individual peaks, we

developed a method called Aggregate Peak Analysis (APA)

that compares the aggregate enrichment of our peak set in these

low-resolutionmaps to the enrichment seenwhen our peak set is

translated in any direction (Experimental Procedures). APA

showed strong consistency between our loop calls and all six

previously published Hi-C experiments in lymphoblastoid cell

lines (Lieberman-Aiden et al., 2009; Kalhor et al., 2012) (Fig-

ure 3D; Data S2, I.E; Table S6).

Finally, we demonstrated that the peaks observed were robust

to particular protocol conditions by performing APA on our

GM12878 dilution Hi-C map and on our 112 supplemental Hi-C

experiments exploring a wide range of protocol variants. Enrich-

ment was seen in every experiment. Notably, these include five

experiments (HIC043-HIC047; Table S1) in which the Hi-C proto-

col was performed without crosslinking, demonstrating that the

peaks observed in our experiments cannot be byproducts of

the formaldehyde-crosslinking procedure.

Conservation of Peaks among Human Cell Lines and
across Evolution
We also identified peaks in the other seven human cell lines

(Table S1). Because these maps contain fewer contacts, sensi-

tivity is reduced, and fewer peaks are observed (ranging from

2,634 to 8,040). APA confirmed that these peak calls were

consistent with the dilution Hi-C maps reported here (in IMR90,

HMEC, HUVEC, and NHEK), as well as with all previously pub-

lished Hi-C maps in these cell types (Lieberman-Aiden et al.,

2009; Dixon et al., 2012; Jin et al., 2013) (Data S2, I.F).

We found that peaks were often conserved across cell types

(Figure 4A): between 55% and 75% of the peaks found in any

given cell type were also found in GM12878 (Figure S5D).

Next, we compared peaks across species. In CH12-LXmouse

B-lymphoblasts, we identified 2,927 high-confidence contact

domains and 3,331 peaks. When we examined orthologous re-

gions in GM12878, we found that 50% of peaks and 45% of do-

mains called in mousewere also called in humans. This suggests

substantial conservation of 3D genome structure across the

mammals (Figures 4B–4E).

Loops Anchored at a Promoter Are Associated with
Enhancers and Increased Gene Activation
Various lines of evidence indicate that many of the observed

loops are associated with gene regulation.

First, our peaks frequently have a known promoter at one peak

locus (as annotated by ENCODE’s ChromHMM) (Hoffman et al.,

2013) and a known enhancer at the other (Figure 5A). For

instance, 2,854 of the 9,448 peaks in our GM12878 map bring

together known promoters and known enhancers (30% versus

7% expected by chance). The peaks include classic promoter-

enhancer loops, such as at MYC (chr8:128.35–128.75 Mb, in

HMEC) and alpha-globin (chr16:0.15–0.22Mb, in K562). Second,

genes whose promoters are associated with a loop are much

more highly expressed than genes whose promoters are not

associated with a loop (6-fold).

Third, the presence of cell type-specific peaks is associated

with changes in expression. When we examined RNA se-

quencing (RNA-seq) data produced by ENCODE, we found

(D) APA plot shows the aggregate signal from the 9,448 GM12878 loops we report by summing submatrices surrounding each peak in a low-resolution GM12878

Hi-Cmap due to Kalhor et al. (2012). Although individual peaks cannot be seen in the Kalhor et al. (2012) data (that contains 42M contacts), the peak at the center

of the APA plot indicates that the aggregate signal from our peak set as a whole can be clearly discerned using their data set.

See also Figure S5, Data S1, V. and Data S2,I, and Tables S4, S5, and S6.
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that the appearance of a loop in a cell type was frequently

accompanied by the activation of a gene whose promoter over-

lapped one of the peak loci. For example, a cell-type-specific

loop is anchored at the promoter of the gene encoding L-selectin

(SELL), which is expressed in GM12878 (where the loop is pre-

sent), but not in IMR90 (where the loop is absent, Figure 5B).

Genome-wide, we observed 557 loops in GM12878 that were

clearly absent in IMR90. The corresponding peak loci overlap-

ped the promoters of 43 genes that were markedly upregulated

(>50-fold) in GM12878, but of only one gene that was markedly

upregulated in IMR90. Conversely, we found 510 loops in

IMR90 that were clearly absent in GM12878. The corresponding

peak loci overlapped the promoters of 94 genes that were mark-

edly upregulated in IMR90, but of only three genes that were

markedly upregulated in GM12878. When we compared

GM12878 to the five other human cell types for which ENCODE

RNA-seq data were available, the results were very similar

(Figure 5C; Table S7).

Occasionally, gene activation is accompanied by the emer-

gence of a cell-type-specific network of peaks. Figure 5D illus-

trates the case of ADAMTS1, which encodes a protein involved

in fibroblast migration. The gene is expressed in IMR90, where

its promoter is involved in six loops. In GM12878, it is not ex-

pressed, and the promoter is involved in only two loops. Many

of the IMR90 peak loci form transitive peaks with one another

(see discussion of ‘‘transitivity’’ below), suggesting that the

ADAMTS1 promoter and the six distal sites may all be located

at a single spatial hub.

A

B

D

Figure 4. Loops Are Often Preserved across Cell Types and from Human to Mouse

(A) Examples of peak and domain preservation across cell types. Annotated peaks are circled in blue. All annotations are completely independent.

(B) Of the 3,331 loops we annotate in mouse CH12-LX, 1,649 (50%) are orthologous to loops in human GM12878.

(C–E) Conservation of 3D structure in synteny blocks. The contact matrices in (C) are shown at 25 kb resolution. (D) and (E) are shown at 10 kb resolution.
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These observations are consistent with the classic model in

which looping between a promoter and enhancer activates a

target gene (Tolhuis et al., 2002; Amano et al., 2009; Ahmadiyeh

et al., 2010).

Loops Frequently Demarcate the Boundaries of Contact
Domains
A large fraction of peaks (38%) coincidewith the corners of a con-

tact domain—that is, the peak loci are located at domain bound-

aries (Figures 6A and S6). Conversely, a large fraction of domains

(39%) had peaks in their corner. Moreover, the appearance of a

loop is usually (in 65% of cases) associated with the appearance

of a domain demarcated by the loop. Because this configuration

is so common, we use the term ‘‘loop domain’’ to refer to contact

domains whose endpoints form a chromatin loop.

In some cases, adjacent loop domains (bounded by peak loci

L1-L2 and L2-L3, respectively) exhibit transitivity—that is, L1 and

L3 also correspond to a peak. This may indicate that the three

loci simultaneously colocate at a single spatial position. Howev-

er, many peaks do not exhibit transitivity, suggesting that the

corresponding loci do not colocate. Figure 6B shows a region

on chromosome 4 exhibiting both configurations.

We also found that overlapping loops are strongly disfavored:

pairs of loops L1-L3 and L2-L4 (where L1, L2, L3 and L4 occur

consecutively in the genome) are found 4-fold less often than

expected under a random model (Extended Experimental

Procedures).

The Vast Majority of Loops Are Associated with Pairs of
CTCF Motifs in a Convergent Orientation
We next wondered whether peaks are associated with specific

proteins. We examined the results of 86 chromatin immuno-

precipitation sequencing (ChIP-seq) experiments performed by

ENCODE in GM12878. We found that the vast majority of peak
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Figure 5. Loops between Promoters and Enhancers Are Strongly Associated with Gene Activation

(A) Histogram showing loop count at promoters (left); restricted to loops where the distal peak locus contains an enhancer (right).

(B) Left: a loop in GM12878, with one anchor at the SELL promoter and the other at a distal enhancer. The gene is on. Right: the loop is absent in IMR90, where the

gene is off.

(C) Genes whose promoters participate in a loop in GM12878 but not in a second cell type are frequently upregulated in GM12878 and vice versa.

(D) Left: two loops in GM12878 are anchored at the promoter of the inactive ADAMTS1 gene. Right: a series of loops and domains appear, along with transitive

looping. ADAMTS1 is on.

See also Data S1, VI and Table S7.
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Figure 6. Many Loops Demarcate Contact Domains; The Vast Majority of Loops Are Anchored at a Pair of Convergent CTCF/RAD21/SMC3

Binding Sites

(A) Histograms of corner scores for peak pixels versus random pixels with an identical distance distribution.

(B) Contact matrix for chr4:20.55 Mb–22.55 Mb in GM12878, showing examples of transitive and intransitive looping behavior.

(C) Percent of peak loci bound versus fold enrichment for 76 DNA-binding proteins.

(D) The pairs of CTCF motifs that anchor a loop are nearly all found in the convergent orientation.

(legend continued on next page)
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loci are bound by the insulator protein CTCF (86%) and the co-

hesin subunits RAD21 (86%) and SMC3 (87%) (Figure 6C).

This is consistent with numerous reports, using a variety of

experimental modalities, that suggest a role for CTCF and cohe-

sin in mediating DNA loops (Splinter et al., 2006; Hou et al., 2008;

Phillips and Corces, 2009). Because many of our loops demar-

cate domains, this observation is also consistent with studies

suggesting that CTCF delimits structural and regulatory domains

(Xie et al., 2007; Cuddapah et al., 2009; Dixon et al., 2012).

We found that most peak loci encompass a unique DNA site

containing a CTCF-binding motif, to which all three proteins

(CTCF, SMC3, and RAD21) were bound (5-fold enrichment).

We were thus able to associate most of the peak loci (6,991 of

12,903, or 54%) with a specific CTCF-motif ‘‘anchor.’’

The consensus DNA sequence for CTCF-binding sites is typi-

cally written as 50-CCACNAGGTGGCAG-30. Because the se-

quence is not palindromic, each CTCF motif has an orientation;

we designate the consensus motif above as the ‘‘forward’’ orien-

tation. Thus, a pair of CTCF sites on the same chromosome can

have four possible orientations: (1) same direction on one strand,

(2) same direction on the other strand, (3) convergent on oppo-

site strands, and (4) divergent on opposite strands.

If CTCF sites were randomly oriented, one would expect all

four orientations to occur equally often. But when we examined

the 4,322 peaks in GM12878 where the two corresponding peak

loci each contained a single CTCF-binding motif, we found that

the vast majority (92%) of motif pairs are convergent (Figures 6D

and 6E). Overall, the presence, at pairs of peak loci, of bound

CTCF sites in the convergent orientation was enriched 102-

fold over random expectation (Extended Experimental Proce-

dures). The convergent orientation was overwhelmingly more

frequent than the divergent orientation, despite the fact that

divergent motifs also lie on opposing strands: in GM12878, the

counts were 3,971-78 (51-fold enrichment, convergent versus

divergent); in IMR90, 1,456-5 (291-fold); in HMEC, 968-11 (88-

fold); in K562, 723-2 (362-fold); in HUVEC, 671-4 (168-fold); in

HeLa, 301-3 (100-fold); in NHEK, 556-9 (62-fold); and in CH12-

LX, 625-8 (78-fold). This pattern suggests that a pair of CTCF

sites in the convergent orientation is required for the formation

of a loop.

The observation that looped CTCF sites occur in the conver-

gent orientation also allows us to analyze peak loci containing

multiple CTCF-bound motifs to predict which motif instance

plays a role in a given loop. In this way, we can associate nearly

two-thirds of peak loci (8,175 of 12,903, or 63.4%) with a single

CTCF-binding motif.

The specific orientation of CTCF sites at observed peaks pro-

vides evidence that our peak calls are biologically correct.

Because randomly chosen CTCF pairs would exhibit each of

the four orientations with equal probability, the near-perfect as-

sociation between our loop calls and the convergent orientation

could not occur by chance (p < 10�1,900, binomial distribution).

In addition, the presence of CTCF and RAD21 sites at many of

our peaks provides an opportunity to compare our results to

three recent ChIA-PET experiments reported by the ENCODE

Consortium (in GM12878 and K562) in which ligation junctions

bound to CTCF (or RAD21) were isolated and analyzed. We

found strong concordance with our results in all three cases (Li

et al., 2012; Heidari et al., 2014) (Extended Experimental

Procedures).

The CTCF-Binding Exapted SINEB2 Repeat in Mouse
Shows Preferential Orientation with Respect to Loops
In mouse, we found that 7% of peak anchors lie within SINEB2

repeat elements containing a CTCF motif, which has been exap-

ted to be functional. (The spread of CTCF binding via retrotrans-

position of this element, which contains a CTCF motif in its

consensus sequence, has been documented in prior studies

[Bourque et al., 2008; Schmidt et al., 2012].) The CTCF motifs

at peak anchors in SINEB2 elements show the same strong

bias toward convergent orientation seen throughout the genome

(89% are oriented toward the opposing loop anchor versus 94%

genome-wide). The orientation of these CTCF motifs is aligned

with the orientation of the SINEB2 consensus sequence in

97% of cases. This suggests that exaptation of a CTCF in a

SINEB2 element is more likely when the orientation of the in-

serted SINEB2 is compatible with local loop structure.

Diploid Hi-C Maps Reveal Homolog-Specific Features,
Including Imprinting-Specific Loops and Massive
Domains and Loops on the Inactive X Chromosome
Because many of our reads overlap SNPs, it is possible to use

GM12878 phasing data (McKenna et al., 2010; 1000 Genomes

Project Consortium et al., 2012) to assign contacts to specific

chromosomal homologs (Figure 7A; Table S8). Using these as-

signments, we constructed a ‘‘diploid’’ Hi-C map of GM12878

comprising both maternal (238 M contacts) and paternal

(240 M) maps.

For autosomes, the maternal and paternal homologs exhibit

very similar inter- and intrachromosomal contact profiles (Pear-

son’s R > 0.998). One interchromosomal difference was notable:

an elevated contact frequency between the paternal homologs of

chromosome 6 and 11 that is consistent with an unbalanced

translocation fusing chr11q:73.5 Mb and all distal loci (a stretch

of over 60 Mb) to the telomere of chromosome 6p (Figures 7B

and S7B). The signal intensity suggests that the translocation

is present in between 1.2% and 5.6% of our cells (Extended

Experimental Procedures). We tested this prediction by karyo-

typing 100 GM12878 cells using Giemsa staining and found

three abnormal chromosomes, each showing the predicted

(E) A peak on chromosome 1 and correspondingChIP-seq tracks. Both peak loci contain a single site bound by CTCF, RAD21, and SMC3. The CTCFmotifs at the

anchors exhibit a convergent orientation.

(F) A schematic rendering of a 2.1Mb region on chromosome 20 (48.78–50.88Mb). Eight domains tile the region, ranging in size from 110 kb to 450 kb; 95%of the

region is contained inside a domain (contour lengths are shown to scale). Six of the eight domains are demarcated by loops between convergent CTCF-binding

sites located at the domain boundaries. The other two domains are not demarcated by loops. Themotif orientation is indicated by the direction of the arrow. Note

that not every CTCF-binding site is shown.

See also Figure S6.
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translocation, der(6)t(6,11)(pter;q) (Figures S7C–S7F). The Hi-C

data reveal that the translocation involves the paternal homologs,

which cannot be determined with ordinary cytogenetic methods.

We also observed differences in loop structure between homol-

ogous autosomes at some imprinted loci. For instance, the H19/99

Igf2 locus on chromosome 11 is a well-characterized case

A C

B

D

Figure 7. Diploid Hi-C Maps Reveal Super-

domains and Superloops Anchored at

CTCF-Binding TandemRepeats on the Inac-

tive X Chromosome

(A) The frequency of mismatch (maternal-paternal)

in SNP allele assignment versus distance between

two paired read alignments. Intrachromosomal

read pairs are overwhelmingly intramolecular.

(B) Preferential interactions between homologs.

Left/top is maternal; right/bottom is paternal. The

aberrant contact frequency between 6/paternal

and 11/paternal (circle) reveals a translocation.

(C) Top: in our unphased Hi-C map of GM12878,

we observe two loops joining both the promoter of

the maternally-expressedH19 and the promoter of

the paternally-expressed Igf2 to a distal locus,

HIDAD. Using diploid Hi-C maps, we phase these

loops: the HIDAD-H19 loop is present only on the

maternal homolog (left) and the HIDAD-Igf2 loop is

present only on the paternal homolog (right).

(D) The inactive (paternal) copy of chromosome X

(bottom) is partitioned into two massive ‘‘super-

domains’’ not seen in the active (maternal) copy

(top). DXZ4 lies at the boundary. Contact matrices

are shown at 500 kb resolution.

(E) The ‘‘superloop’’ between FIRRE and DXZ4 is

present in the unphased GM12878 map (top), in

the paternal GM12878 map (middle right), and in

the map of the female cell line IMR90 (bottom

right); it is absent from the maternal GM12878map

(middle left) and the map of the male HUVEC cell

line (bottom left). Contact matrices are shown at

50 kb resolution.

See also Figure S7 and Table S8.

of genomic imprinting. In our unphased

maps, we clearly see two loops from a sin-

gledistal locusat1.72Mb (thatbindsCTCF

in the forward orientation) to loci located

near the promoters of both H19 and Igf2

(both of which bind CTCF in the reverse

orientation, i.e., theaboveconsensusmotif

lies on the opposite strand; see Figure 7C).

We refer to this distal locus as theH19/99 Igf2//

Distal Anchor Domain (HIDAD). Our diploid

maps reveal that the loop to theH19 region

is present on the maternal chromosome

(from which H19 is expressed), but the

loop to the Igf2 region is absent or greatly

attenuated. The opposite pattern is found

on the paternal chromosome (from which

Igf2 is expressed).

Pronounced differences were seen on

the diploid intrachromosomal maps of

chromosome X. The paternal X chromosome, which is usually

inactive in GM12878, is partitioned into two massive domains

(0–115 Mb and 115–155.3 Mb). These ‘‘superdomains’’ are not

seen in the active, maternal X (Figure 7D). When we examined

the unphased maps of chromosome X for the karyotypically

normal female cell lines in our study (GM12878, IMR90, HMEC,
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NHEK), the superdomains on X were evident, although the signal

was attenuated due to the superposition of signals from active

and inactive X chromosomes. When we examined the male

HUVEC cell line and the haploid KBM7 cell line, we saw no evi-

dence of superdomains (Figure S7G).

Interestingly, the boundary between the superdomains (ChrX:

115Mb ± 500 kb) lies near themacrosatellite repeatDXZ4 (ChrX:

114,867,433–114,919,088) near the middle of Xq. DXZ4 is a

CpG-rich tandem repeat that is conserved across primates

and monkeys and encodes a long noncoding RNA. In males

and on the active X, DXZ4 is heterochromatic, hypermethylated

and does not bindCTCF.On the inactive X,DXZ4 is euchromatic,

hypomethylated, and binds CTCF.DXZ4 has been hypothesized

to play a role in reorganizing chromatin during X inactivation

(Chadwick, 2008).

There were also significant differences in loop structure be-

tween the chromosome X homologs. We observed 27 large

‘‘superloops,’’ each spanning between 7 and 74 Mb, present

only on the inactive X chromosome in the diploidmap (Figure 7E).

The superloops were also seen in all four unphased maps from

karyotypically normal XX cells, but were absent in unphased

maps from X0 and XY cells (Figure S7I). Two of the superloops

(chrX:56.8 Mb-DXZ4 and DXZ4-130.9 Mb) were reported previ-

ously in a locus-specific study (Horakova et al., 2012).

Like the peak loci of most other loops, nearly all the superloop

anchors bind CTCF (23 of 24). The six anchor regions most

frequently associated with superloops are large (up to 200 kb).

Four of these anchor regions contain whole long noncoding

RNA (lncRNA) genes: loc550643, XIST, DXZ4, and FIRRE. Three

(loc550643(( ,DXZ4, and FIRRE) contain CTCF-binding tandem re-EE

peats that only bind CTCF on the inactive homolog.

DISCUSSION

Using the in situ Hi-C protocol, we probed genomic architecture

with high resolution; in the case of GM12878 lymphoblastoid

cells, better than 1 kb. We observe the presence of contact do-

mains that were too small (median length = 185 kb) to be seen in

previous maps. Loci within a domain interact frequently with one

another, have similar patterns of chromatin modifications, and

exhibit similar long-range contact patterns. Domains tend to

be conserved across cell types and between human and mouse.

When the pattern of chromatin modifications associated with a

domain changes, the domain’s long-range contact pattern also

changes. Domains exhibit at least six distinct patterns of long-

range contacts (subcompartments), which subdivide the two

compartments that we previously reported based on low resolu-

tion data. The subcompartments are each associated with

distinct chromatin patterns. It is possible that the chromatin pat-

terns play a role in bringing about the long-range contact pat-

terns, or vice versa.

Our data also make it possible to create a genome-wide cata-

log of chromatin loops. We identified loops by looking for pairs of

loci that have significantly more contacts with one another than

they do with other nearby loci. In our densest map (GM12878),

we observe 9,448 loops.

The loops reported here have many interesting properties.

Most loops are short (<2 Mb) and strongly conserved across

cell types and between human and mouse. Promoter-enhancer

loops are common and associated with gene activation. Loops

tend not to overlap; they often demarcate contact domains,

and may establish them. CTCF and the cohesin subunits

RAD21 and SMC3 associate with loops; each of these proteins

is found at over 86% of loop anchors.

Themost striking property of loops is that the pair of CTCFmo-

tifs present at the loop anchors occurs in a convergent orienta-

tion in >90% of cases (versus 25% expected by chance). The

importance of motif orientation between loci that are separated

by, on average, 360 kb is surprising and must bear on the mech-

anism by which CTCF and cohesin form loops, which seems

likely to involve CTCF dimerization. Experiments in which the

presence or orientation of CTCF sites is altered may enable the

engineering of loops, domains, and other chromatin structures.

It is interesting to compare our results to those seen in previous

reports. The contact domainswe observe are similar in size to the

‘‘physical domains’’ that have been reported in Hi-C maps of

Drosophila (Sexton et al., 2012) and to the ‘‘topologically con-

strained domains’’ (mean length: 220 kb) whose existence was

demonstrated in the 1970s and 1980s in structural studies of hu-

man chromatin (Cook and Brazell, 1975; Vogelstein et al., 1980;

Zehnbauer and Vogelstein, 1985). On the other hand, the do-

mains we observe are much smaller than the TADs (1 Mb) (Dixon

et al., 2012) that have been reported in humans and mice on the

basis of lower-resolution contact maps. This is because detect-

ing TADs involves detection of domain boundaries. With higher

resolution data, it is possible to detect additional boundaries

beyond those seen in previous maps. Interestingly, nearly all

the boundaries we observe are associated with either a subcom-

partment transition (that occur approximately every 300 kb), or a

loop (that occur approximately every 200 kb); and many are

associated with both.

Our annotation identifiesmany fewer loops thanwere reported

in several recent high-throughput studies, despite the fact that

we have more data. The key reason is that we call peaks only

when a pair of loci shows elevated contact frequency relative

to the local background—that is, when the peak pixel is enriched

as compared to other pixels in its neighborhood. In contrast,

prior studies have defined peaks by comparing the contact fre-

quency at a pixel to the genome-wide average (Sanyal et al.,

2012; Jin et al., 2013). This latter definition is problematic

becausemany pixels within a domain can be annotated as peaks

despite showing no local increase in contact frequency. Papers

using the latter definition imply the existence of more than

100,000 loops (1,187 loops were reported in 1% of the genome

[Sanyal et al., 2012]) or even more than 1 million loops (reported

in a genome-wide Hi-C study [Jin et al., 2013]). The vast majority

of the loops annotated by these papers show no enrichment rela-

tive to the local background when examined one-by-one and no

enrichment with respect to any published Hi-C data set when

analyzed using APA (see Extended Experimental Procedures;

Figure S8; Data S2). This suggests that these peak annotations

may correspond to pairs of loci that lie in the same domain or

compartment, but rarely correspond to loops.

We created diploid Hi-C maps by using polymorphisms to

assign contacts to distinct chromosomal homologs. We found

that the inactive X chromosome is partitioned into two large
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superdomains whose boundary lies near the locus of the lncRNA

DXZ4. We also detect a network of long-range superloops, the

strongest of which are anchored at locations containing lncRNA

genes (loc550643(( , XIST, DXZ4, and FIRRE). With the exceptionEE

of XIST, all of these lncRNAs contain CTCF-binding tandem re-

peats that bind CTCF only on the inactive X.

In our original report on Hi-C, we observed that Hi-Cmaps can

be used to study physical models of genome folding, and we

proposed a fractal globule model for genome folding at the meg-

abase scale. The kilobase-scale maps reported here allow the

physical properties of genome folding to be probed at much

higher resolution. We will report such studies elsewhere.

Just as loops bring distant DNA loci into close spatial proximity,

we find that they bring disparate aspects of DNA biology—do-

mains, compartments, chromatin marks, and genetic regula-

tion—into close conceptual proximity. As our understanding of

the physical connections between DNA loci continues to

improve, our understanding of the relationships between these

broader phenomena will deepen.

EXPERIMENTAL PROCEDURES

In Situ Hi-C Protocol

All cell lines were cultured following the manufacturer’s recommendations.

Two to five million cells were crosslinked with 1% formaldehyde for 10 min

at room temperature. Nuclei were permeabilized. DNA was digested with

100 units of MboI, and the ends of restriction fragments were labeled using

biotinylated nucleotides and ligated in a small volume. After reversal of cross-

links, ligated DNA was purified and sheared to a length of �400 bp, at which

point ligation junctions were pulled down with streptavidin beads and prepped

for Illumina sequencing. Dilution Hi-C was performed as in Lieberman-Aiden

et al. (2009).

3D-FISH

3D DNA-FISH was performed as in Beliveau et al. (2012) with minor

modifications.

Hi-C Data Pipeline

All sequence data were produced using Illumina paired-end sequencing. We

processed data using a custompipeline that was optimized for parallel compu-

tation on a cluster. The pipeline uses BWA (Li and Durbin, 2010) to map each

read end separately to the b37 or mm9 reference genomes; removes duplicate

and near-duplicate reads; removes reads that map to the same fragment;

and filters the remaining reads based on mapping quality score. Contact

matrices were generated at base pair delimited resolutions of 2.5 Mb, 1 Mb,

500 kb, 250 kb, 100 kb, 50 kb, 25 kb, 10 kb, and 5 kb, as well as fragment-de-

limited resolutions of 500 f, 200 f, 100 f, 50 f, 20 f, 5 f, 2 f, and 1 f. For our largest

maps, we also generated a 1 kb contact matrix. Normalized contact matrices

are produced at all resolutions using Knight and Ruiz (2012).

Annotation of Domains: Arrowhead

To annotate domains, we apply an ‘‘arrowhead’’ transformation, defined as

Ai,i+d = (M*i,i-d – M*i,i+d)/(M*dd i,i�d + M*i,i+d)dd . M* denotes the normalized contact

matrix (see Figures S2A–S2F). This is equivalent to calculating a matrix equal

to �1*(observed/expected � 1), where the expected model controls for local

background and distance from the diagonal in the simplest possible way:

the ‘‘expected’’ value at i,i + d is simply the mean of the observed values at

i,i � d and i,i + d. Ai,i+d will be strongly positive if locus i � d is inside a domain

and locus i + d is not. If the reverse is true, Ai,i+d will be strongly negative. If the

loci are both inside or both outside a domain, Ai,i+dwill be close to zero. Conse-

quently, if there is a domain at [a[[ ,b], we find that A takes on very negative

values inside a triangle whose vertices lie at [a[[ ,a], [a[[ ,b], and [(a(( + b)/2,b] and

very positive values inside a triangle whose vertices lie at [(a(( + b)/2,b], [b[[ ,b],

and [b[[ ,2b � a]. The size and positioning of these triangles creates the arrow-

head-shaped feature that replaces each domain in M*. A ‘‘corner score’’

matrix, indicating each pixel’s likelihood of lying at the corner of a domain, is

efficiently calculated from the arrowhead matrix using dynamic programming.

Assigning Loci to Subcompartments

To cluster loci based on long-range contact patterns, we constructed a 100 kb

resolution interchromosomal contact matrix such that loci from odd chromo-

somes appeared on the rows, and loci from even chromosomes appeared

on the columns. (Intrachromosomal data and data involving chromosome X

were excluded.) We cluster this matrix using the Python package scikit. For

subcompartment B4, the 100 kb interchromosomal matrix for chromosome

19 was constructed and clustered separately, using the same procedure.

Annotation of Peaks: HiCCUPS

Our peak-calling algorithm examines each pixel in a Hi-C contact matrix and

compares the number of contacts in the pixel to the number of contacts in a

series of regions surrounding the pixel. The algorithm thus identifies ‘‘enriched

pixels’’ M*i,j where the contact frequency is higher than expected and where

this enrichment is not the result of a larger structural feature. For instance,

we rule out the possibility that the enrichment of pixel M*i,j is the result of Li
and LjL lying in the same domain by comparing the pixel’s contact count to

an expected model derived by examining the ‘‘lower-left’’ neighborhood.

(The ‘‘lower-left’’ neighborhood samples pixels Mi0 ,j0 where i % i0 % j0 % j; if a

pixel is in a domain, these pixels will necessarily be in the same domain.) We

require that the pixel being tested contain at least 50%more contacts than ex-

pected based on the lower-left neighborhood and the enrichment be statisti-

cally significant after correcting formultiple hypothesis testing (False Discovery

Rate < 10%). The same criteria are applied to three other neighborhoods. Thus,

to be labeled an enriched pixel, a pixel must be significantly enriched relative to

four neighborhoods: (1) pixels to its lower-left, (2) pixels to its left and right, (3)

pixels above and below, and (4) a donut surrounding the pixel of interest (Fig-

ure 3A). The resulting enriched pixels tend to form contiguous interaction re-

gions comprising 5–20 pixels each. We define the ‘‘peak pixel’’ (or simply the

‘‘peak’’) to be the pixel in an interaction region with the most contacts.

Because of the enormous number of pixels that must be examined, this

calculation requires weeks of central processing unit (CPU) time to execute.

(For instance, at a matrix resolution of 5 kb, the algorithm must be run on

20 billion pixels.) To accelerate it, we created a highly parallelized im-

plementation using general-purpose graphical processing units resulting in a

200-fold speedup.

Aggregate Peak Analysis

We perform APA on 10 kb resolution contact matrices. To measure the aggre-

gate enrichment of a set of putative peaks in a contact matrix, we plot the sum

of a series of submatrices derived from that contact matrix. Each of these sub-

matrices is a 210 kb3 210 kb square centered at a single putative peak in the

upper triangle of the contact matrix. The resulting APA plot displays the total

number of contacts that lie within the entire putative peak set at the center

of the matrix; the entry immediately to the right of center corresponds to the

total number of contacts in the pixel set obtained by shifting the peak set

10 kb to the right; the entry two positions above center corresponds to an up-

ward shift of 20 kb and so on. Focal enrichment across the peak set in aggre-

gate manifests as larger values at the center of the APA plot. The APA plots

shown only include peaks whose loci are at least 300 kb apart.
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SUMMARY

Rice is sensitive to cold and can be grown only in
certain climate zones. Human selection of japonica
rice has extended its growth zone to regions with
lower temperature, while the molecular basis of
this adaptation remains unknown. Here, we identify
the quantitative trait locus COLD1 that confers chill-
ing tolerance in japonica rice. Overexpression of
COLD1jap significantly enhances chilling tolerance,
whereas rice lines with deficiency or downregulation
of COLD1jap are sensitive to cold. COLD1 encodes a
regulator of G-protein signaling that localizes on
plasma membrane and endoplasmic reticulum (ER).
It interacts with the G-protein a subunit to activate
the Ca2+ channel for sensing low temperature and
to accelerate G-protein GTPase activity. We further
identify that a SNP in COLD1, SNP2, originated
from Chinese Oryza rufipogon, is responsible for
the ability of COLDjap/ind to confer chilling tolerance,
supporting the importance of COLD1 in plant
adaptation.

INTRODUCTION

Rice, which is both a model plant and one that feeds more than

half of the world’s population (Sasaki and Burr, 2000), evolved in

tropical and subtropical areas and is sensitive to chilling stress

(Kovach et al., 2007; Saito et al., 2001; Sang and Ge, 2007).

Extreme temperature thus represents a key factor limiting global

rice plant distribution. Super hybrid rice cultivars produce high

yields in tropical or subtropical climates but are frequently

harmed by chilling. Therefore, molecular genetic tools have

been urgently sought to improve rice chilling tolerance in order

to maintain rice production in current regions and expand it

into northern areas with lower yearly temperatures.

Asian cultivated rice (Oryza sativa) was domesticated from its

wild relatives Oryza nivara and O. rufipogon. It consists of two

major subspecies, indica (O. sativa ssp. indica) and japonica

(O. sativa ssp. japonica) (Kovach et al., 2007; Sang and Ge,

2007). Typical japonica cultivars, called temperate japonica,

are grown in regions with lower yearly temperatures and gener-

ally exhibit stronger chilling tolerance than do indica cultivars.

By contrast, some japonica cultivars that moved southwest

to southeast Asia became tropical ecotypes, referred to as

javanica or tropical japonica. Divergence between indica and

japonica was driven by divergent natural selection imposed

by contrasting environmental temperatures (Kovach et al.,

2007; Sang and Ge, 2007). During human selection, cultivated

rice has undergone significant changes in agricultural traits,

such as grain yield, as well as environmental tolerance (Huang

et al., 2012; Xu et al., 2012). Several developmental trait-related

genes, such as SH4 and PROG1, with signatures of domestica-

tion in cultivated rice have been identified using genetic map-

ping for quantitative trait loci (QTLs) and genome-wide associ-

ation studies (GWAS) (Huang et al., 2012; Xu et al., 2012). The

QTLs responsible for chilling tolerance in rice were mapped,

revealing that the corresponding genes affect either seed

germination or male sterility (Saito et al., 2001, 2010; Fujino

et al., 2008; Koseki et al., 2010), but less is known about the

molecular basis of the divergence between the two subspecies

in terms of adaptation to the environment and geographical

distribution.

Plant cellular adaptations to temperature differences are

dependent on specific molecular cellular pathways including

Ca2+-mediated signal transduction. Cyclic nucleotide-gated

channels (CNGCs) are nonspecific cation channels; in Arabi-

dopsis, CNGCs form a family with 20 members and contribute

to Ca2+ fluxes in various stress responses (Finka et al., 2012;

Steinhorst and Kudla, 2013; Swarbreck et al., 2013). In

mammals, Ca2+ channels interact with heterotrimeric guanine

nucleotide-binding protein (G protein) complexes to function

in stress responses (Wang and Chong, 2010). The transition

of the mammalian G-protein a subunit between an activated

sate and an inactivated is regulated by G-protein-coupled re-

ceptors (GPCRs), which mediate exchange (GDP release and

GTP binding), and by regulator of G-protein signaling (RGS),

which promotes GTP hydrolysis. Unlike animal G proteins, plant
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heterotrimeric G proteins are self-activating and do not utilize

GPCRs in converting to the GTP-binding state (Urano et al.,

2013). Instead, the RGS with activity of GTPase-accelerating

protein (GAP) activity for GTP hydrolysis is more important for

G-protein signaling in plant cells. In response to mild heating

shock, Ca2+-permeable channels mediate signals that lead to

an influx of Ca2+ into plant cells (Saidi et al., 2009). Ca2+

signaling in plant cells also occurs during cold shock (Knight

et al., 1996), although less is known about how the cold shock

is linked to Ca2+ signaling. Overall, it is well established that

Ca2+ signaling pathways and the resultant changes in gene

transcription are involved in responses to altered temperature

in plant cells (Dai et al., 2007; Lee et al., 2009; Ma et al.,

2009). However, it is unknown how the signaling pathway in

response to cold stimulation evolved during the divergence be-

tween rice subspecies indica and japonica.

Here, we provide evidence that a QTL gene, CHILLING-

TOLERANCE DIVERGENCE 1 (COLD1), is associated with

divergence in chilling tolerance of rice cultivars. We further

demonstrate that a single-nucleotide mutation at COLD1 con-

fers adaptation of japonica rice to chilling and originated from

the Chinese wild populations of O. rufipogon. COLD1 localized

at the plasma membrane, and endoplasmic reticulum (ER) is

involved in sensing cold to trigger Ca2+ signaling for chilling

tolerance. These findings reveal the importance of COLD1 in

plant adaptation and its great potential for rice molecular

breeding.

RESULTS

COLD1 Confers Chilling Tolerance in Rice
Chilling tolerance of rice cultivars is regulated by QTLs derived

from the subspecies japonica (Saito et al., 2001). To identify the

genes involved in the increased chilling tolerance found in culti-

vars from growth regions with low yearly temperatures, we car-

ried out a QTL analysis for chilling-tolerance divergence (COLD)

in recombinant inbred lines (RILs) generated from a cross be-

tween chilling-tolerant Nipponbare (japonica(( ) and chilling-sensi-

tive 93-11 (indica(( ) cultivars, testing for chilling sensitivity using

the cold treatment (4�C) (Figure 1A). Using 151RILs, we detected

five QTLs, on chromosomes 1, 2, 4, 6, and 8 (Table S1). One of

them, COLD1, was defined between markers RM6365 and

RM5503 on the long arm of chromosome 4 (Figure 1C; Table

S1). This locus explained 7.23% of the variance in chilling toler-

ance and shared the same locus with the QTLCtb2 despite slight

differences in the crossed populations (Saito et al., 2001). The

COLD1 locus displayed much lower interaction with other QTLs

for chilling tolerance (p = 0.0363, 0.0242) than did the other loci,

such as COLD4 (p = 0.0002) and COLD5 (p = 0.0006) (Table S1).

To evaluate whether the Nipponbare (NIP) locus, COLD1NIP,

contributes to chilling tolerance, we generated three near-

isogenic lines (NILs) containing the COLD1NIP locus in the 93-

11 genetic background, which is one of the parental lines of

the Chinese super hybrid rice. The homozygous COLD1NIP/NIP

lines NIL4-1 and NIL4-6 showed remarkably higher tolerance

24 days15 days

 93-11   NIP    NIL4-6                            93-11  NIP NIL4-6                    93-11    NIP     NIL4-6                   93-11   NIP   NIL4-6  

S
ur

vi
va

l%

     93-11          NIP          NIL4-6

A
L606683-2

R
M

5503
0.8

TGA 3’A1091 (A →T)A5’ ATG

A

B

0

24 days (After)15 days (Before)

Nontreatment control  Cold treatment

Figure 1. Map-Based Cloning of COLD1

(A) Phenotypic response to chilling in 93-11, Nipponbare (NIP), and the homozygote NIL4-6. Scale bars, 5 cm.

(B) The survival rate of 93-11, NIL4-6, and NIP after chilling treatment (96 hr). Values are expressed as mean ± SD, n = 3, **p < 0.01. See also Figure S1.

(C) TheCOLD1 gene wasmapped to the interval between themolecular markers AL606683-2 and RM5503 in chromosome 4. The gene was further delimited to a

77.33-kb genomic region on a BAC. Black arrows represent predicted genes. Black rectangles represent exons of COLD1.

See also Table S1 and Figure S1.
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to chilling compared to 93-11 (Figures 1B and S1). A dominance

assay on the heterozygote COLD1NIP/93-11 NIL2-5 showed that

its chilling tolerance was similar to that of NIL4-1 and NIL4-6

(Figure S1). To fine-map COLD1, we analyzed 8,368 F2 plants

generated from NIL2-5 and narrowed the candidate region

to 77.33 kb between AL606683-2 and RM5503. This region

contains 11 predicted genes or open reading frames (Figure 1C;

Table S1). Genomic DNA sequence comparisons between the

candidate regions of the parents NIP and 93-11 showed that

one single-nucleotide mutation at 15th nucleotide in the fourth

exon of COLD1 (A in NIP was changed into T in 93-11)

(LOC_Os04 g51180, MSU Rice Genome Annotation (Osa1)

release 7. http://rice.plantbiology.msu.edu) caused a change in

an encoded amino acid (Lys in NIP was changed into Met in

93-11) (Figure 1).

To determine whether the COLD1 gene underlies the QTL, we

constructed COLD1jap-overexpression (OE) and antisense (AL)

transgenic rice lines in japonica cultivar Zhonghua 10 (ZH10)

(Figures 2 and S2), and examined their chilling tolerance. In addi-

tion, we analyzed the cold1-1mutant, which has a T-DNA inser-

tion in the 11th intron ofCOLD1, +3,707 bp downstream from the

ATG in the japonica rice Dongjin (DJ) background, and which

lacks the full-length transcript (Figure S2). Seedlings were

exposed to chilling temperature (4�C) and subsequently returned

to 30�C. Rice plants with chilling tolerance were defined as those

that could re-differentiate new leaves or continue growing leaves

when returned normal conditions after treatment with chilling

stress. Clear phenotypic differences in the survival rate (percent-

age alive seedlings of the total tested plants) were observed

among these lines (Figures 2 and S2). Seedlings of the cold1-1

Dongjin     cold1-1 ZH10           AL8            AL16                          ZH10           OE6          OE12

Dongjin     cold1-1 ZH10           AL8            AL16                              ZH10         OE6             OE12

b1 b2 b3

b1 b2 b3

 NL            DGW                NL       

Figure 2. COLD1 Is Essential for Chilling Tolerance

(A) The cold1-1mutant showed chilling sensitivity. The survival rate was determined after treatment at 4�C for 96 hr and subsequent recovery at 30�C for 7 days.

(B) The antisense transgenic rice lines (AL8 and AL16) showed chilling sensitivity. The survival rate was determined after treatment at 2�C–3�C for 96 hr and

subsequent recovery at 30�C for 4 days. Panes are enlargements of plants showing live seedlings with new leaves (NL) and dead seedlings with dry green and

white leaves (DGW).

(C) The overexpression transgenic lines (OE6 and OE12) showed chilling tolerance. The survival rate was determined after treatment at 2�C–3�C for 96 hr and

subsequent recovery at 30�C for 4 days. The upper diagrams represent the T-DNA insertion or the transgenes used to generate the lines.

35S, CaV 35S promoter; Ubi, maize ubiquitin promoter; T-RB, T-DNA, right border; T-LB, T-DNA, left border; GUS, b-glucuronidase; Hyg (R), Hygromycin B

resistance, Ter, terminator. Values are means ± SD, n = 3. Scale bars, 5 cm. **<0.01. See also Figures S2 and S3.
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mutant, as well as of the antisense lines (AL5, AL6, AL8, and

AL16) were chilling sensitive compared to the wild-type (WT).

By contrast, COLD1jap-overexpression lines, such as OE6,

OE12, OE1, and OE2, showed higher chilling tolerance than

WT. The findings suggest that COLD1 modulates chilling toler-

ance in rice.

SNP2 Is Associated with Chilling Tolerance
To test for association between COLD1 alleles and chilling toler-

ance, we examined the chilling tolerance of 5 indica and 20

japonica cultivars, as well as 2 accessions of wild rice (Table

S2). All japonica cultivars and 2O. rufipogon accessions showed

stronger chilling tolerance than did all indica cultivars (Figure 3A;

Table S2). We then sequenced the full-length COLD1 gene of

4.78 kb including the 50 and 30 untranslated regions in these sam-

ples and identified seven SNPs (Figure 3A), including a synony-

mous polymorphism in the first exon (SNP1), a nonsynonymous

polymorphism only in the fourth exon (SNP2), and five substitu-

tions in introns (SNP3, 4, 5, 6, and 7). We grouped the cultivars

based on chilling sensitivity and examined whether chilling toler-

ance was associated with allelic differences (SNPs) in COLD1.

Strikingly, all accessions with confirmed chilling tolerance,

including 20 japonica cultivars and 2 O. rufipogon accessions,

differed from the indica cultivars that lacked the chilling tolerance

by the SNP in the fourth exon (SNP2). The nucleotide polymor-

phism of T/C versus A in the fourth exon resulted in Met187/

Thr187 in indica compared to Lys187 in japonica cultivars. At

the remaining SNP sites, polymorphic nucleotides were found

in cultivars both with and without chilling tolerance (Figure 3A

and Table S3).

To determine whether SNP2 led to alteration of chilling toler-

ance, we generated transgenic lines overexpressing the gene

from indica plants (SNP2ind(T)) in the japonica ZH11 back-

ground (Figures 3 and S3). The COLD1ind transgenic lines

were more sensitive to chilling compared to ZH11. In addition,

the transgenic lines of COLD1ind (SNP2ind(T)) in the cold1-1

mutant background showed a similar chilling tolerance as

cold1-1, but significantly weaker tolerance than wild-type DJ.

By contrast, the transgenic lines of COLD1jap (SNP2jap(A)22 ) in

the cold1-1 background showed similar tolerance as wild-

type after cold treatment (Figures 3B and S3). Together with

the enhanced chilling tolerance observed in the COLD1jap

(SNP2jap(A)22 ) transgenic lines in wild-type background and that

in the cold1-1 background for the genetic complementation

(Figure 2C), this suggests that SNP2, resulting in a change of

encoded amino acid, is responsible for chilling tolerance in

japonica rice.

SNP2 Arose during japonica Domestication
To examine the evolutionary origin of the alleles, we sequenced

the full-length COLD1 gene in an additional 100 accessions of

cultivated and wild rice, including 36 indica, 15 japonica, and

15 javanica accessions, and 14 O. nivara and 19 O. rufipogon in-

dividuals as well as one O. barthii individual (Table S2). All

japonica accessions, except for two samples displaying hetero-

zygosity, had nucleotide A at the SNP2 site, whereas the indica

accessions had either T or C, and javanica had A or T or C at

this site. The five O. rufipogon samples originated from China

had A at this site, and one O. rufipogon sample from Hainan

province in China had W, whereas the remaining wild rice sam-

ples including 15 O. rufipogon samples from outside of China,

14 O. nivara samples and one O. barthii sample had either T or

C (Table S2).

Geographically, 33 japonica cultivars, one javanica and the

Chinese O. rufipogon samples with A at SNP2 were distributed

in the northern area of China, Japan, Korea, and the United

States, or at higher elevations of the southeast zone of Asia

(Figure 3C). By contrast, all samples without A at SNP2, including

41 indica and 15 O. rufipogon samples from outside of China,

were distributed in southern and southeastern Asia, regions

with higher yearly temperatures. For javanica, 14 samples with

nucleotide diversities at the site were distributed in regions of

higher yearly temperature, such as southern area of China and

the Philippines. Phylogenetic analysis of the COLD1 sequences

of the 72 accessions sampled (Table S2) indicated that all

japonica accessions and the Chinese O. rufipogon samples

carrying the chilling-tolerance SNP2A were grouped together

with 60% bootstrap support (Figure 3D). These observations

indicate that theCOLD1 allele with themutation at SNP2A is likely

to have originated from Chinese O. rufipogon during japonica

rice domestication.

To examine whether selection has acted on COLD1, we

analyzed nucleotide diversity across the sequenced region in

72 accessions (Table S2), including the original 27 accessions

tested for chilling tolerance. A comparison of the nucleotide

diversity among indica, japonica, javanica, O. nivara, and

O. rufipogon indicated that on average, japonica exhibited

much lower diversity (q = 0.0004; p = 0.0002) than indica (q =

0.0014; p = 0.0013), javanica (q = 0.0025; p = 0.0017), and the

two wild rice species (q = 0.0014–0.0022; p = 0.0010–0.0020).

Significantly negative Tajima’s D values were observed only for

japonica cultivars (Table S3), consistent with selection at the

COLD1 locus.

To determine further whether the reduction in nucleotide diver-

sity in japonica rice could be caused by artificial selection, we

conducted MLHKA tests on COLD1 sequences for all six taxa

(Table S3) in reference to seven neutral genes (Zhu et al.,

2007). We found a significant value for japonica rice (p =

0.001), indicative of strong artificial selection on the COLD1 lo-

cus during japonica domestication. To exclude the potential

impact of demography on diversity reduction at COLD1, we

further examined the nucleotide diversity for the ten genes within

400-kb region surrounding the COLD1 locus in 43 accessions

(Tables S2 and S3) because selection might lead to a selective

sweep in the flanking region of the selected genes (Asano

et al., 2011). As expected, we found that the average nucleotide

diversity of the ten genes in japonica (p = 0.0003) was much

lower than those of all other rice groups (p = 0.0027 for indica;

p = 0.0020 for javanica; p = 0.0057 for wild rice) (Table S3),

consistent with the selective sweep argument. A coalescent

simulation using the ten surrounding genes revealed a significant

lowerK value (the severity of the bottleneck) in japonica (K= 0.06(( )66

than that of neutral genes (K(( = 0.2) (p = 0.0097) (Table S3)

(Zhu et al., 2007), indicating that the reduced diversity at the

genes surrounding COLD1 in japonica cannot be explained by

a domestication bottleneck alone. Taken together, our data
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Figure 3. Association of SNPs in COLD1 with Chilling Tolerance and Their Geographic and Phylogenetic Origins

(A) SNPs and chilling tolerance in 27 accessions.

(B) Chilling tolerance response of COLD1 complementation lines in the cold1-1 genetic background. Values are expressed as means ± SD, n = 3. Statistically

different values (p < 0.05) are indicated by different letters.

(C)Geographicdistributionof 127accessions tested (TableS2). The japonica andO. rufipogon samples carryingAat theSNP2siteare representedby red circles. The

indica cultivars with T/C are denoted by blue triangles/purple crosses, respectively. The heterozygous cultivars [W (A or T)/K (G or T)] are represented by black rings.

(D) Neighbor-joining tree. Bootstrap values over 60% are given on the branches.

See also Tables S2 and S3.
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show that the A at the functional SNP2 of COLD1 is associated

with the development of chilling tolerance in cultivated rice and

might represent an ancient allele preserved in the Chinese pop-

ulations of O. rufipogon and selected during domestication of

japonica rice.

COLD1 Localizes to the ER and Plasma Membrane
COLD1 was predicted to encode a 53-kDa protein with nine

transmembrane domains. As expected, it was grouped with

its orthologs from the monocotyledons in a phylogenetic tree

(Figure S4). Immunoblotting assays on tissues expressing a

COLD1-GFP fusion transgene showed signal from an anti-GFP

antibody only in the membrane protein fraction, similar to the

control membrane proteins H+-ATPase and BiP, a marker of

the endoplasmic reticulum (ER). No signal for COLD1-GFP was

found in the soluble fractions, although the soluble control of

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein

did show a signal (Figure 4A). Under microscopy, fluorescence

of GFP-COLD1 overlapped with that of BiP-RFP at the ER (Fig-

ures 4B, 4C, and S4D) and with that of PIP2-mCherry, a marker

for the plasmamembrane and ER (Lee et al., 2009), at the plasma

membrane (Figure S4E). Similarly, the signal of COLD1-GFP co-

localized with that of PIP2-mCherry at ER with a reticular pattern

and at the plasma membrane (Figures S4F, S4G, and 4D). The

plasma membrane localization was independent on the myris-

toylation of G2 in theN-terminal motif M1-G2-W3 of COLD1 (Fig-

ures S4H and S4I) (Batistic et al., 2008; Yamauchi et al., 2010).

These results suggest that COLD1 is mainly localized to the ER

and plasma membrane.

COLD1 Interacts with G-Protein a Subunit
Based on hidden Markov model (Krogh et al., 2001) predictions,

COLD1 contains nine transmembrane domains with a preferred

orientation of an extracellular N terminus and an intracellular

terminus, similar to the pattern of its Arabidopsis orthologs (Fig-

ures S4 and S5), GTG1/2, which interact with G-protein a sub-

unit. We confirmed the interaction between COLD1 and the

rice G-protein a subunit 1 (RGA1) (Ludewig et al., 2003; Stagljar

et al., 1998) in vitro and in vivo. Yeast cells co-transformed either

with COLD1jap or COLD1ind or COLD1DjapD and RGA1 grew well

on medium lacking His and Ade and showed X-gal staining, in

contrast to the negative controls (Figure S5). In co-immunopre-

cipitation (Co-IP) assays, GFP-COLD1 was detected in com-

plexes immunoprecipitated with the anti-FLAG antibody from

leaves of transgenic plants expressing GFP-COLD1 and FLAG-

RGA1 (Figure 5A). Bimolecular fluorescence complementation

(BiFC) assays revealed reconstituted YFP fluorescence in the

plasma membrane of transgenic lines harboring COLD1-YFPC

and RGA1-YFPN (Figure 5B). By contrast, no fluorescence was

detected in the negative controls OsBAK1-YFPC and RGA1-

YFPN. These data demonstrate that COLD1 can physically

interact with RGA1 in plant cells.

COLD1 Functions as a GTPase-Accelerating Factor on
RGA1
Biochemical activity assays confirmed that RGA1 instead of

COLD1 alone had GTPase activity, dependent on Mg2+ concen-

tration in the reaction (Figures 5C, 5D, and S5D). RGA1 GTPase

activity was accelerated in the presence of COLD1jap (SNPjap(A)PP ).

By contrast, COLD1ind (SNPind(A)), as well as the truncated pro-

tein COLD1DjapD from cold1-1, suppressed RGA1 GTPase activity

over the course of the assay (Figure 5C). The COLD1jap-induced

acceleration of RGA1 GTPase activity was impaired by inclusion

of COLD1ind in the reaction (Figure 5D), which may explain the

tolerance differences between COLD1ind and COLD1jap trans-

genic lines on the japonica background, as well decreased toler-

ance of cold1-1 (Figure S3). A time-course assay for the toler-

ance showed that the RGA1 mutant d1 was significantly more

sensitive to chilling for survival compared with wild-type Shiokari

(Figure 5E). This is consistent with that the COLD1 and RGA1

complex is required for the tolerance.

We used an electrode voltage clamp approach to record

the currents of oocytes co-expressing COLD1 and RGA1 (Fig-

ure 5F). Upon cold treatment, an inward current was signifi-

cantly activated in the cells co-expressing COLD1jap and

RGA1 compared with expression alone, which was in contrast

to their patterns showing no response to heat stimulation

(40�C) (Figure S5) (Finka et al., 2012). The cold-activated

response lagged by several seconds and returned rapidly to

baseline levels after removal of cold stimulation. The cold-stim-

ulated inward current was 588 ± 90 nA. By contrast, control

cells and oocytes co-expressing COLD1ind and RGA1 gener-

ated background currents of 373 ± 36 and 246 ± 41 nA,

respectively. Co-expression of the truncated gene COLD1Djap

and RGA1 led to a weaker inward current in response to cold

stimulation than that of COLD1jap. This suggests that the

cold-stimulated inward current signal is dependent on interac-

tion between COLD1 and RGA1 in the present of Ca2+. Prob-

ably, a complex of COLD1 that has a GTPase-accelerating

on RGA1 may affect influx of cations (such as Ca2+) to cause

changes of the membrane currents in oocyte cells. The

japonica allele COLD1jap showed a stronger response with

RGA1 on the cold-stimulated inward current signal than did

the indica allele COLD1ind.

Figure 4. COLD1 Localization

(A) Immunoblotting assay showing GFP antibody recognized GFP-tagged COLD1 in the membrane protein fraction from transgenic tobacco. H+-ATPase,

membrane protein control; BiP, ER marker control; GAPDH, glyceraldehydes- 3-phosphate hydrogenase soluble protein control.

(B) ER localization of COLD1 in Arabidopsis protoplast cells. The b1 images (lower) show enlargements of the regions framed in white (upper).

(C) Co-localization of COLD1with ERmarker. GFP-COLD1 signal wasmerged with that of the RFP-tagged BiPmarker in Arabidopsismesophyll protoplasts. The

images with labels c1, c2, and c3 (lower) are enlargements of the regions framed in white (upper). Scale bars, 10 mm.

(D) Plasma membrane localization of COLD1 in cells. COLD1-GFP signal was merged with that of the PIP2-mCherry (an intrinsic plasma membrane protein)

marker in Tobacco mesophyll protoplasts. The fluorescence intensity was scanned with the ImageJ plot profile tool (ImageJ v.1.47; http://rsbweb.nih.gov/ij/

download.html). y axes are relative pixel intensity. Scale bar, 10 mm.

All experiments were performed with at least three biological replicates. See also Figure S4.
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Figure 5. COLD1 Interacts with RGA1
(A) Co-immunoprecipitation assays confirming the interaction between COLD1 and RGA1. Co-expressed FLAG-RGA1 and COLD1-GFP in tobacco leaves were

immunoprecipitated by anti-FLAG or -GFP. Blots were probed with by anti-GFP or -FLAG.

(B) BiFC assays showing that the proteins interact in vivo. The bottom ones are the merged images. Immunoblots (right) confirmed the expression of the

interaction proteins in the transgenic leaf tissues used in the BiFC assay. YN, YN173; YC, YCM. Scale bars, 20 mm.

(C) Intrinsic GTPase activity of RGA1 was accelerated by COLD1jap but impaired by COLD1ind or COLD1Djap. The molar ratio of RGA1/COLD1 was 4.8. Values

are expressed as mean ± SD, n = 3. The immunoblots show amount of proteins in the reaction.

(D) Acceleration of RGA1 GTPase activity by COLD1jap was inhibited by addition of COLD1ind in vitro. The molar ratio of RGA1/COLD1 was 4.8. Values

are expressed as mean ± SD, n = 3. The immunoblots show amount of proteins in the reaction.

(E) Time course of chilling tolerance showing that the d1mutant is sensitive to cold treatment. The numbers above the bars are alive and total plants. Values are

expressed as mean ± SD, n = 3; **p < 0.01.

(F) Electrophysiological characterization of Xenopus oocytes co-expressingCOLD1 andRGA1, aswell as the control RGA1 only. The blue background represents

a duration for cold treatment in solution. The holding potential was �110 mV.

Values are expressed as means ± SD, n = 7. Statistically different values (p < 0.05) are indicated by different letters. See also Figure S5.

(legend continued on next page)
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COLD1 Is Essential for Changes in Ca2+ Influx upon Cold
Treatment
To examine Ca2+ flux in response to cold shock, we used the

scanning ion-selective electrode technique (SIET) on rice roots

(Ludewig et al., 2003). Upon cold stimulation, there was a signif-

icant influx of extracellular Ca2+ with a minus peak in wild-type

Dongjin roots (Figures 6A and S6). By contrast, cold1-1 showed

no remarkable changes in SIET signals under the same condi-

tions. Compared with wild-type ZH10, the COLD1jap transgenic

line exhibited more Ca2+ influx in response to cold treatment,

but the COLD1ind transgenic line displayed less (Figure 6B). Nip-

ponbare, japonica rice, showed a stronger response than did

indica 93-11 (Figure 6C). In addition, the d1 mutant of RGA1

showed less Ca2+ influx than did wild-type Shiokari. The mean

maximal influxes of cold shock between cold1-1 or transgenic

lines and wild-type were significantly different (Figure 6D). In

response to salt stress, by contrast, the overlapped SIET pat-

terns between cold1-1 and DJ indicated that salt stimulation

signaling may be independent to COLD1 (Figure S6). The extra-

cellular Ca2+ influx peaks in response to cold shock hint that the

net cytoplasm [Ca2+]cyt derived from bulk extracellular Ca2+

might be substantially increased.

We also monitored Ca2+ concentration in the cytoplasm

([Ca2+]cyt) using cytosolic aequorin. Immediately upon the onset

of cold treatment, Dongjin showed a significant [Ca2+]cyt peak

up to 0.554 ± 0.013 mM from 0.319 ± 0.029 mM (n = 7), which

then decreased (Figure 6E). By contrast, cold1-1 showed

a much smaller increase in [Ca2+]cyt from 0.177 ± 0.014 to
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Figure 6. Ca2+ Signaling upon Cold Shock in Rice Plants

(A–C) SIET measurements show extracellular Ca2+ influx upon on cold shock in live roots of various genetic backgrounds (n > 6).

(D) Significance testing of the mean maximal Ca2+ influxes. Values are expressed as mean ± SD, n > 6, Student’s t test, *p < 0.05.

(E) [Ca2+]cyt monitored with aequorin in response to cold shock in wild-type Dongjin and the cold1-1 mutant (n > 6).

(F) Cold response of [Ca2+]cyt in live root cells using Yellow Cameleon (NES-YC3.6). Scale bars, 50 mm. The rectangles represent regions of interest (ROIs)

considered for ratiometric measurements. The numbers used for ratiometric measurements are indicated in the boxes. The experiments were replicated at least

three times. The blue background represents a duration for cold treatment.

See also Figure S6.
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0.240 ± 0.040 mM (n = 9) and subsequently maintained a nearly

stable level under the same conditions (Figure 6E). With regard

to calcium level, the cold shock pattern of [Ca2+]cyt in theCOLD1-
jap-complemented lines (harboring eitherCOLD1jap-GFP orGFP-

COLD1jap) (0.545 ± 0.042 mM [n = 6]) nearly overlapped with that

of wild-type, whereas the COLD1ind transgenic line on cold1-1

(0.186 ± 0.011 mM [n = 6]) showed similar pattern as cold1-1

(Figure 6E).

We used the Cameleon technique to further confirm the ge-

netic complementation effect on Ca2+ elevation (Krebs et al.,

2012). The root cells of DJ showed a remarkable cytoplasm

Ca2+ peak after cold treatment, while cold1-1 had a weaker

peak, as well as a relatively low basal level (Figure 6F). The com-

plemented lines of COLD1jap almost completely rescued the

cold-stimulated Ca2+ elevation in the cold1-1 background. It is

also notable that the recovered Ca2+ patterns of COLD1jap

included the basal elevation compared to cold1-1. By contrast,

overexpression COLD1ind in cold1-1 did not rescue Ca2+

response in either the peak or basal level. In addition, the trends

on fluorescence dyeing data for [Ca2+]cyt cold responses were in

accord with these results (Figure S6).

In addition, the genetic complementation lines of COLD1jap in

cold1-1 background showed more remarkable cold-induced

expression patterns for the stress-specific downstream genes,

such as OsAP2, OsDREB1A, OsDREB1B, and OsDREB1C

than did the overexpression of COLD1ind line (Figure S6). Thus,

the findings on both the extracellular Ca2+ influx and the net cyto-

plasm [Ca2+]cyt signaling are consistent with the idea thatCOLD1

is essential for cold shock-dependent intracellular Ca2+ changes

in rice.

DISCUSSION

In this work, we identified the QTL COLD1, which is required for

chilling tolerance in japonica rice during the seedling stage. The

COLD1 locus enhanced chilling tolerance in near-isogenic lines

NIL4-1 and NIL4-6 from the background cultivar indica 93-11

(Figure S1). It is worth noting that mature rice plants of both

NILs with chilling tolerance displayed increased seed number

per panicle and maintained grain yield per plant compared with

93-11, which is one of the desirable parental lines of the Chinese

super hybrid rice. Thus, these NILs could potentially be used as

parents of super hybrid rice, conferring chilling tolerance without

negative effects on grain yield. This finding, along with the

enhanced tolerance of the COLD1jap overexpression lines, em-

phasizes the potential of either genetic or transgenic approaches

to improve chilling tolerance for rice breeding.

Chilling tolerance, i.e., the capacity to reestablish differentia-

tion and growth under normal conditions after cold exposure,

is a complex trait in seedlings that is controlled by multiple

QTLs. Most of the QTLs genetically interacted with each other,

resulting in a higher genetic contribution to chilling tolerance in

the population. For instance, the COLD2 QTL interacted geneti-

cally either with COLD4 or COLD5 resulting in an overall contri-

bution to chilling tolerance of more than 16.8% (Table S1). By

contrast, COLD1 did not genetically interact with other QTLs

and already alone contributed 7.23% to overall chilling toler-

ance. Nucleotide diversity analysis suggested that there was

strong artificial selection on the COLD1 locus during japonica

domestication (Tables S2 and S3).

COLD1’s topology, localization and interaction with RGA1,

as well as its regulatory effects on RGA1 GTPase activity, sup-

port the idea that COLD1 is a RGSwith GTPase-accelerating ac-

tivity, similar to AtRGS1 (Chen et al., 2003; Johnston et al., 2007;

Shabala and Newman., 2000; Stagljar et al., 1998; Urano et al.,

2012). The subcellular localization pattern of COLD1 on the ER

and plasmamembrane partially overlaps those of itsArabidopsis

orthologs GTG1/2 (Johnston et al., 2007; Pandey et al., 2009),

but COLD1 is different from those GTG1/2 in intrinsic GTPase

activity (Jaffé et al., 2012; Pandey et al., 2009). COLD1 is

predicted to contain a Ras GTPase-activating protein domain

in the third cytoplasmic loop, and our biochemical data support

this. Correspondingly, SNP2jap(A)22 versus ind(T/C) in fourth exon

would cause an amino acid substitution in the third loop (Dong

et al., 2007). Genetic complementation of COLD1jap instead

of COLD1ind in cold1-1 suggests that SNP2 functions in

chilling tolerance (Figure 3B). The specific domain involved

(i.e., the loop containing a predicted GTPase-activating protein

domain) and its effects on GTPase activity, as well as Ca2+

signaling and electrophysiological response, are consistent

with a COLD1 biochemical function associated with G-protein

signaling. We found that the substitution of Met187/Thr187 for

Lys187 in japonica cultivars conferred stronger tolerance to chill-

ing. Overexpression ofCOLD1jap also conferred enhanced toler-

ance. By contrast, the COLD1ind transgenic lines exhibited

decreased tolerance, which could be explained by competition

between COLD1ind and COLD1jap in interaction with RGA1 for

regulation in [Ca2+]cyt level and GTPase activity (Figures 5 and 6).

Our genetic and biochemical analyses of COLD1 revealed

several similarities to mammalian cold receptors and plant heat

sensors that lead us to hypothesize that COLD1 is involved in

sensing cold. (1) COLD1 has broad tissue expression and is

plasma- and ER-membrane localized, with nine predicted TM

domains. (2) COLD1 acts as a RGS to accelerate RGA1’s

GTPase activity and has phenotypic effects on chilling tolerance.

(3) Cold-induced changes in Ca2+ influx and [Ca2+]cyt are medi-

ated by COLD1. (4) Interaction between COLD1 and RGA1 is

required for the cold-induced specific electrophysiological

response. (5) Differences in chilling tolerance are observed in

cold1-1, in transgenic lines harboring various alleles from

japonica and indica, and in the RGA1 mutant, d1.

Cold temperature may be sensed through direct alteration of a

sensor’s structure and membrane fluidity to trigger cations influx

for signaling. Notably, changes on Ca2+ signal involve both the

resting level in the cytoplasm and the temporal elevation. The

cold1-1 showed lower resting levels of Ca2+, which was geneti-

cally rescued by COLD1jap (Figure 6). This finding may hint that

COLD1 itself possibly represents a potential calcium permeable

channel or a subunit of such a channel. Consequently, changes

of this channel functionwould affect resting [Ca2+]cyt,whichwould

influence the amplitudes of Ca2+ signals. The potential function of

COLD1asacold sensor couldbe simply explainedby the lackof a

significant Ca2+ gradient in cold1-1plants andCOLD1ind-OE lines

in Ca2+ resting levels that does not allow the formation of an

appropriate Ca2+ signal. Therefore, it is appealing to speculate

that COLD1 is involved in sensing cold and that changes in
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COLD1 protein structure and membrane fluidity in response to

coldmight initiate signaling throughCOLD1’s physical interaction

with RGA1, leading to Ca2+ influx into cytoplasm, which would

then trigger downstream responses to chilling stress. Subse-

quently, accelerated GTPase activity of RGA1 by COLD1 might

induce a regression shift on equilibrium between GDP- and

GTP-bound states of RGA1 (Urano et al., 2012) (Figure S6).

The strong phenotype of plants with the COLD1 QTL could

result from tight functional interaction of COLD1 with important

hormonal pathways. Consequently, an imbalance in COLD1

function likely affects multiple response pathways in this way

aggravating the effects of its modulated temperature dependent

functionality and thereby leading to significant decreased ability

to re-assume growth after chilling stress. In this regard, COLD1 is

functionally interconnected with the key gibberellin signaling

component D1/RGA1 (Ueguchi-Tanaka et al., 2000) and brassi-

nosteroid signaling, which are involved in regulation of plant

height (Hu et al., 2013; Wang et al., 2006). Moreover, D1/RGA1

also affects TUD1, which mediates brassinosteroid signaling to

regulate cell proliferation for plant growth and development

(Hu et al., 2013; Wang et al., 2006). In addition D1/RGA1 is

functionally dependent on SLR of GA signaling pathway for cell

elongation (Ueguchi-Tanaka et al., 2000). In fact, our cold1-1

significantly showed a decrease in plant height compared with

wild-type, while plant height of the complemented lines of

cold1-1 with COLD1 was recovered (Figure S3). Therefore, it is

likely that COLD1 exhibits this strong impact on chilling tolerance

via the RGA1 by disturbing multiple pathways, such as GA and/

or BR signaling pathways (Hu et al., 2013; Wang et al., 2006).

We show here that a SNP ofCOLD1 endows japonica rice with

chilling tolerance, and that the mutation in the coding region of

COLD1 has been fixed in chilling-tolerant japonica cultivars.

Our phylogenetic and population genetic analyses based on

the large number of SNPs identified by resequencing 50 acces-

sions of cultivated and wild rice (Huang et al., 2012; Xu et al.,

2012) demonstrate that the chilling-tolerant allele originated

from the Chinese O. rufipogon populations and was subject to

strong human selection during japonica domestication, similar

to the case of the SD1 gene for japonica domestication (Asano

et al., 2011). Therefore, genomic segments bearing agronomic

traits can originate in one population and spread across all culti-

vars through artificial selection (He et al., 2011). Our findings are

consistent with archaeological and genetic evidence that

japonica rice was domesticated in China (Fuller et al., 2009;

Huang et al., 2012; Londo et al., 2006; Xu et al., 2012). Impor-

tantly, our work demonstrates that the process of rice domesti-

cation was associated with fixation and extension of favored al-

leles or mutations that enhanced chilling tolerance for growth in

regions with lower yearly temperatures. The COLD1 allele and

SNPs identified in this work have great potential for improving

rice chilling tolerance via molecular breeding techniques.

EXPERIMENTAL PROCEDURES

Genetic Population and Plant Materials

Oryza sativa recombinant inbred lines (RIL) were developed by crossing

japonica variety Nipponbare (NIP) and indica variety 93-11. The F2 generation

from NIP3 93-11 was subjected to more than six rounds of self-pollination to

generate the RILs. For QTL genetic assay, the RILs were randomly selected.

The near-isogenic lines were generated by backcrossing the NIP3 93-11 lines

to 93-11 five times to generate BC5F2.

TheT-DNA insertionmutantcold1-1wasobtained fromDrG.An.O.sativassp.

japonica cv. ZH10/11 and DJ were used for transformation to create the trans-

genic lines (Jeong et al., 2002). Mutant cold1-1 was transformed with COLD1

for a genetic complementation. The primers used for PCR are listed in Table S4.

Chilling Treatment

To test chilling tolerance, the seedlings were treated at 2�C–4�C for various

times based on the genetic background. Subsequently, they were moved to

a temperature-controlled greenhouse with 28�C–30�C/25�C day/night cycles

for recovery. After 3–7 days, the survival rate was determined as the percent-

age of the total seedlings that were alive (Ma et al., 2009).

SNP Identification, Phylogenetic Analysis, Genetic Diversity, and

Neutrality Tests

Full-lengthCOLD1 gene was sequenced using the tiling format. The primer se-

quences are listed in Table S4. The gene sequences from 127 samples were

aligned using MEGA 5.0 software. A phylogenetic tree was constructed using

the neighbor-joining method in MEGA5 (Tamura et al., 2011).

Estimates of nucleotide diversity and population genetic analyses were per-

formed for each group using DnaSP 5.1 (Librado and Rozas, 2009). Tajima’s D

(Tajima, 1989) and maximum likelihood Hudson-Kreitman-Aguade (MLHKA)

(Wright and Charlesworth, 2004) tests were used to examine the departure

of COLD1 polymorphisms from neutrality with a set of known neutral genes,

namely, Adh1, GBSSII, Ks1, Lhs1, Os0053, SSII1, and TFIIAg-1 (Zhu et al.,

2007), as controls. The genome-wide controls with 400-kb regions around

COLD1 in 43 accessions were used for interpret the Tajima’s statistics. The

coalescent simulation analysis was carried out according to Wu et al. (2013).

Details are in Supplemental Information.

Subcellular Localization of COLD1

GFP was fused to COLD1 either at the N or C terminus. Its colocalization

assays with marker proteins were carried out in protoplast (Arabidopsis(( , or To-

bacco) cells as described previously (Lee et al., 2009). The transformed proto-

plast cells were examined by a confocal microscopy. See details in Supple-

mental Information.

Coimmunoprecipitation Assay

Briefly, the recombined plasmids were co-transformed into tobacco leaves ac-

cording to Liu et al. (2007). The extracts were incubated with anti-FLAGM2 af-

finity gel (Sigma) or anti-GFP antibody at 4�C overnight. The antigen-antibody

complex was collected. Then the sample was separated on SDS/PAGE gels

for immunoblots. See details in Supplemental Information.

Bimolecular Fluorescence Complementation

BiFC experiments and gene transformation were performed as described pre-

viously (Stagljar et al., 1998; Waadt et al., 2008; Wang et al., 2009). The vectors

were from Dr. J. Kudla. See details in Supplemental Information.

Expression and Purification in Spodoptera frugiperda

Protein expression and purification of COLD1 in the cells of Spodoptera frugi-

perda (Sf9) were performed as previously described (Wu et al., 2010). Affinity

chromatography was used in protein purification. See details in Supplemental

Information.

GTPase Activity Assay

The GTPase activity of RGA1 was monitored with the Enzcheck Phosphate

Assay Kit as described previously (Dong et al., 2007). The amount of the tested

protein (RGA1/COLD1 = 10/1 mg) was measured and confirmed in immuno-

blots using the FLAG antibodies. Amounts loaded were 1/0.1 mg (RGA1/

COLD1) for the blot. Details are in Supplemental Information.

Electrophysiological Assay

For electrophysiological analysis, complementary RNA was prepared using

the RNA Capping Kit (Stratagene). Xenopus oocytes were injected with
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cRNA for COLD1 and RGA1, mixed, and used for voltage-clamp experiments.

Details are in Supplemental Information.

Extracellular Ca2+ Flux and [Ca2+]cyt Monitoring

The roots of 3-day-old seedlings were used to monitor Ca2+ flux with scanning

ion-selective electrode technique (SIET) (Ludewig et al., 2003). The solution of

25�C was replaced with that of 0�C for the cold treatment. [Ca2+]cyt in callus

was monitored by the cytosolic aequorin method (Saidi et al., 2009). The re-

maining aequorin was discharged by 1 M CaCl2 and 10% ethanol. Calibration

of cytosolic Ca2+ concentration was according to Knight et al. (1996).

For monitoring Ca2+ elevation using Yellow Cameleon (YC3.6), whole plants

were infected rice (GV3101) containing NES-YC3.6. Roots were used to

monitor [Ca2+]cyt according to themethod described by Krebs et al. (2012). De-

tails are in Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and four tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2015.01.046.
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SUMMARY

In Rspondin-based 3D cultures, Lgr5 stem cells
from multiple organs form ever-expanding epithelial
organoids that retain their tissue identity. We report
the establishment of tumor organoid cultures from
20 consecutive colorectal carcinoma (CRC) patients.
For most, organoids were also generated from adja-
cent normal tissue. Organoids closely recapitulate
several properties of the original tumor. The spec-
trum of genetic changes within the ‘‘living biobank’’
agrees well with previous large-scale mutational
analyses of CRC. Gene expression analysis indicates
that the major CRC molecular subtypes are repre-
sented. Tumor organoids are amenable to high-
throughput drug screens allowing detection of
gene-drug associations. As an example, a single
organoid culture was exquisitely sensitive to Wnt
secretion (porcupine) inhibitors and carried a muta-
tion in the negative Wnt feedback regulator RNF43,
rather than in APC. Organoid technology may fill
the gap between cancer genetics and patient trials,
complement cell-line- and xenograft-based drug
studies, and allow personalized therapy design.

INTRODUCTION

Colorectal carcinoma (CRC) represents one of the major forms

of cancer. Seminal studies have revealed a series of molecular

pathways that are critical to the pathogenesis of CRC,

including WNT, RAS-MAPK, PI3K, P53, TGF-b, and DNA

mismatch repair (Fearon, 2011; Fearon and Vogelstein,

1990). Large-scale sequencing analyses have dramatically

extended the list of recurrently mutated genes and chromo-

somal translocations (Garraway and Lander, 2013; Vogelstein

et al., 2013). CRC cases are characterized by either microsat-

ellite instability (MSI) (associated with a hyper-mutator pheno-

type), or as microsatellite-stable (MSS) but chromosomally

unstable (CIN) (Lengauer et al., 1997). The absolute number

and combination of genetic alterations in CRC confounds our

ability to unravel the functional contribution of each of these

potential cancer genes. Thus, while genome changes in tu-

mors of individual patients can be assessed in great detail

and at low cost, these data are difficult to interpret in terms

of prognosis, drug response, or patient outcome, necessi-

tating model systems for analysis of genotype-to-phenotype

correlations.

Self-renewal of the intestinal epithelium is driven by Lgr5

stem cells located in crypts (Barker et al., 2007). We have

recently developed a long-term culture system that maintains

basic crypt physiology (Sato et al., 2009). Wnt signals are

required for the maintenance of active crypt stem cells (Korinek

et al., 1998; Kuhnert et al., 2004; Pinto et al., 2003). Indeed, the

Wnt agonist R-spondin1 induces dramatic crypt hyperplasia

in vivo (Kim et al., 2005). R-spondin-1 is the ligand for Lgr5 (Car-

mon et al., 2011; de Lau et al., 2011). Epidermal growth factor

(EGF) signaling is associated with intestinal proliferation

(Wong et al., 2012), while transgenic expression of Noggin

induces a dramatic increase in crypt numbers (Haramis et al.,

2004). The combination of R-spondin-1, EGF, and Noggin in
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Basement Membrane Extract (BME) sustains ever-expanding

small intestinal organoids, which display all hallmarks of the

original tissue in terms of architecture, cell-type composition,

and self-renewal dynamics. We adapted the culture condition

for long-term expansion of human colonic epithelium and

primary colonic adenocarcinoma, by adding nicotinamide,

A83-01 (Alk inhibitor), Prostaglandin E2, and the p38 inhibitor

SB202190 (Sato et al., 2011). Of note, a 2D culture method

for cells from normal and malignant primary tissue has been

described by Liu et al. (2012).

Here, we explore organoid technology to routinely establish

and phenotypically annotate ‘‘paired organoids’’ derived from

adjacent tumor and healthy epithelium from CRC patients.

RESULTS

Establishment of a Living CRC Biobank
Surgically resected tissue was obtained from previously

untreated CRC patients. Tissue from rectal cancer patients

was excluded because they routinely undergo irradiation before

surgery. For multiple tissues, we observe that normal tissue-

derived organoids outcompete tumor organoids under the opti-

mized culture conditions, presumably due to genomic instability

and resulting apoptosis in the latter. Combination of Wnt3A

and the Wnt amplifier R-spondin1 is essential to grow organoids

from normal epithelium. Over 90% of CRC cases harbor muta-

tions that aberrantly activate the Wnt signaling pathway (Cancer

Genome Atlas Network, 2012), so we exploited the Wnt-depen-

dency of normal colonic stem cells to selectively expand tumor

organoids. A total of 22 tumor organoid cultures and 19

normal-adjacent organoid cultures were derived from 20 pa-

tients (P19 and P24 each carried two primary tumors separated

by >10 cm; Figure 1A). We successfully generated organoid

cultures from 22 of 27 tumor samples. For one, we never

observed growth. Four were lost due to bacterial/yeast infection.

Since then, we have added next-generation antibiotics (see

Experimental Procedures) and currently observe an �90%

success rate.

The number of primary tumor organoids varied between

patient samples, with some tumors rendering thousands of

primary organoids whereas others yielded only 10–20 primary

organoids. This difference in derivation likely reflects the hetero-

geneous composition of tumors, with proliferative areas inter-

mingled with regions of differentiated cells, stromal cells or

necrosis. The growth rate of the organoids from patients 5 and

27 decreased over time, which prohibited their inclusion in the

drug screen. All other organoids could be readily expanded

and frozen to create a master cell bank. Upon thawing, cell

survival was typically >80%. Unlike healthy tissue-derived

organoids, tumor-derived organoids presented with a range of

patient-specific morphologies, ranging from thin-walled cystic

structures to compact organoids devoid of a lumen. H&E

staining on primary tumors and the corresponding organoids

revealed that the ‘‘cystic versus solid’’-organization of the

epithelium was generally preserved. Yet, marker expression

analysis (KI67, OLFM4, KRT 20, Alcian blue) revealed hetero-

geneity both between patients and individual organoids within

each culture (Figure 1B; Data S1).

Genomic Characterization of Tumor-Derived Organoids
Genomic DNA was isolated from tumor and matched normal

organoid cultures for whole-exome sequencing in order to iden-

tify tumor-specific somatic mutations (Cancer Genome Atlas

Network, 2012). Genomic DNA from the corresponding biopsy

specimens were available for comparative analysis for 16 of

these cases (Table S1A). The mutation rates per Mb varied

widely for different tumor organoids (range 2.0–77.9), with a me-

dian value of 3.7 in the tumor organoids, similar to the median

rate of 3.6 in the biopsy samples (Figure 2A; Table S1B). Muta-

tions were predominantly CpG to T transitions, consistent with

results from large-scale CRC sequencing (Figures S1A and

S1B; Table S1C). Of the 22 tumor organoids, six displayed

hypermutation (>10 mutations/Mb): P7, P10 and the organoids

from the two patients with two tumors each (P19a and P19b,

P24a and P24b). Interestingly, the P19a and P19b tumors share

TP53 R273C and BRAF V600E alterations, suggesting they

arose from the same somatically altered progenitor cell but

then diverged to acquire independent secondary alterations

(Figures S1C and S1D). In contrast, the P24a and P24b tumors

share 80% (469/590) of somatic alterations but then have discor-

dant driving alterations in APC and TP53, indicating that the

hypermutator phenotype may have been present prior to the

acquisition of growth promoting mutations (Figures S1E and

S1F). The frequency of hypermutated organoid cultures in our

patient panel (20%; 4 of 20) agreed with the reported frequency

in a much larger cohort of clinical samples and display compara-

ble somatic copy number alterations (SCNAs) (Figure 2B; Table

S1D) (Bass et al., 2011; Cancer Genome Atlas Network, 2012).

The successful derivation of both hypermutated and non-hyper-

mutated organoids implies an absence of culture-based bias.

Somatic variants within the coding regions in organoid

cultures were highly concordant with the corresponding biopsy

specimen for both hypermutated and non-hypermutated

patients (median = 0.88 frequency of concordance, range

0.62–1.00) (Figure 3A; Table S1E). Indeed, combined analysis

of SCNAs and single nucleotide variants (SNVs) to infer Cancer

Cell Fractions (CCF) (Carter et al., 2012; Landau et al., 2013) in

the biopsy and tumor organoids, revealed that the common

CRC driver mutations were maintained in culture. In 13 out of

14 organoid-biopsy pairs tested, tumor subclones sharing com-

mon CRC drivers were detected in the biopsy. In 50% of the

organoids, a dominant subclone from the biopsy was present,

likely representing sampling during derivation but it could also

indicate loss in culture (Figures S2A and S2B; Tables S1F and

S1G). Transcriptome analysis of single organoids showed subtle

differences in gene expression within an organoid culture,

confirming their heterogeneous composition. The differences

in overall gene expression were more pronounced in the organo-

ids derived from the hypermutant tumors (Figure S2C).

Discordant mutations were assessed for their likely biological

significance in cancer, based on Cancer Gene Census and data

reported from the PanCancer analysis of 5,000 whole exomes

(Futreal et al., 2004; Lawrence et al., 2014). Only 4% (27/679)

of discordant mutations found in organoids affected cancer-

related genes, including a third hit to APC, which was already

biallelically inactivated in P14, SMAD4 mutation in P16, and

POLE mutation in P19b (Table S1H). Cancer-significant genes
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that were discordant in the biopsy represented 4.4% (12/271)

(Table S1H). The discordant mutations had a mean allelic fre-

quency of 10.3% and 34.1% for the biopsy and organoids,

respectively. This could represent the enrichment or depletion

of a sub-clonal population in the organoid culture present within

the original tumor, as well as acquisition of additional mutations

during derivation or propagation.

The most commonly altered genes in CRC (Bass et al., 2011;

Cancer Genome Atlas Network, 2012; Lawrence et al., 2014)

were well represented in the organoid cultures (Figure 3B;

Figure 1. Derivation of Organoids from Primary Tissue

(A) Overview of the procedure. A total of 22 tumor organoids and 19 normal control organoids were derived and analyzed by exome-sequencing, RNA expression

analysis and high-throughput drug screening. To determine the concordance between tumor organoids and primary tumor, DNA from the primary tumor was also

isolated.

(B) Organoids architecture resembles primary tumor epithelium. H&E staining of primary tumor and the tumor organoids derived of these. A feature of most

organoids is the presence of one or more lumens, resembling the tubular structures of the primary tumor (e.g., P8 and P19b). Tumors devoid of lumen give rise to

compact organoids without lumen (P19a). Scale bar, 100 mM.

See also Data S1.
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Tables S1I and S1J). Inactivating alterations to the tumor sup-

pressors APC, TP53, FBXW7, and SMAD4, as well as activating

mutations in KRAS (codon 12 and 146) and PIK3CA (codon

545 and 1047) were observed. Activating mutations in BRAF

and TGFBR1/2 mutations were observed in the hypermutated

organoids, consistent with previous reports for primary CRC

(Cancer Genome Atlas Network, 2012).

Mutations of genes in DNA mismatch repair (MMR)-associ-

ated pathways are associated with a hypermutated phenotype

(Boland and Goel, 2010). Consistent with their classification as

hypermutated CRC cases (Cancer Genome Atlas Network,

2012), missense mutations were present in MSH3 in P7, and

POLE mutations were detected in P10, P19a, and P19b. We

did not observe mutations in MMR-associated genes in P24a

and P24b and expression analysis showed normal levels of the

pertinent genes. The culprit for hyper mutability thus remains

to be identified for P24. The limited cohort size did not allow a

statistical analysis for somatic copy number alterations to iden-

tify significant regions of amplification and deletions. However,

manual inspection of the top regions identified by TCGA did

reveal the presence of ERBB2-,MYC-, and IGF2-amplified orga-

noids, as well as a reported gain of 13q in the non-hypermutated

group (Figure 3C) In aggregate, these analyses demonstrate

that organoid cultures faithfully capture the genomic features

of the primary tumor from which they derive and much of the

genomic diversity of CRC.

Most CRC cases carry activating mutations in the WNT

pathway: inactivation mutations in APC, FBXW7, AXIN2, and

FAM123B, or activating mutations in CTNNB1 (Cancer Genome

Atlas Network, 2012). Gene fusions involving the Wnt-agonistic

RSPO2 and RSPO3 genes have been observed in 5%–10%

of CRC (Seshagiri et al., 2012). RNF43 encodes a negative

regulator of the Wnt pathway, which serves to remove the

Wnt receptor FZ in a negative feedback loop (Hao et al.,

2012; Koo et al., 2012, de Lau et al., 2014). Recent sequencing

efforts of gastric, ovary, and pancreatic neoplasias identified

RNF43 mutations (Jiao et al., 2014; Ryland et al., 2013; Wang

et al., 2014), and RNF43 mutations have been observed in

Figure 2. CRC Subtypes Are Present in

Organoid Cultures

(A) Whole exome sequencing of the tumor and

corresponding biopsy, when available, revealed

the presence of hypermutated (>10mutations/Mb)

and non-hypermutated subtypes within the orga-

noids. Comparable rates of mutations were

observed in the tumor organoid (O) and tumor

biopsy (B). Organoids without corresponding

biopsy are indicated in with red (O).

(B) Comparison of somatic copy-number alter-

ations found in the biopsies and corresponding

organoids (Biop/Org) and TCGA CRC in hyper-

mutated and non-hypermutated samples.

See also Figure S1 and Tables S1A–S1D.

CRC (Giannakis et al., 2014; Ivanov

et al., 2007; Koo et al., 2012)

We found APC alterations in all but

four of the organoids (P11, P19a/b,

P28). Western blotting revealed P11 to express a truncated

APC protein, pointing to a mutational event not covered by our

exome-sequencing (Figure S3). The wtAPC organoid P28 carries

an activating mutation in CTNNB1 (T41A). In both P19a and

P19b, we detected RNF43mutations: frameshifts at aa positions

659 and 355, respectively. Only the latter is predicted to affect

protein function.

RNA Analysis of Normal and Tumor-Derived Organoids
Organoid cultures consist purely of epithelial cells. Therefore, the

system allows for direct gene expression analysis without a

contamination from mesenchyme, blood vessels, immune cells,

etc. Normal colon-derived and tumor-derived organoids were

plated under identical conditions in complete medium (+Wnt).

After 3 days, RNA was analyzed using Affymetrix single tran-

script arrays. Figure 4A shows the correlation heatmap of the

organoid samples. Normal colon-derived organoids clustered

tightly together, while the tumor-derived organoids exhibited

muchmore heterogeneity. Next, we searched for genes differen-

tially expressed between normal and tumor organoids. Normal

colon-derived organoids (Figure 4B) expressed genes of

differentiated cells (e.g., the goblet cell markers MUC1 and

MUC4 and the colonocyte marker CA2). Genes enriched in

tumor organoids included cancer-associated genes such as

PROX1, BAMBI, and PTCH1 and the Wnt target gene APCDD1

(Takahashi et al., 2002).

Several CRC classifications have been proposed based on

RNA expression. We combined expression data from organoid

samples and TCGA tissue samples and classified these in sub-

types using the gene signatures by Sadanandam et al. (2013).

Figure 4C displays the subtyping of the 22 organoid samples

and 431 TCGA RNA sequencing (RNA-seq) tumor tissue sam-

ples. The heatmap shows the normalized scores of genes by

samples, both sorted by subtype (see Experimental Proce-

dures). Organoid samples were spread across the subtypes,

with the transit-amplifying (TA) subtype being most frequently

represented. The enterocyte subtype was not represented. In

addition, the RNA expression data allowed expression analysis
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of individual genes in organoids. MLH1 expression was absent

from two tumor organoids from patient 19 as well as from patient

7 (that is also mutant in MSH3) (Figure S4). In the two tumor or-

ganoids from P24, we did not detect expression changes in

MLH1 or any other MSI-associated gene.

Effect of Porcupine Inhibitor on RNF43 Mutant
Organoids
Unlike most other WNT pathway mutations, RNF43 mutations

yield a cell that is hypersensitive to—yet still dependent on—

secreted WNT. Array data confirmed the expression of several

WNTs by the organoids (Figure S5A). The O-acyltransferase

Porcupine is required for the secretion of WNTs and its inhibition

prevents autocrine/paracrine activation of the pathway (Kado-

waki et al., 1996). The small molecule porcupine inhibitor IWP2

(Chen et al., 2009) was tested on a small panel of the tumor

organoids and strongly affected the RNF43 mutant P19b

organoid (Figure 5A). This observation implied that porcupine

inhibition may be evaluated for treatment of the small subset of

cancer patients mutant in RNF43.

Organoid Proof-of-Concept Drug Screen
Prompted by this, we developed a robotized drug sensitivity

screen in 3D-organoid culture and correlated drug sensitivity

with genomic features to identify molecular signatures associ-

ated with altered drug response. Organoid cultures were gently

disrupted and plated on BME-coated 384-well plates in a 2%

BME solution. Organoids were left overnight before being

drugged and left for 6 days before measuring cell number using

CellTiter-Glo reagent. Drug sensitivity was represented by the

half-maximal inhibitory concentration (IC50), the slope of the

dose-response curve, and area under the dose-response curve

(AUC).

A bespoke 83 compound library was assembled for screening,

including drugs in clinical use (n = 25), chemotherapeutics (n =

10), drugs previously investigated in or currently undergoing

studies in clinical trials (n = 29), and experimental compounds

to a diverse range of cancer targets (n = 29) (Table S2A). The

library included the anti-EGFR antibody cetuximab, used clini-

cally forKRAS/NRAS/BRAFwild-type CRC, aswell as oxaliplatin

and 5-FU, first line chemotherapeutics for CRC treatment.

In total, 19 of 20 tumor organoids (from 18 different patients)

were successfully screened in experimental triplicate, gener-

ating >5,000 measurements of organoid-drug interactions

(Table S2B).

We incorporated a number of controls into the assay design.

The median Z factor score, a measure of assay plate quality,

across all screening plates was 0.62 (n = 119; upper and lower

quartile = 0.85 and 0.3, respectively), consistent with an experi-

mentally robust assay. We did observe some unexplained orga-

noid-specific variation in assay plate quality. Dose-response

measurements were performed in experimental triplicate or

duplicate (on separate plates) and replicate AUC values were

highly correlated (Pearson correlation [Rp] > 0.87) (Figure 5B).

Figure 3. Genomic Alterations Found in CRC Are Represented in Organoid Cultures

(A) Concordance of somatic mutations detected in organoid and corresponding biopsies. Bar graph represents the proportion of coding alterations that are

concordant between the biopsy and the corresponding organoid culture and those that are found only in organoid or biopsy specimen. N/A indicates cases in

which exome-sequencing was not performed on the corresponding biopsy.

(B) Overview of the mutations found in the tumor organoids. The hash-mark in each box represents each allele and whether it was subject to deletion, mutation,

frame-shift alteration, nonsense mutation or splice site mutation. Those alterations present in >10% of cases are compared to the percentage of cases reported

by the TCGA CRC. *Indicates discordant mutations targeting the same gene between the two sites in P19 and P24. See also Tables S1I and S1J.

(C) Somatic copy-number alterations in organoids among commonly amplified genes identified in TCGA CRC.

See also Figures S2 and S3 and Tables S1D–S1J.
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Figure 4. RNA Expression Analysis

(A) Correlation heat map of normal organoids

versus tumor organoids based on 2,186 genes

(the top 10% of genes in terms of SD). The normal

organoids are very highly correlated with each

other, whereas the tumor samples exhibit more

heterogeneity. The colors represent pairwise

Pearson correlations after the expression values

have been logged and mean-centered for every

gene. The hierarchical clustering is based on one

minus correlation distance. The affix N = normal,

T = tumor.

(B) MA plot of logged normal versus tumor

gene expression. p values are computed with the

R package limma, by comparing normal versus

tumor gene expression. Cancer-associated genes

(e.g., APCDD1, PROX1, and PTCH1) are shown

in the top half.

(C) CRC molecular subtypes are represented

by the organoid panel. Genes by samples heat

map of normalized gene expression of 22 organoid

samples and 431 TCGA RNA-seq tumor tissue

samples, organized by subtype. Within each

subtype, samples are sorted by their mean gene

expression for the signature genes associated with

that specific subtype.

See also Figure S4.
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Furthermore, the compounds trametinib, GDC0941, and obato-

clax mesylate were screened twice independently on separate

assay plates and a good correlation was observed between

the experimentally determined AUC values (Rp = 0.79, 0.71,

and 0.76, respectively) (Figure 5C).

As a first validation, the only tumor organoid in the panel

that was sensitive to the Porcupine inhibitor LGK974 was P19b

(Figure S5B), confirming the observations made with IWP2

(Figure 5A). The clustering of compounds based on their IC50

values demonstrated a diverse range of sensitivities across the

organoids and identified three major sub-groups (Figure 6A).

One group was associated with sensitivity to a majority of the

compounds (organoids P8, P7, and P19a), in contrast to the

cluster (P31, P11) exhibiting insensitivity. The remaining organo-

ids had intermediate sensitivity. Interestingly, the multifocal

tumors P19a and P19b, derived from the same patient and

both carrying the BRAF V600E mutation, differed in their overall

drug response profile. We observed clustering of drugs that

inhibit the IGF1R and PI3K-AKT signaling pathways (Figure 6A),

and compounds with similar nominal targets had comparable

activity across the organoid collection. For example, a similar

sensitivity pattern was observed for the PI3K inhibitors GDC0941

and BYL719 (a-selective), the IGF1R inhibitors OSI-906 and

BMS-536924, EGFR inhibitors cetuximab and gefitinib, and

the BRAF inhibitors dabrafenib and PLX4720 (Figure 6B). All

but one of the organoids displayed a lack of sensitivity to

BRAF inhibition. P19a, a BRAF V600E mutant organoid, dis-

played partial sensitivity to dabrafenib with an IC50 of 0.5 mM,

comparable to IC50 values of BRAF V600E colorectal cancer

cell lines (range 0.004–2.55 mM; average 0.96 mM).

To identify genetic correlates between individual oncogenic

mutations and drug response, we performed a multivariate

Figure 5. Development of a High-Throughput Drug Screening Assay Utilizing Organoid Models

(A) Autocrine/paracrineWNT signaling in P19b. A small panel of tumor organoids was incubated with increasing amounts of the Porcupine inhibitor IWP2. Growth

of the RNF43mutant P19b was inhibited, indicative of dependency on autocrine/paracrine WNT signaling. Error bars indicate the SD of triplicate measurements.

See also Figure S5.

(B) Scatterplot of (1-AUC) values for all technical replicates of drug screening data. Plots show the correlation between the three different technical replicates and

each data point represents the (1-AUC) value for an individual organoid.

(C) Scatterplots of the correlation in (1-AUC) values for three compounds (GDC0941, obatoclax mesylate, and trametinib) screened twice during every screening

run. Values are the mean of three technical replicates.
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analysis of variance (MANOVA) incorporating IC50 values and

slopes of the corresponding dose-response curves, with MSI-

status as a covariate. Complete drug sensitivity and genomic

data sets were available for 18 organoids and used for this anal-

ysis. The analysis included 16 genes identified as mutated,

amplified, or deleted in CRC (referred to as mutant genes) as

described by Lawrence et al. (2014) (Table S3). The MANOVA

identified a subset (12 of 864, �1%) of gene-drug associations

as statistically significant (p < 0.005, incorporating a 30% false

discovery rate [FDR]) (Table S4). These results were further

filtered based on the magnitude of the effect size on the IC50

values of wild-type versus mutant cell line populations (effect

size >2; Cohen’s D), and correlations identified due to a singlet

outlier organoids were removed. This resulted in the identifica-

tion of one high confidence gene-drug association already re-

ported in the literature (Vassilev et al., 2004). Loss-of-function

mutations of the tumor suppressor TP53 were associated with

resistance to nutlin-3a (p = 0.0018), an inhibitor of MDM2 (Fig-

ure 7A). Of the four organoids that were wild-type for TP53 by

DNA sequencing, only P18 was (unexpectedly) insensitive to

nutlin-3a. However, immunohistochemistry of p53 in P18 re-

vealed the protein to be stabilized, indicative of functional inac-

tivation of the p53 pathway (Figure 7B).

We could also readily detect resistance to the anti-EGFR

inhibitors cetuximab and BIBW2992 (afatinib) in the setting of

KRAS mutant organoids (p = 0.008/FDR 37% and p = 0.029/

FDR 54%, respectively), although these associations were

below statistical significance when considering an FDR <30%

(Figures 7C and S6). Of the KRAS wild-type organoids, a subset

2/10 was insensitive to cetuximab, including P19b that has a

BRAF mutation, a known mediator of cetuximab resistance

(Di Nicolantonio et al., 2008). For the remaining organoid, further

mechanisms beyond mutated KRAS/NRAS/BRAF are likely

to be involved in cetuximab resistance (De Roock et al., 2010;

Vecchione, 2014).

We also identified a number of compounds with differential

activity in the absence of an apparent genetic biomarker (Fig-

ure 7D). For example, a subset of organoids was exquisitely sen-

sitive to the AKT1/2 inhibitor MK2206. Similarly, we observed

distinct subsets of organoids that are exquisitely sensitive to

the pan-ERBB inhibitor AZD8931 and the chemotherapeutic

gemcitabine. We also performed a validation screen with 11 of

the original 83 compounds across the organoid panel and

compared the measured responses (Figure S7; Table S5). We

observed positive correlation for all compounds and nine

exhibited good to fair reproducibility as indicated by an Rp of

0.5 or greater (Figures 7E and 7F). Variation within the assay

was likely due to inherent technical noise, biological variation,

and sensitivity to outlier data points due to the small number of

organoids.

In summary, the successful application of organoids in a

systematic and unbiased high-throughput drug screen to

identify clinically relevant biomarkers demonstrates the feasi-

bility and utility of organoid technology for investigating the

molecular basis of drug response. Furthermore, the identifica-

tion of putative novel molecular markers has opened avenues

for further investigation of drug sensitivity in CRC. The current

analysis is still constrained by the relatively small number of

patients. The derivation of a significantly larger organoid collec-

tion would increase the representation of rare genotypes

and the statistical power to detect molecular markers of drug

response.

DISCUSSION

Cancer cell lines have served for many years as the workhorse

model in cancer research. Recent studies have exploited high-

throughput screening of large panels of cancer cell lines to iden-

tify drug-sensitivity patterns and to correlate drug sensitivity to

genomic alterations (Barretina et al., 2012; Garnett et al.,

2012). From these high-throughput cell-line-based studies, a

picture emerges of a complex network of biological factors

that affect sensitivity to the majority of cancer drugs. For

instance, no direct relationship may exist between sensitivity

to a certain drug and a single genomic alteration. Instead, diffi-

cult-to-find, complex interactions between multiple genomic

alterations may determine drug sensitivity outcome. Thus, with

currently available insights, it remains a challenge to develop

algorithms that accurately predict the drug sensitivity of a

patient’s tumor based on the spectrum of genomic alterations

present, in the context of the unique genetic background.

Two approaches to determine directly the drug sensitivity in a

patient-derived sample have been quite widely exploited,

namely the short-term culture of tumor sections (Centenera

et al., 2013), and xeno-transplantation of the tumor into immuno-

deficient mice (Jin et al., 2010; Tentler et al., 2012). Short-term

culture allows for in vitro screening at a reasonably large scale,

but is constrained by the limited proliferative capacity of the cul-

tures. Xenotransplantation allows for in vivo screening but is

resource-intensive due to the need for large mouse colonies. It

thus appears of interest to develop additional technologies that

allow the combination of sequencing and high-throughput drug

screening in patient-derived samples. Here, we demonstrate

that the organoid culture platform can be exploited for genomic

and functional studies at the level of the individual patient at a

scale that cannot be achieved by existing approaches. Our

organoid drug screening assay generates reproducible high

quality drug sensitivity data, positive correlation of biological

replicates, and reproducible activity of compounds inhibiting

the same target. By connecting genetic and drug sensitivity

data, we were able to confirm the activity of cetuximab in a sub-

set of KRASwild-type organoids reflecting observations made in

the clinic (De Roock et al., 2010) as well as Nutlin-3a effective-

ness in TP53 wild-type organoids. Furthermore, we describe

Figure 6. Heatmap of IC50s of All 85 Compounds against 19 Colorectal Cancer Organoids

(A) Organoids have been clustered based on their IC50 values across the drug panel. The drug names and their nominal target(s) are provided in the bottom panel.

(B) Drugs with the same nominal targets have similar activity profiles across the organoid panel. (1-AUC) values are plotted for inhibitor of PI3K (GDC0941 and

BYL719), IGF1R (OSI-906 and BMS-536924), EGFR (cetuximab and gefitinib), and BRAF (PLX4720 and dabrafenib).

See also Tables S2A and S2B.
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Figure 7. Gene-Drug Associations and Differential Drug Sensitivity Profiles of Interest

(A) Association of TP53mutational status with nutlin-3a response. Viability response curves of the altered (blue) and wild-type organoids (gray) as well as scatter

plots of cell line IC50 (mM) values are shown. IC50 values are on a natural logarithmic scale. Each circle represents one cell line, red bars indicate geometric means

of IC50 values and black bold bars indicate median log IC50 values. Box top/low bounds indicate upper/lower quartiles, and whiskers (indicated by the dashed

lines) extend to extreme values (minimal and maximal) excluding outliers (i.e., whose value is more than 3/2 times the upper quartile and less than 3/2 times the

lower quartile). Purple bar positions on the y axis indicate means +/� log IC50 SD.

(B) Immunohistochemical staining showing stabilization of TP53 in organoid P18. Scale bar, 100 mM.

(C) Association of KRAS status and cetuximab response. Colors and symbols coding is the same as (A).

(D) Dose-response curves after 6 days treatment with MK2206, AZD8931, and gemcitabine.

(E) Reproducibility of drug response profiles for 11 drugs. The Pearson correlation score of (1-AUC) values from the primary screen compared to (1-AUC) values

from validation screens are used for comparison. The validation screen was performed twice (run 1 and 2) with >1 month elapsed between each screen. NA, data

unavailable for this drug.

(F) The correlation of 1-AUC values from the primary and validation screens for AZD8931, gemcitabine, and nutlin-3a.

See also Figures S6 and S7 and Tables S3, S4, and S5.
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the differential activity of a handful of clinical and preclinical com-

pounds (gemcitabine, MK2206, and AZD8941).

Tumors are composed of a mixture of sub-clones that

coevolve through a Darwinian selection process. This cellular

heterogeneity and phenotypic variation allows the emergence

of a complex clonal architecture, which underpins important fea-

tures such as drug resistance and metastatic potential (Burrell

et al., 2013). Our CCF analysis of clonal structure determined

that almost all of the biopsies were polyclonal at the time of

resection, and this is reflected to varying extent in the corre-

sponding organoid culture. The ability to capture sub-clonal

populations in in vitro organoid culture should enable more

predictive modeling of patient responses to therapy. In many

respects, the clonal selection and heterogeneity observed in or-

ganoids is similar to PDX models of cancers (Eirew et al., 2015).

For both models, understanding the factors that affect tumor

heterogeneity and evolution, and how heterogeneity impacts

on drug response, will be important to fully exploit their potential

for predicting patient responses.

We perceive patient-derived organoids to be used to directly

test drug sensitivity of the tumor in a personalized treatment

approach. For this, we envision organoids to be tested against

a limited number of clinically approved drugs within weeks after

derivation. While building this pilot biobank, we observed that

normal epithelial tissue always yield good numbers of organoids

within weeks, while significant differences in ‘‘take rates’’ were

observed between patients’ tumor organoids. Crucial for this

approach to be effective, is to decrease the time needed to

derive and expand the organoids. In conclusion, tumor organo-

ids may fill the gap between cancer genetics and patient trials,

complement cell-line- and xenograft-based drug studies, and

allow personalized therapy design.

EXPERIMENTAL PROCEDURES

Human Tissues

Colonic tissues were obtained from The Diakonessen Hospital Utrecht with

informed consent and the study was approved by the ethical committee. All

patients were diagnosed with colorectal cancer. From the resected colon

segment, normal as well as tumor tissue was isolated. The isolation of healthy

crypts and tumor epithelium was performed essentially as described by Sato

et al. (2011).

Organoid Culture

Healthy tissue-derived organoids were cultured in Human Intestinal Stem

Cell medium (HISC). The composition of HISC is: Basal culture medium with

50% Wnt conditioned medium, 20% R-Spondin conditioned medium, 10%

Noggin conditioned medium, 13 B27, 1,25 mM n-Acetyl Cysteine, 10 mM

Nicotinamide, 50 ng/ml human EGF, 10 nM Gastrin, 500 nM A83-01, 3 uM

SB202190, 10 nM Prostaglandin E2, and 100 mg/ml Primocin (Vivogen). Tumor

organoids were cultured in HICS minus Wnt. See the Extended Experimental

Procedures for a detailed description.

Whole-Exome Sequencing and Copy-Number Analysis

For each sample, �250 ng of DNA was sheared and subject to whole-exome

sequencing using the Agilent v2 capture probe set and sequenced by

HiSeq2500 using 76 base pair reads, as previously described (Fisher et al.,

2011; Imielinski et al., 2012). A median 9.6 Gb of unique sequence was gener-

ated for each sample (Table S1A).

Sequence data were locally realigned to improve sensitivity and reduce

alignment artifacts prior to identification of mutations, insertions, and deletions

as previously described (Cibulskis et al., 2013; DePristo et al., 2011; Ojesina

et al., 2014).

Somatic copy-number analysis was performed using segmented copy-

number profiles generated from whole-exome sequencing using the SegSeq

algorithm (Table S1D) (Chiang et al., 2009). The procedure is described in detail

in the Extended Experimental Procedures.

Organoid Data Processing

RNA from 22 organoid tumor samples and 15 paired normal samples was

hybridized on Affymetrix Human Gene 2.0 ST arrays. The raw CEL files were

processed with Affymetrix Power Tools using the Hg19 genome build and

NetAffx annotation dating from 09-30-2012. Between-array normalization

was performed using rma-sketch, within APT. This resulted in an intensity

matrix of 21,681 genes by 37 samples. For analysis of individual genes, data

were analyzed using the R2 web application, which is freely available at

http://r2.amc.nl.

To subtype the samples, we used the gene signature published by

Sadanandam et al. (2013). The procedure is described in detail in the Extended

Experimental Procedures.

Organoid Viability Assays

Eight microliters of �7 mg/ml BME was dispensed in to 384-well microplates

and allowed to polymerize. Organoids were mechanically dissociated by

pipetting before being resuspended in 2% BME/growth media (15–20,000 or-

ganoids/ml) and dispensed into drug wells. The following day a 5-point 4-fold

dilution series of each compoundwas dispensed using liquid handling robotics

and cell viability assayed using CellTiter-Glo (Promega) following 6 days

of drug incubation. All screening plates were subjected to stringent quality

control measures and a Z factor score comparing negative and positive control

wells calculated. Dose-response curves were fitted to the luminescent signal

intensities utilizing a method previously described (Garnett et al., 2012).

Further information of the compounds used, data-fitting algorithm, and valida-

tion screen can be found in the Extended Experimental Procedures.

Systematic Multivariate Analysis of Variance

We excluded from the analysis drugs with no IC50 values falling within the

range of tested concentrations. For each of the remaining drugs, we assem-

bled an 183 2 matrix Y composed by two vectors of length n = 18, containing

IC50 values and dose-response curve slopes b, respectively, obtained by

treating 18 organoids with the drug under consideration. A multivariate

analysis of variance (MANOVA) model was then fitted to this drug response

data matrix with factors including the microsatellite stability status of the

organoids and the status (altered or wild-type) of 16 genomic features

(Extended Experimental Procedures). Significance and effect size scores

were obtained for each of the genomic-feature/drug pairs. Q values were

subsequently obtained by correcting the MANOVA p values for multiple

hypotheses testing, and a threshold of 30% of positive false discovery rate,

IC50, and effect size >2 (as quantified by the Cohen’s D) was used to identify

significant associations.
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SUMMARY

Mitochondrial diseases include a group of maternally
inherited genetic disorders caused by mutations in
mtDNA. In most of these patients, mutated mtDNA
coexists with wild-type mtDNA, a situation known as
mtDNA heteroplasmy. Here, we report on a strategy
toward preventing germline transmission of mito-
chondrial diseases by inducing mtDNA heteroplasmy
shift through the selective elimination of mutated
mtDNA. As a proof of concept, we took advantage of
NZB/BALB heteroplasmic mice, which contain two
mtDNA haplotypes, BALB and NZB, and selectively
prevented their germline transmission using either
mitochondria-targeted restriction endonucleases or
TALENs. In addition, we successfully reduced human
mutated mtDNA levels responsible for Leber’s hered-
itary optic neuropathy (LHOND), and neurogenicmus-
cleweakness, ataxia, and retinitispigmentosa (NARP),
in mammalian oocytes using mitochondria-targeted
TALEN (mito-TALENs). Our approaches represent a
potential therapeutic avenue for preventing the trans-
generational transmission of human mitochondrial
diseases caused by mutations in mtDNA.

INTRODUCTION

Mitochondria are double-membrane cellular organelles of

bacterial origin that play fundamental roles in multiple cellular

processes including energy production, calcium homeostasis,

cellular signaling, and apoptosis (Dyall et al., 2004). Mitochondria

contain their own mtDNA encoding 13 polypeptides of the mito-

chondrial respiratory chain as well as tRNAs and rRNAs neces-

sary for their synthesis (Anderson et al., 1981). mtDNA is present

in multiple copies per cell, ranging from approximately 1,000

copies in somatic cells to several 100,000 copies in oocytes,

with an average 1–10 copies per organelle (Shoubridge and

Wai, 2007). In contrast to nuclear DNA, mtDNA is exclusively

transmitted through maternal inheritance. Diseases resulting

from mitochondrial dysfunction caused by mtDNA mutations

affect 1 in 5,000 children (Haas et al., 2007), and it is estimated

that 1 in 200 women could be a mitochondrial disease carrier.

Due to the fundamental role of mitochondria in energy produc-

tion, mitochondrial diseases correlate with degeneration of tis-

sues and organs with high-energy demands. This leads tomyop-

athies, cardiomyopathies, and encephalopathies, among other

phenotypes (Taylor and Turnbull, 2005). Currently, there is no

cure for mitochondrial diseases. Genetic counseling and pre-im-

plantation genetic diagnosis (PGD) represent the only therapeu-

tic options for preventing transmission of mitochondrial diseases

caused by mtDNA mutations. However, due to the non-Mende-

lian segregation of mtDNA, PGD can only partially reduce the risk

of transmitting the disease (Brown et al., 2006). Moreover, anal-

ysis of multiple blastomeres may compromise embryo viability.

Recently, mitochondrial replacement techniques by spindle,

pronuclear, or polar body genome transfer into healthy enucle-

ated donor oocytes or embryos have been reported (Craven

et al., 2010; Paull et al., 2013; Tachibana et al., 2013; Wang

et al., 2014). Application of these techniques implies combining

genetic material from three different individuals, which has
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raised ethical, safety, and medical concerns (Hayden, 2013;

Vogel, 2014). Therefore, alternative and complementary ap-

proaches that alleviate or eliminate these concerns should be

investigated when devising feasible clinical paths toward pre-

venting the transmission of mitochondrial diseases caused by

mtDNA mutations.

Due to the thousands of copies of mtDNA contained within a

cell, the levels of mutated mtDNA can vary. The term homo-

plasmy refers to the presence of a single mtDNA haplotype

in the cell, whereas heteroplasmy refers to the coexistence of

more than one mtDNA haplotype. When the percentage of

mutated mtDNA molecules exceeds a threshold that compro-

mises mitochondrial function, a disease state may ensue (Tay-

lor and Turnbull, 2005; Wallace and Chalkia, 2013). Threshold

levels for biochemical and clinical defects are generally in the

range of 60%–95% mutated mtDNA depending on the severity

of the mutation (Russell and Turnbull, 2014). Changes in the

relative levels of heteroplasmic mtDNA can be referred to as

mtDNA heteroplasmy shifts. Despite the fact that mitochondria

possess all the necessary machinery for homologous recombi-

nation and non-homologous end joining, they do not seem to

represent the major pathway for mtDNA repair in mammalian

mitochondria (Alexeyev et al., 2013). Previous studies have

demonstrated that the relative levels of mutated and wild-

type mtDNA can be altered in patient somatic cells containing

the m.8993T>G mtDNA mutation responsible for the NARP and

MILS syndromes, where elimination of mutated mtDNA led to

the restoration of normal mitochondrial function (Alexeyev

et al., 2008). Similarly, using the heteroplasmic NZB/BALB

mouse model that carries two different mtDNA haplotypes

(NZB and BALB), BALB mtDNA, which contains a unique ApaLI

site, has been specifically reduced in vivo using a mitochon-

dria-targeted ApaLI (Bacman et al., 2012; 2010). Recently,

transcription activator-like effector nucleases (TALENs) and

zinc finger nucleases (ZFNs) targeted to mitochondria have

being utilized for the specific elimination of mitochondrial ge-

nomes carrying mutations responsible for mitochondrial dis-

eases (Bacman et al., 2013; Gammage et al., 2014; Minczuk

et al., 2006; 2008). These novel approaches allow for the

targeting of a wider spectrum of mutations against which re-

striction endonucleases could not be used. However, these

approaches do not provide mechanisms for preventing the

transmission of mutated mtDNA nor do they allow for a com-

plete systemic clearance of mtDNA mutations in subsequent

generations.

Here, we report on the specific reduction of mitochondrial

genomes in the germline for preventing transmission of mito-

chondrial diseases. As a proof of concept, and by using the het-

eroplasmic NZB/BALB mouse model, we specifically reduced

BALB or NZB mitochondrial genomes in the germline using

mitochondria-targeted restriction endonucleases and TALENs

and prevented their transmission to the next generation. More-

over, we successfully reduced mutated mitochondrial genomes

responsible for human mitochondrial diseases in mouse oo-

cytes using mitochondria-targeted nucleases. The approaches

presented here may be applied and developed to prevent

the transgenerational transmission of human mitochondrial

diseases.

RESULTS

Specific Reduction of Mitochondrial Genomes in
Oocytes and Embryos Using Restriction Endonucleases
With the goal of establishing an alternative therapeutic approach

for preventing the germline transmission of mitochondrial dis-

eases caused by mtDNA mutations, we tested the specific elim-

ination of BALB mtDNA in NZB/BALB oocytes and one-cell

embryos. For this purpose, we generated a mammalian codon

optimized ApaLI targeted to mitochondria by the ATP5B mito-

chondria targeting sequence and the ATP5B 50 and 30 UTRs to

promote co-translational import from mitochondrial associated

ribosomes (Marc et al., 2002). An enhanced GFP (EGFP) reporter

was also included in the construct to monitor expression (Fig-

ure 1A). First, we tested the mitochondrial localization of the

ApaLI protein generated from the construct by immunostaining

in NZB/BALB tail tip fibroblasts (TTFs) and observed robust

co-localization of mitochondria-targeted ApaLI (mito-ApaLI)

with the mitochondrial dye Mitotracker (Figure S1A). In contrast,

we failed to observe mitochondrial localization of non-mitochon-

dria-targeted ApaLI (Figure S1A). Analysis of mtDNA by ‘‘last-

cycle hot’’ PCR and restriction fragment length polymorphism

(RFLP) demonstrated induction of heteroplasmy shift by specific

reduction of BALB mtDNA in cells transfected with mito-ApaLI

compared to control cells transfected with mito-GFP after

72 hr (Figure S1B). In addition, we found normal mtDNA copy

number in mito-ApaLI transfected cells, which resulted from

the replication of the remaining NZB mtDNA that compensated

for the reduction of BALB mtDNA (Figure S1C).

We next decided to test whether a similar approach could be

used inoocytes tospecifically eliminateBALBmtDNA (Figure1A).

First, we confirmed the mitochondrial localization of mito-ApaLI

in NZB/BALBmetaphase II (MII) oocytes injected with mRNA en-

coding mito-ApaLI by immunostaining (Figure 1B). As expected,

mito-ApaLI co-localized with Mitotracker in MII oocytes (Fig-

ure 1B). RFLP analysis 48 hr after mito-ApaLI mRNA injection

demonstrated the specific reduction of BALB mtDNA and a

consequential increase in the relative NZB mtDNA levels (Fig-

ure1C). In agreementwith the lackofmtDNA replication inmature

oocytes andpre-implantation embryos (Wai et al., 2010), analysis

of mtDNA copy number by qPCR revealed a decrease in mtDNA

copy number following mito-ApaLI injection proportional to the

initial levels of BALB mtDNA (Figure 1D). To verify the reduction

of BALB mtDNA, we performed RFLP and qPCR analyses by

amplification of an independent region of the mtDNA containing

a unique HindIII site, exclusively present in BALB mtDNA. These

analyses confirmed the specific reduction of BALB mtDNA upon

injectionofmito-ApaLI inNZB/BALBMII oocytes (FigureS1Dand

S1E). Injection of mito-ApaLI in BALB or NZB single haplotype

oocytes resulted in complete depletion of mtDNA in BALB oo-

cytes and did not affect mtDNA levels in NZB oocytes reinforcing

the specificity of mito-ApaLI (Figure S1F). Collectively, these

results suggest the potential of this approach for the specific

reduction of mtDNA in the germline.

In addition to oocytes, we tested whether mtDNA hetero-

plasmy shift could be applied to one-cell embryos without

affecting their normal development until the blastocyst stage

(Figure 2A). For this purpose, NZB/BALB one-cell embryos
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were injected with mito-ApaLI mRNA. Time-lapse fluorescent

microscopy images revealed the expression of mito-ApaLI indi-

cated by EGFP expression, and more importantly, normal devel-

opment of mito-ApaLI-injected embryos through the different

developmental stages analyzed (Figure 2B). Similarly to the re-

sults observed in oocytes, RFLP analysis of mito-ApaLI blasto-

cysts demonstrated specific reduction of BALB mtDNA and an

increase in the relative levels of NZB mtDNA (Figure 2C). More-

over, due to the lack of mtDNA replication until the blastocyst

stage (Wai et al., 2010), analysis of mtDNA copy number by

qPCR showed a decrease in mtDNA levels proportional to the

BALB mtDNA levels (Figure 2D). RFLP and qPCR analyses at

the HindIII region confirmed the specific reduction of BALB

mtDNA upon injection of mito-ApaLI in NZB/BALB embryos

(Figures S2A and S2B).

Preventing the Transmission of Mitochondrial Genomes
Using Mitochondria-Targeted Restriction
Endonucleases
Next, we investigatedwhether induction ofmtDNA heteroplasmy

shift could be utilized for preventing the transmission of mito-

Figure 1. Heteroplasmy Shift in NZB/BALB

MII Oocytes Using mito-ApaLI

(A) Injection of mito-ApaLI mRNA in oocytes for

induction of heteroplasmy shift.

(B) Mitochondrial co-localization of mito-GFP and

mito-ApaLI with Mitotracker in injected oocytes by

immunofluorescence. Scale bars, 10 mm.

(C) RFLP analysis and quantification of mtDNA

heteroplasmy in control and mito-ApaLI injected

MII oocytes after 48 hr (Control n = 16; mito-ApaLI

n = 12). Representative gel.

(D) Quantification of mtDNA copy number by qPCR

in control and mito-ApaLI-injected oocytes MII

after 48 hr (Control n = 12; mito-ApaLI n = 12).

Error bars represent ± SEM. ****p < 0.0001. See

also Figure S1.

chondrial diseases to the next generation.

NZB/BALB one-cell embryos injected

with mito-ApaLI mRNA were cultured

in vitro until the blastocyst stage and

transferred to pseudopregnant mice (Fig-

ure 3A). After a standard gestation period,

pseudopregnant mice gave birth to live

pups through natural delivery (Figure 3B).

Most importantly, RFLP analysis of total

DNA from F1 mito-ApaLI animals re-

vealed a significant reduction of BALB

mtDNA (Figure 3C). Further analysis

demonstrated reduction of BALB mtDNA

in the brain, muscle, heart, and liver.

These data indicate the systemic clear-

ance of a specific mtDNA in the offspring

of heteroplasmic mothers (Figure 3D).

Similarly, analysis at the HindIII region

confirmed the specific reduction of

BALB mtDNA in F1 mito-ApaLI animals

(Figures S3A and S3B). Furthermore, analysis of mtDNA copy

number showed normal mtDNA levels resulting from NZB

mtDNA replication upon embryo implantation (Figure 3E).

Comprehensive characterization of mito-ApaLI animals, both

males and females, showed normal development, weight gain

(Figure 4A), complete blood count (Table S1) as well as normal

blood levels of glucose and lactate, all potential indicators of

mitochondrial dysfunction (Haas et al., 2007) (Figure 4B). More-

over, typical behavioral studies indicative of CNS defects (Ross

et al., 2013), including open field, rotor-rod, grip strength, and

sensory neuron screening, showed normal performance of

mito-ApaLI animals (Figures 4C–4E).

To assess potential off-target effects on the nuclear genome,

we performed comparative hybridization genomic (CHG) array

and exome sequencing. CGH array indicated normal genomic

integrity of mito-ApaLI animals (Figure S3C). Confirming this

result, exome sequencing demonstrated variant rates in ApaLI

containing exomic regions comparable to non-ApaLI exomic re-

gions, excluding the possibility of off-target effects of mito-ApaLI

(0.0014 versus 0.0047 variants per hundred base pairs, respec-

tively). Furthermore, mito-ApaLI animals were fertile, and RFLP
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analyses showed barely detectable levels of BALB mtDNA in

the F2 generation (Figures 4F and S4). These results confirm

the feasibility of mtDNA heteroplasmy shift to prevent the trans-

generational transmission of mitochondrial diseases.

Preventing the Transmission of Mitochondrial Genomes
Using Mito-TALENs
Despite the broad range of over 200 mtDNA mutations associ-

ated with mitochondrial diseases, only the human mutation

m8993T>G responsible for two mitochondrial diseases: neuro-

genic muscle weakness, ataxia, and retinitis pigmentosa

(NARP) and maternally inherited Leigh syndrome (MILS) gener-

ates a unique restriction site that can be targeted using the

naturally occurring restriction endonuclease XmaI. For these rea-

sons, alternative approaches to induce heteroplasmy shift based

on the use of mitochondria-targeted transcription activator-like

effector nucleases (TALENs) and zinc finger nucleases (ZFNs),

which could be designed against virtually any mutation, have

been recently developed by us and other groups (Bacman

et al., 2013; Gammage et al., 2014; Minczuk et al., 2006;

Figure 2. Heteroplasmy Shift in NZB/BALB

Embryos Using mito-ApaLI

(A) Injection of mito-ApaLI mRNA in one-cell em-

bryos for induction of heteroplasmy shift.

(B) In vitro development of mito-ApaLI-injected

embryos to blastocyst stage. Time-lapse images

of EGFP reporter expression at different develop-

mental stages.

(C) RFLP analysis and quantification of mtDNA

heteroplasmy in control and mito-ApaLI-injected

embryos (Control n = 10; mito-ApaLI n = 8).

Representative gel.

(D) Quantification of mtDNA copy number by qPCR

in control and mito-ApaLI-injected embryos

(Control n = 18; mito-ApaLI n = 12).

Error bars represent ± SEM. ***p < 0.001. ****p <

0.0001. See also Figure S2.

2008). In order to evaluate the use of

mito-TALENs to prevent the transmission

of mitochondrial diseases, we tested the

specific elimination of NZB mtDNA in

NZB/BALB oocytes. For this purpose,

we first generated a collection of TALENs

against NZB mtDNA and screened for a

TALENwith the highest specificity against

NZB mtDNA (Figures S5A–S5C). Under

our design, the left monomer of the

TALEN will bind to the common sequence

of NZB and BALB mtDNA while the right

monomer will preferentially recognize

and bind to NZB mtDNA, dictating the

specific cleavage of NZB mtDNA upon

dimerization of the FokI nuclease (Fig-

ure S5A). NZB TALEN monomers were

targeted to mitochondria by the human

ATP5B and SOD2 mitochondria targeting

sequence and the ATP5B and SOD2 50

and 30 UTRs to promote co-translational import from mitochon-

drial associated ribosomes (Marc et al., 2002). In addition, an

EGFP or mCherry reporter was also included in the constructs

encoding each TALEN monomer (Figure 5A). Once again, we

tested the mitochondrial localization of the NZB TALEN by

immunostaining in NZB/BALB tail tip fibroblasts (TTFs) and

observed robust co-localization of mitochondria-targeted

NZB TALEN monomers (hereafter NZB mito-TALEN) with the

Mitotracker (Figure S5D). Analysis of mtDNA by RFLP demon-

strated induction of heteroplasmy shift in NZB/BALB cells by a

specific reduction of NZB mtDNA after 72 hr in cells transfected

with NZB mito-TALENs compared to control cells transfected

with mito-GFP (Figure S5E). In addition, similar to mito-ApaLI,

we found normal mtDNA copy number in NZB mito-TALEN

transfected cells resulting from the replication of the remaining

BALB mtDNA that compensated for the reduction of NZB

mtDNA (Figure S5F).

We next decided to test whether mito-TALENs could be used

in oocytes to specifically eliminate NZBmtDNA (Figure 5A). Fluo-

rescent microscopy images revealed the expression of both
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NZBmito-TALENmonomers as indicated by EGFP andmCherry

expression in oocytes (Figure 5B). RFLP analysis 48 hr after

NZB mito-TALEN mRNA injection demonstrated the specific

decrease of NZB mtDNA and a consequential increase in the

relative BALB mtDNA levels (Figure 5C). RFLP analysis at the

HindIII region confirmed the specific reduction of NZB mtDNA

upon injection of NZB mito-TALEN in NZB/BALB MII oocytes

(Figure S5G). Analysis of mtDNA copy number by qPCR revealed

a decrease in mtDNA copy number following NZB mito-TALEN

injection in oocytes in agreement with the lack of mtDNA replica-

tion in oocytes (Figure 5D). These results demonstrate the poten-

tial of custom designed mito-TALENs for the specific elimination

of mitochondrial genomes in the germline aimed at preventing

the transmission of mitochondrial diseases.

Specific Reduction of Human Mutated Mitochondrial
Genomes Responsible for Mitochondrial Diseases in
Mammalian Oocytes
In order to evaluate the potential of our approach to prevent the

transmission of human mitochondrial diseases we decided to

test the use ofmitochondria-targeted nucleases againstmutated

mitochondrial genomes responsible for two mitochondrial

diseases: Leber’s hereditary optic neuropathy and dystonia

Figure 3. Generation of Live Animals after

Induction of Heteroplasmy Shift in NZB/

BALB Embryos Using mito-ApaLI

(A) Outline for the generation of live animals after

injection of mito-ApaLI mRNA in one-cell embryos.

(B) Representative photograph of F1 mito-ApaLI

mice.

(C) RFLP analysis and quantification of mtDNA

heteroplasmy in tail tip biopsies of embryo donors

and generated F1 mito-ApaLI pups. (Donor n = 10;

mito-ApaLI n = 9).

(D) RFLP analysis and quantification of mtDNA

heteroplasmy in tail, brain, muscle, heart, and liver

of F1 mito-ApaLI mice.

(E) Quantification of mtDNA copy number by qPCR

in F1 mito-ApaLI pups (Donor n = 10; F1 mito-

ApaLI n = 9).

Error bars represent ± SEM. ****p < 0.0001. See

also Figure S3.

(LHOND) and NARP (Jun et al., 1994; Tay-

lor and Turnbull, 2005). Due to the limited

number of available patients and the diffi-

culty in obtaining oocytes from these pa-

tients, we generated artificial mammalian

oocytes carrying mutated genomes by

cellular fusion of patient cells and mouse

oocytes using Sendai virus (Figure 6A).

Although this model has limitations

compared to patient oocytes, it helped

us to test the potential of ourmethodology

for the specific elimination of pathogenic

human mtDNAs in mammalian oocytes.

For this purpose, we first tested the

fusion of 143B osteosarcoma cybrid cells

harboring the LHOND m.14459G>A mutation to mouse MII oo-

cytes (Figure 6B). After 3 hr, complete fusion was observed

and no individual cells were detected under the zona pellucida

of oocytes (Figure 6B). LHOND-fused oocytes were incubated

for 48 hr and collected for analysis. PCR analysis using primers

specific against the humanmtDNA region containing the LHOND

m.14459G>A mutation allowed for the detection of LHOND

mtDNA in fused oocytes (Figure S6A). Next, we tested whether

the LHOND mito-TALEN that we have recently reported could

be used for the specific elimination of LHONDmtDNA in oocytes

(Bacman et al., 2013). For this purpose, MII oocytes harboring

LHOND mtDNA were injected with mRNA encoding the LHOND

mito-TALEN 3 hr after cell fusion. Fluorescent microscopy

images revealed the expression of both LHOND mito-TALEN

monomers as indicated by EGFP and mCherry expression (Fig-

ure S6B). RFLP analysis 48 hr after mRNA injection demon-

strated the specific reduction of LHONDmtDNA in fused oocytes

(Figure 6C). Analysis of mtDNA copy number by qPCR confirmed

a significant reduction of human mutated LHOND mtDNA upon

injection of LHOND mito-TALENs in fused oocytes (Figure 6D).

Finally, to demonstrate the potential of this approach against

other mitochondrial diseases we decided to use a similar strat-

egy to test the elimination of human mitochondrial genomes
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Figure 4. Characterization of F1 mito-ApaLI Mice

(A) Body weight of mito-ApaLI males (Control n = 5 and mito-ApaLI n = 3) and mito-ApaLI females (Control n = 5 and mito-ApaLI n = 6) at different time points. ns,

non-significant.

(B) Biochemical analysis of glucose and lactate in blood of control (n = 10) and mito-ApaLI (n = 9) mice. ns, non-significant.

(C) Open field test measuring baseline levels of locomotor activity in freely moving mice quantifying distance traveled, ambulatory counts, and vertical counts.

(D) Rotarod test evaluating locomotor coordination based on the latency at which a fall occurs on a gradually accelerating spinning rod.

(E) Grip strength test measuring average and maximum grip force in the forelimbs.

(F) RFLP analysis and quantification of mtDNA heteroplasmy in tail tip biopsies of F2 mito-ApaLI pups. (F2 mito-ApaLI n = 12).

Error bars represent ± SEM. See also Figure S4 and Table S1.
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carrying the mutation NARP m.9176T>C. For this purpose, we

first generated a collection of TALENs against NARP mtDNA

and screened for a TALEN with the highest specificity against

the mutation NARP m.9176T>C (Figures S6C–S6E). NARP

mito-TALEN monomers were targeted to mitochondria by the

ATP5B and SOD2 mitochondria targeting sequence and the

ATP5B and SOD2 50 and 30 UTRs (Figure 6A). Immunostaining

in NARP patient cells revealed a robust co-localization of mito-

chondria-targeted NARP mito-TALEN monomers with the mito-

chondrial dye Mitotracker (Figure S6F). Subsequently, we tested

the induction of heteroplasmy shift by NARP mito-TALEN using

immortalized NARP patient cells. Analysis of mtDNA by RFLP

demonstrated induction of heteroplasmy shift in NARP cells

with a reduction in NARP mtDNA after 72 hr in cells transfected

with the NARP mito-TALEN compared to cells transfected with

mito-GFP (Figure S6G). In addition, we found normal mtDNA

copy numbers in NARP mito-TALEN transfected cells resulting

from the replication of the remaining mtDNA (Figure S6H).

Next, similar to LHOND, we tested the specific elimination of

Figure 5. Heteroplasmy Shift in NZB/BALB

MII Oocytes Using NZB Mito-TALEN

(A) Injection of NZB mito-TALEN mRNA in oocytes

for induction of heteroplasmy shift.

(B) Expression of fluorescent reporters of NZB

TALEN monomer in MII oocytes.

(C) RFLP analysis and quantification of mtDNA

heteroplasmy in control and NZB TALEN-injected

oocytes after 48 hr (Control n = 9; NZB TALEN

n = 7). Representative gel.

(D) Quantification of mtDNA copy number by qPCR

in control and NZB TALEN-injected oocytes after

48 hr (Control n = 16; NZB TALEN n = 8).

Error bars represent ± SEM. **p < 0.01. ***p <

0.001. See also Figure S5.

NARPmitochondrial genomes in oocytes.

As before, patient cells harboring the

NARP m.9176T>C mutation were fused

to MII oocytes using Sendai virus and in-

jected with NARP mito-TALEN 3 hr after

fusion. Fluorescent reporters for both

NARP mito-TALEN monomers were

observed in oocytes as indicated by

EGFP and mCherry expression (Fig-

ure S6I). RFLP analysis 48 hr after

mRNA injection demonstrated the spe-

cific reduction of NARP mtDNA in fused

oocytes (Figure 6E). Analysis of mtDNA

copy number by qPCR confirmed a signif-

icant reduction of human mutated NARP

mtDNA upon injection of NARP mito-

TALENs in fused oocytes (Figure 6F). We

speculate that the low levels of wild-type

mtDNA carried by the NARP patient cells,

together with the lack of mtDNA replica-

tion in oocytes, might be the reason why

we fail to detect a significant increase in

wild-type human mtDNA upon NARP

mito-TALEN injection. Collectively, these results confirm the po-

tential of custom-designedmito-TALENs for the specific elimina-

tion of clinically relevant mutated mitochondrial genomes

responsible for human mitochondrial diseases in the germline.

DISCUSSION

In summary, we report here on novel strategies for preventing

germline transmission of mitochondrial diseases through the in-

duction of mtDNA heteroplasmy shift in oocytes and embryos.

Asaproofof concept,weusedaheteroplasmicmousemodel car-

rying two different mtDNA haplotypes: NZB and BALB. First, we

demonstrated that injection ofmRNA encodingmitochondria-tar-

geted ApaLI restriction enzyme into oocytes, as well as into one-

cell embryos, led to thegenerationof live animalswith significantly

reduced levels of theBALBmtDNAhaplotype. These animals dis-

played normal behavior, development, gross genomic integrity

and fertility. Moreover, their progeny (F2 generation) maintained

significantly reduced levels of BALB mtDNA. These results
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demonstrate the potential of germline heteroplasmy shift to pre-

vent the transgenerational transmission of mitochondrial ge-

nomes. Inaddition, injectionofmRNAencodingmitochondria-tar-

getedNZBmito-TALEN into oocytes led to a significant reduction

of NZB mtDNA levels. Finally, fusion of human patient cells car-

rying mtDNA mutations to mouse oocytes followed by injection

ofmito-TALENs against thesemutations demonstrated a specific

reduction in the levels of mutated mtDNA.

The use of restriction nucleases for the induction of hetero-

plasmy shift has been previously demonstrated in the NZB/

BALB mouse as well as in patient somatic cells by us and other

groups (Alexeyev et al., 2008; Bacman et al., 2010; 2012). How-

ever, the application of restriction enzymes to target clinically

relevant mutations is limited to only m8993T>G, which is respon-

sible for some cases of NARP and MILS, a mutation that gener-

ates a unique restriction site that can be targeted using the

restriction endonuclease XmaI (Alexeyev et al., 2008). The use

of other approaches using different types of nucleases including

TALENsmight allow for the custom-designed targeting of awider

range of human mitochondrial mutations responsible for mito-

Figure 6. Specific Elimination of Human

LHOND m.14459G>A and NARP m.9176T>C

Mutations in Mammalian Oocytes Using

Mito-TALENs

Fusion of human cells harboring LHOND

m.14459G>A and NARP m.9176T>C mutations

with mouseMII oocytes followed by the injection of

mito-TALENs for induction of heteroplasmy shift.

(B) Representative images of MII oocytes before

and after cell fusion.

(C) RFLP analysis and quantification of LHOND

heteroplasmy in individual MII oocytes with and

without LHOND TALEN injection after 48 hr (Fusion

n = 3; Fusion + TALEN n = 3).

(D) Quantification of human mtDNA copy number

by qPCR in individual MII oocytes with and without

LHOND TALEN injection after 48 hr (Fusion n = 4;

Fusion + TALEN n = 4).

(E) RFLP analysis and quantification of NARP

heteroplasmy in individual MII oocytes with and

without NARP TALEN injection after 48 hr (Fusion

n = 7; Fusion + TALEN n = 3).

(F) Quantification of human mtDNA copy number

by qPCR in individual MII oocytes with and without

NARP TALEN injection after 48 hr (Fusion n = 17;

Fusion + TALEN n = 9).

Error bars represent ± SEM. *p < 0.05. ***p < 0.001.

See also Figure S6.

chondrial diseases. Along this line, several

reports have recently demonstrated the

use of mitochondria-targeted TALENs

and zinc finger nucleases (ZFNs) for the

specific elimination of mutated mitochon-

drial genomes in somatic cells (Bacman

et al., 2013; Gammage et al., 2014; Min-

czuk et al., 2006; 2008). When compared

to mitochondria-targeted restriction en-

donucleases, the use of mito-TALENs for

preventing transmission of mitochondrial diseases in the germ-

line may be less robust. However, we speculate that their thera-

peutic use will achieve specific reduction of mutated mitochon-

drial genomes below the threshold levels (60%–95%) required

for biochemical and clinical defects to manifest (Russell and

Turnbull, 2014). In addition, we anticipate that the future develop-

ment and application of more specific and efficient gene editing

technologies will allow for a greater reduction of mutatedmtDNA

levels in the germline.

Transmission of mitochondrial diseases by female carriers

directly correlates with the levels of mutated mtDNA present in

oocytes. Inmany cases, asymptomatic female carrierswith inter-

mediate levels ofmutant loadmay produce oocyteswith different

ranges of mutated mtDNA (Chinnery et al., 2000; Cree et al.,

2009). Due to the lack of mtDNA replication in oocytes and pre-

implantation embryos, targeting of mutated mtDNA in oocytes

with high mutant loads using the approach presented here may

lead to adramatic reduction inmtDNAcopy number. Inmice, em-

bryos with mtDNA levels below a specific threshold develop nor-

mally during the pre-implantation stages but subsequently fail to
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implant in the uterus or undergo development arrest (Wai et al.,

2010). Consequently, oocytes containing high levels of mutated

mtDNA that are subjected to heteroplasmy shiftmay result in em-

bryoswith lowmtDNA copy number that may fail to implant in the

uterinewall. In this case, thoughheteroplasmyshiftmaynot result

in a viable embryo, it would attain the goal of hampering the

development and implantation of embryos with high mutant

loads, thereby preventing the transmission of mitochondrial dis-

eases to the next generation. In this scenario, PGD could be used

as a complementary approach to select embryos with mtDNA

copy numbers sufficient for implantation.

Due to the non-Mendelian segregation of mtDNA, current

therapeutic approaches, including genetic counseling and

PGD, can only partially reduce, but not eliminate, the risk of

transmission of mitochondrial diseases (Brown et al., 2006).

The recent development of mitochondrial replacement tech-

niques based on spindle, pronuclear, or polar body transfer

into healthy enucleated donor oocytes or embryos, soon to

be allowed in the UK and currently under review by US regu-

latory agencies, represent a valid and powerful alternative

to current approaches (Craven et al., 2010; Paull et al., 2013;

Tachibana et al., 2013; Wang et al., 2014). Mitochondrial

replacement techniques involve a series of complex technical

manipulations of nuclear genome between patient and donor

oocytes that will result in the generation of embryos carrying

genetic material from three different origins. For these

reasons, mitochondrial replacement techniques have raised

biological, medical, and ethical concerns (Hayden, 2013; Rein-

hardt et al., 2013). Despite their great potential, more studies

are still required to show that these techniques are safe in hu-

man oocytes. The approach presented here relies on a single

injection of mRNA into patient oocytes, which is technically

simpler and less traumatic to the oocyte compared to mito-

chondrial replacement techniques (Craven et al., 2010; Paull

et al., 2013; Tachibana et al., 2013; Wang et al., 2014). Impor-

tantly, it does not require healthy donor oocytes, thus avoiding

ethical issues related to the presence of donor mtDNA.

Induction of mtDNA heteroplasmy shift using restriction endo-

nucleases or TALENs has the potential to eliminate mutated

mitochondrial genomes in the germline, and consequently, pre-

vent the transgenerational transmission of mitochondrial dis-

eases. In addition, since mtDNA mutations in the germline

have been recently linked to aging (Ross et al., 2013), this strat-

egy could also be applied to prevent the transmission of mtDNA

variants with potential roles in aggravating aspects of human ag-

ing and age-associated diseases.

EXPERIMENTAL PROCEDURES

Plasmids

A synthetic gene coding for the ApaLI restriction endonuclease with a C-termi-

nal HA (Hemagglutinin antigen) tag was purchased from Integrated DNA Tech-

nologies (Coralville) with codon usage optimized for mammalian translation.

For the generation of the mito-ApaLI construct, ApaLI was subcloned into

the pVAX plasmid containing the mitochondria localization signal derived

from ATP5B, a unique Flag immunotag in the N terminus, 50 and 30 UTR from

ATP5B to localize the mRNA to ribosomes associated with mitochondria, an

independent fluorescent marker to select for expression (enhance GFP

[EGFP]) and a recoded picornaviral 2A-like sequence (T2A0) between the

mito-ApaLI and the fluorescent marker. Subsequently, the fragment described

was subcloned into the pcDNA3 plasmid containing a T7 promoter for in vitro

transcription. For the generation of the mito-GFP construct, EGFP was subcl-

oned into the previously described pVAX construct lacking the independent

fluorescent marker and the recoded picornaviral 2A-like sequence (T2A0) but
containing a T7 promoter. For the generation of ApaLI construct, ApaLI RE

was subcloned into the previously described pVAX plasmid lacking the N ter-

minus mitochondria localization signal derived from ATP5B and the 50 and 30

UTRs from ATP5B with a T7 promoter. Cloning was done using the In-Fusion

HD cloning kit (Clontech Laboratories).

Construction of Mito-TALENs

TALEN target sites for NZB and NARP m.9176T>C were identified using the

TAL effector-Nucleotide Targeter (TALE-NT) software (Christian et al., 2010).

To increase TALEN specificity, TALEN with targeting sequences of various

lengths ranging from 7.5 to 13.5 base pairs were designed. TALENs were con-

structed into the TALEN cloning vector of the TALE Toolbox kit from Addgene

(cat#1000000019) (Sanjana et al., 2012), and the TALENs recognizing the

target sites were constructed using the Golden Gate Assembly method.

Mito-TALEN, were constructed by addition of mitochondria localization

signals derived from ATP5B or SOD2 mitochondria localization signal, inclu-

sion of a unique immuno-tag in the N terminus of the mature protein (hemag-

glutinin [HA] or Flag), inclusion of the 50 and 30 UTRs from ATP5B or SOD2,

inclusion of an independent fluorescent marker to select for expression

(EGFP in one monomer and mCherry in the other) and inclusion of a recoded

picornaviral 2A-like sequence (T2A0) between the mito-TALEN and the fluores-

cent marker.

Animals

All animal procedures were performed according to NIH guidelines and

approved by the Committee on Animal Care at Salk Institute. NZB/BALB het-

eroplasmic founder females were originally generated (Jenuth et al., 1996).

NZB/BALB colony was maintained by breeding the females with BALB/cByJ

males. Tail tip genotyping was routinely performed in order to exclude females

carrying low levels of one of the two mtDNA haplotypes. BALB/c, BALB/cByJ

and NZB mice were obtained from Jackson laboratory.

Cells, Transfection, and Sorting

Simian virus 40 (SV40) immortalizedNZB/BALBfibroblasts containingNZBand

BALBmtDNAwere derived from tail tip ofNZB/BALBmice.Humanpatient cells

harboring the NARP m.9176T>C mutation were obtained by skin biopsy after

signed informed consent of the donor and with the approval of the Institutional

ReviewBoard of theHospital Clinic, Spain. Cells were immortalized usingSV40

and cultured at 37 �C in DMEM (Invitrogen) containing GlutaMAX, non-essen-

tial amino acids and 10% fetal bovine serum (FBS). 143B osteosarcoma cybrid

cells harboring the LHONDm.14459G>Amutation were obtained and cultured

as previously described (Bacman et al., 2013). Cells were transfected with Lip-

ofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. Af-

ter 72 hr, cells were sorted using a BD Influx (Becton, Dickinson and Company)

bygatingon single-cell fluorescence using a488-nm laserwith a 505LP, 530/40

filter set for EGFP and a 561-nm laser with a 600LP, 610/20 filter set for

mCherry. Total DNA was extracted from sorted cells using the DNeasy Blood

andTissueKit (QIAGEN) following the protocol suggestedby themanufacturer.

Single Strand Annealing Reporter Assay

Please refer to Extended Experimental Procedures.

Production of mRNA

In vitro transcription of mRNA was performed using mMESSAGE mMACHINE

T7 ULTRA kit (Life Technologies) according to the manufacturer’s instructions

using linearized and gel purified (QIAGEN) plasmid template. The mRNA was

purified using MEGAclear kit (Life Technologies) and quantified using Nano-

Drop 8000 (Thermo Scientific).

Oocyte Collection and mRNA Injection

Female mice were superovulated with pregnant mares serum gonadotropin

(PMSG) and human chorionic gonadotropin (hCG). MII oocytes were
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collected 14 hr after hCG injection in M2 medium (Millipore) and freed of

cumulus cells using hyaluronidase. For collection of 1-cell embryos, supero-

vulated female mice were mated to BALB/c males and fertilized embryos

were collected 18–20 hr after hCG injection from oviduct. mRNA (50–

250 ng/ml) was injected into the cytoplasm of MII oocytes and fertilized

embryos in M2 medium using Eppendorf micromanipulator. The injected

MII oocytes were in vitro cultured in KSOM (Millipore) for 48 hr before anal-

ysis. The injected embryos were cultured in KSOM at 37�C under 5% CO2

in air until blastocyst stage. Subsequently, blastocysts were collected for

analysis or transferred to BALB/c pseudopregnant females. Live pups were

obtained by natural delivery.

Cell Fusion

Cell fusion was achieved by using inactivated Sendai virus (GenomeOne,

Cosmo Bio). Sendai virus stock solutions were prepared according to

the manufacturer instructions and further diluted 1:20 in cell fusion buffer.

The 143B osteosarcoma cybrid cells harboring LHON m.14459G>A

mutation and patient cells harboring NARP m9176T>C mutation were used

for fusion with mature MII oocytes. Cells were cultured for 48 hr in DMEM no

glucose medium supplemented with galactose before using for cell fusion to

increase mtDNA content. On the day of fusion, cells were trypsinized and re-

suspended inM2medium. For eachMII oocyte, five cells briefly placed in Sen-

dai virus were injected under the zona pellucida. After 3 hr successfully fused

oocytes were selected for mito-TALEN mRNA injection. Lastly, surviving oo-

cytes were cultured in KSOM for 48 hr before analysis.

Immunofluorescence

Cells were seeded on coverslips before transfection. Forty-eight hours after

transfection cellswere incubated in thepresence of 350 nMMitotracker (Invitro-

gen) for 30min. Subsequently, cells were fixed and permeabilized with 4%PFA

and 0.1%Triton X-100, respectively. After fixation, cells were blocked for 1 hr at

room temperature with 1% BSA/PBS. Next, cells were incubated with an anti-

Flag M2 primary antibody (Sigma) or anti-HA antibody (Millipore) overnight at

4�C. The next day, cells were washed three times with PBS and incubated for

1 hr at room temperature with Alexa Fluor 488-conjugated donkey antibodies

togoat IgG (MolecularProbes) orAlexaFluor647-conjugateddonkeyantibodies

to mouse IgG and 10 min with Hoechst 33342 (0.5 mg ml�1 in PBS) (Invitrogen).

Finally, cells were washed three times with PBS and mounted using Fluoro-

mount-G (Southernbiotech). Confocal image acquisition was performed using

a Zeiss LSM 780 laser-scanning microscope (Carl Zeiss Jena).

‘‘Last-Cycle Hot’’ PCR and RFLP

Total DNA from cells, tail biopsies, and oocytes/embryos were used to

determine mtDNA heteroplasmy by ‘‘Last-cycle hot’’ PCR using the mtDNA

50 Fluorescein amidite (FAM) labeled primers as listed in Table S2. NZB/

BALB PCR products were digested with ApaLI or HindIII, which digests

BALB mtDNA at positions 5461 (ApaLI targeting site) and 9136 respectively.

NARP PCR products were digested with BsrI which digest mutated

NARP mtDNA at position 9176. The levels of LHON m.14459G>A were

determined as previously reported (Bacman et al., 2013). Digested PCR

products were subjected to electrophoresis in an 12% polyacrylamide

gel. The fluorescein signal was quantified using a Typhoon 8600 system

(Molecular Dynamics) and gels were quantified using ImageQuant 5.2

(Molecular Dynamics).

Quantification of mtDNA Copy Number

Absolute mtDNA copy numbers were quantified by real-time PCR using

iQSyber Green on Bio-Rad iCycler (Bio-Rad). Individual oocytes and em-

bryos were transferred into lysis buffer (200 mM KOH) and incubated for

10 min at 65�C. The reaction was neutralized by addition of 200 mM HCl.

Absolute mtDNA copy number per 1 ml of lysate was calculated using a stan-

dard curve derived from the Q-PCR amplification of a fragment of mtDNA

genome. First, a standard curve was generated by a 10-fold serial dilution

of a PCR product obtained using Standard curve primers for the different

regions of mtDNA analyzed. Subsequently, to quantify the absolute levels

of mtDNA, quantitative real-time PCR was performed using qPCR primers

listed in Table S2.

Blood and Plasma Parameters

Bloodcollectionwasperformedbysub-mandibularbleeding.WholeEDTAblood

samples were analyzed in duplicates for Complete Blood Count (CBC) on

a Hemavet 950FS Multi Species Hematology System (Drew Scientific). Plasma

glucoseconcentrationwasdeterminedusing theGlucose (GO)AssayKit (Sigma)

according to the manufacturer’s instructions. Plasma lactate concentration was

determined using the Lactate AssayKit (Sigma) according to themanufacturer’s

instructions. Please refer to Extended Experimental Procedures.

Behavioral Analysis

Behavioral testing was carried out at the Salk Institute for Biological Studies

Behavioral Testing Core. Basic sensorimotor function was assessed in the

Open Field Test, Rotarod, Grip Strength, and Neurological Screen. Please

refer to Extended Experimental Procedures.

Array Comparative Genomic Hybridization

aCGH was performed following Agilent Oligonucleotide Array-Based CGH for

Genomic DNAAnalysis (Agilent Technologies, Santa Clara, CA). Please refer to

Extended Experimental Procedures.

Exome Capture and High-Throughput Sequencing

Exome capture was using the SeqCap EZ Mouse Exome Design probe pool

(54 Mb, NimbleGen) according to the manufacturer’s protocol. Please refer

to Extended Experimental Procedures.

Statistical Evaluation

Statistical analyses were performed by using standard unpaired Student’s t

test with Welch’s correction using Prism 6 software (GraphPad). All data are

presented as mean ± SEM and represent a minimum of two independent

experiments. Statistical significance is displayed as *p < 0.05, **p < 0.01,

***p < 0.001, and ****p < 0.0001.

ACCESSION NUMBERS

The GEO database accession number for the aCGH data sets reported in this

paper is GSE67371. The GEO accession number for the exome sequencing

data sets reported in this paper is SRP056327.
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Freyer, C., Lagouge, M., Hoffer, B.J., Olson, L., and Larsson, N.G. (2013).

Germline mitochondrial DNAmutations aggravate ageing and can impair brain

development. Nature 501, 412–415.

Russell, O., and Turnbull, D. (2014). Mitochondrial DNA disease-molecular

insights and potential routes to a cure. Exp. Cell Res. 325, 38–43.

Sanjana, N.E., Cong, L., Zhou, Y., Cunniff, M.M., Feng, G., and Zhang, F.

(2012). A transcription activator-like effector toolbox for genome engineering.

Nat. Protoc. 7, 171–192.

Shoubridge, E.A., and Wai, T. (2007). Mitochondrial DNA and the mammalian

oocyte. Curr. Top. Dev. Biol. 77, 87–111.

Tachibana, M., Amato, P., Sparman, M., Woodward, J., Sanchis, D.M., Ma, H.,

Gutierrez, N.M., Tippner-Hedges, R., Kang, E., Lee, H.-S., et al. (2013).

Towards germline gene therapy of inherited mitochondrial diseases. Nature

493, 627–631.

Taylor, R.W., and Turnbull, D.M. (2005). Mitochondrial DNA mutations in

human disease. Nat. Rev. Genet. 6, 389–402.

Vogel, G. (2014). Assisted reproduction. FDA considers trials of ‘three-parent

embryos’. Science 343, 827–828.

Wai, T., Ao, A., Zhang, X., Cyr, D., Dufort, D., and Shoubridge, E.A. (2010). The

role of mitochondrial DNA copy number in mammalian fertility. Biol. Reprod.

83, 52–62.

Wallace, D.C., andChalkia, D. (2013). Mitochondrial DNA genetics and the het-

eroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect.

Biol. 5, a021220.

Wang, T., Sha, H., Ji, D., Zhang, H.L., Chen, D., Cao, Y., and Zhu, J. (2014).

Polar body genome transfer for preventing the transmission of inherited mito-

chondrial diseases. Cell 157, 1591–1604.

Cell 161, 459–469, April 23, 2015 ª2015 Elsevier Inc. 469





Recycling plastic
is fantastic!
Rainin TerraRack
reduces tip rack waste.
Request your free
sample today!
mt.com/rainin-tr

Because the future is in your hands™



We make really good antibodies.
Not really good ads.

 For really good antibodies, visit bethyl.com/trialsize

© 2015 Bethyl Laboratories, Inc. All rights reserved.


