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ABSTRACT

A cell’s ability to recognize and adapt to the physical environment is central to its survival and
function, but how mechanical cues are perceived and transduced into intracellular signals
remains unclear. In mesenchymal stem cells (MSCs), high-magnitude substrate strain (HMS,
�2%) effectively suppresses adipogenesis via induction of focal adhesion (FA) kinase (FAK)/
mTORC2/Akt signaling generated at FAs. Physiologic systems also rely on a persistent barrage of
low-level signals to regulate behavior. Exposing MSC to extremely low-magnitude mechanical
signals (LMS) suppresses adipocyte formation despite the virtual absence of substrate strain
(<0.001%), suggesting that LMS-induced dynamic accelerations can generate force within the
cell. Here, we show that MSC response to LMS is enabled through mechanical coupling between
the cytoskeleton and the nucleus, in turn activating FAK and Akt signaling followed by FAK-
dependent induction of RhoA. While LMS and HMS synergistically regulated FAK activity at the
FAs, LMS-induced actin remodeling was concentrated at the perinuclear domain. Preventing
nuclear-actin cytoskeleton mechanocoupling by disrupting linker of nucleoskeleton and cytoskel-
eton (LINC) complexes inhibited these LMS-induced signals as well as prevented LMS repression
of adipogenic differentiation, highlighting that LINC connections are critical for sensing LMS. In
contrast, FAK activation by HMS was unaffected by LINC decoupling, consistent with signal ini-
tiation at the FA mechanosome. These results indicate that the MSC responds to its dynamic
physical environment not only with “outside-in” signaling initiated by substrate strain, but vibra-
tory signals enacted through the LINC complex enable matrix independent “inside–inside” sig-
naling. STEM CELLS 2013;33:2063–2076

INTRODUCTION

Since the beginning of life, mechanical cues
have guided cell fate and function. The role of
mechanical signaling in defining cell fate is evi-
denced in the pluripotent mesenchymal stem
cells (MSC) that regenerate and repair tissues
[1, 2]. Lineage guidance of MSCs relies in-part
on physical cues derived from the environment
[3]. Strain of bone and muscle during daily
activity suppresses adipogenesis [4], while pro-
moting osteogenesis [5] and myogenesis [6]. In
vitro, when cells are attached to an extracellu-
lar matrix, mechanical cues derived from sub-
strate deformation or quality (e.g., stiffness
and topology) can be transmitted through
focal adhesion (FA) connections to initiate sig-
nal pathways that cause reorganization of
cytoskeletal structure [7, 8] and allow auto-
modulation of signal strength transmission to
the nucleus [9]. Mimicking exercise, in vitro
application of high-magnitude substrate strain
(HMS, �2%) effectively suppresses adipogene-
sis via induction of focal adhesion kinase
(FAK)/mTORC2/Akt signaling generated at FAs

[10]. Physical signals that regulate biologic
functions, however, do not necessarily need to
be large to be influential. Physiologic systems
ranging from hair cells responding to sound in
the cochlea [11] to circadian rhythms of Dro-
sophila [12] rely on a persistent barrage of low
magnitude, high-frequency signals. Moreover,
application of high frequency, low-magnitude
mechanical signals (LMS) copy high-impact
exercises to improve musculoskeletal function
[13, 14], decrease adipose encroachment in
the bone marrow in vivo [1, 15] and augment
MSC osteogenesis [16] while decreasing adipo-
genesis [17] in vitro. In contrast to HMS signal-
ing that depends on matrix strain, the
mechanism by which LMS is perceived and
induces relevant signaling pathways in cells is
not clear.

Despite their physiologic relevance, little is
known about how very small signals, such as
LMS, are perceived at the cell or nuclear level
to control function [18]. LMS creates a com-
plex local loading environment that depends
on many factors including frequency, ampli-
tude, and viscosity [19]. Peak strains generated
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by LMS are on the order of approximately 1–2 micro strain
(le) [20] while cell responses linked to HMS are usually
applied at �10,000 le [7, 21, 22], suggesting that substrate
deformation does not contribute to the LMS response. Cur-
rent literature addressing how cells sense vibration is focused
on computational analyses or correlations that do not directly
speak to the mechanisms responsible for the cell response to
vibration [23–26]; indeed research has been largely limited to
functional outcome assays describing cell osteogenesis, adipo-
genesis, proliferation, or tissue/organism level response
[27–55].

Remodeling its cytoskeleton in response to the surround-
ing physical environment allows the cell to actively participate
in the mechanoregulation of cell fate and function [56]. Not
only does internal cell tension driven by RhoA activity directly
modulate cell differentiation [57] but mechanically guided
cytoskeletal remodeling alters signal transmission [58]. For
example, HMS induced remodeling of the MSC actin cytoskel-
eton, enhances connections through new FA complexes, and
results in amplification of mechanically generated signals in
response to repeated force [10], thus more efficiently sup-
pressing MSC adipogenesis. Scaling the same analogy to the
organismal level, shorter but repeated exercise durations have
shown to be more effective in improving glycemic control
compared with a single longer duration [59]. Not surprisingly,
repeated exposure to LMS was also more effective than a sin-
gle bout in controlling MSC lineage decisions [17], presumably
due to adaptive remodeling of cell structure[16, 55].

Ultimately, mechanical force influences the nuclear tran-
scriptional machinery via physical and biochemical means
[60–62]. The mechanical connection between the cytoskeleton
and the nucleus is transferred via the linker of nucleoskeleton
and cytoskeleton (LINC) complex [63, 64]. LINC-associated
giant isoforms of Nesprin-1 and Nesprin-2 bind actin filaments
through their N-termini [65, 66] and SUN proteins via their
C-terminal KASH (Klarsicht, ANC-1, Syne Homology) domains
[67]. LINC complexes form a filamentous network on the
nuclear surface [68], perhaps akin to focal adhesions [69, 70],
where force can dynamically alter LINC mediated mechano-
coupling between nucleus and cytoskeleton [71, 72]. LINC
mediated force has been shown to regulate nuclear structure
and function [73, 74]. Pathologic alterations in the nuclear
structure, including lamin mutations common to progeria and
depletion or dislocation of giant Nesprins, disrupt LINC con-
nections [64, 75] to interfere with cellular processes including
proliferation [76], migration [64], and differentiation [77].
Recently, forces applied via Nesprin bound magnetic beads
were shown to cause phosphorylation of the Lamin/
LINC binding partner Emerin resulting in increased nuclear
stiffness [78].

The cytoplasmic cytoskeleton, connected to substrate via
peripheral focal adhesions, spans through F-actin stress fibers
to attach to LINC on the outer nuclear membrane, in this way
transmitting forces from outside the cell inwards [79]. In
smooth muscle cells, dissection of a single apical actin stress
fiber generates a force of 65 nN on the nucleus [80]. Switch-
ing between weak and strong LINC-actin coupling states can
generate up to 40 nN force differentials which are an order of
magnitude larger than the cytoskeletal forces required to initi-
ate F-actin assembly and signaling (approximately 10–50 pN)
[81]. This suggests that forces generated by LINC-actin cou-

pling alone should be able to generate sufficient internal force
from inside the cell to initiate signaling events. The positive
correlation between rate of acceleration and LMS response
[23] suggests the possibility that the nucleus might participate
in LMS-induced signaling as a passive structural element by
virtue of its denser/stiffer nature. We previously explored this
possibility in silico and found that LMS-induced accelerations
caused relative nuclear motions that were 100–1,000 times
larger than those generated by LMS-induced fluid shear
stresses [26]. Supportive of the hypothesis that nucleus might
participate in the sensing of vibratory signals, Sun1–/– mice
gradually become deaf [82], thus strengthening the notion
that LINC may be important for vibrational sensing, including
sound.

Here, using biochemical and imaging techniques, we
approach the question of how LMS generates signaling, con-
sidering whether LMS and HMS use same signaling mecha-
nisms to initiate cell response. We address whether LMS or
HMS are perceived in the same way and, more specifically,
ask if LMS directed signaling and regulation of MSC differen-
tiation require LINC facilitated mechanical coupling between
the nucleus and cytoskeleton.

Experimental Design

MSCs were seeded at 100,000 per well in six-well polystyrene
plates (LMS) or in Bioflex Collagen-I coated silicone plates
[17] (HMS, LMS, or LMS1HMS). LMS was applied one time
(13), and repeated after a 2-hour rest period (23) in the
form of high-frequency low-magnitude vibration of 0.7 g (1
g5 Earth’s gravitational field) at 90 Hz for 20 minutes at
room temperature (RT). HMS was applied as a uniform uniax-
ial strain of 2% at 0.17 Hz for 20 minutes at RT. First, we
studied the LMS-induced FAK phosphorylation (p-FAK, Tyr397)
events by a time course study to test whether 13 LMS
served to augment the second (23) LMS. We then investi-
gated the cellular adaptations following 13 LMS by FA isola-
tion and RhoA activation assays. We further tested whether
p-FAK was necessary for the RhoA activity via PF573228 (3
lM) pretreatment. We then asked whether activating RhoA
alone via lysophosphatidic acid (LPA, 30lM) also amplifies
subsequent LMS response. Alternatively, we also tested
whether HMS and LMS work synergistically to amplify each
other using combinations of LMS1HMS. Role of the cytoskel-
eton in facilitating LMS-induced FAK activation was tested by
disrupting the actin and microtubule cytoskeletons as well as
cellular tension via pretreatment of Cytochalasin-D (0.2 lM),
Colchicine (1 lM), and Y27632 (10 lM). We used immunoflu-
orescence to determine whether LMS causes rearrangement
of the actin cytoskeleton.

To test whether LINC-mediated mechanocoupling of
nucleus and cytoskeleton was required for LMS mechanores-
ponse, we measured LMS induced FAK and Akt activation as
well as modulation of MSC adipogenesis after the nuclear
envelope LINC complex was disrupted by siRNA treatment of
SUN1 and 2 [63] or by overexpression of a dominant negative
form of Nesprin KASH domain [64]. A role of Emerin in LMS
signaling was queried using a targeting siRNA. Finally, to iden-
tify differences in proximal signaling due to LMS and HMS,
mechanically activated Akt was quantified by blocking FAK
activity or use of siRNA targeting the FAK comodulator
Fyn [21].
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MATERIALS AND METHODS

MSC Isolation

Marrow derived mesenchymal stem cells (MSCs) from 8 to 10
week male C57BL/6 mice were prepared after Peister et al. [83].
Tibial and femoral marrow were collected in RPMI-1640, 9% fetal
bovine serum (FBS), 9% HS, 100 lg/ml penicillin/streptomycin,
and 12 lM L-glutamine. After 24 hours, nonadherent cells were
removed by washing with phosphate-buffered saline (PBS) and
adherent cells cultured for 4 weeks. Passage 1 cells were col-
lected after incubation with 0.25% trypsin/1 mM EDTA 3 2
minutes, and replated in a single 175-cm2 flask. After 1–2 weeks,
passage 2 cells were replated at 50 cells per square centimeter in
expansion medium (Iscove modified Dulbecco’s, 9% FBS, 9% HS,
antibiotics, L-glutamine). MSC were re-plated every 1–2 weeks
for two consecutive passages up to passage 5 and tested for
osteogenic and adipogenic potential, and subsequently frozen.

Application of LMS and Strain

Vibrations were applied to MSCs at peak magnitudes of 0.7 g
at 90 Hz for 20 minutes at RT [17]. Controls were sham
handled. Unless stated otherwise, LMS was applied as two 20
minutes bouts separated by 2 hours rest. Uniform 2% biaxial
strain was delivered at 10 cycles per minute for 20 minutes
to MSCs using the Flexcell FX-4000 system (Flexcell Interna-
tional, Hillsborough, NC, www.flexcellint.com).

Cell Culture and Pharmacological Reagents

FBS was obtained from Atlanta Biologicals (Atlanta, GA, http://
www.atlantabio.com/). Culture media, trypsin-EDTA, antibiotics,
and Phalloidin-Alexa-488 were from Invitrogen (Carlsbad, CA,
www.invitrogen.com). KU63794, PF573228, Y27632, Colchicine,
and Cytochalasin D were purchased from Sigma Aldrich (St.
Louis, MO, www.sigmaaldrich.com). LPA was purchased from
Cayman Chemicals (Ann Arbor, MI, www.caymanchem.com).
MSCs [84] were maintained in IMDM with FBS (10%, v/v) and
penicillin/streptomycin (100 lg/ml). For phosphorylation and
RhoA activity, seeding density was 10,000 cells per square cen-
timeter and 2,500 cells per square centimeter for immuno-
staining experiments. All the groups were cultured for 48
hours before beginning experiments and were serum starved
overnight in serum free medium. LPA (30 lM) was added 2
hours before LMS. All other pharmacological inhibitors were
added 1 hour before either LMS or Strain at the following con-
centrations: Cytochalasin D (0.2 lM), Y27632 (10 lM), Colchi-
cine (1 lM), PF573228 (3 lM), and KU63794 (2 lM).

For adipogenic differentiation experiments, marrow-
derived MSCs were plated at a density of 100,000 cell per
well into six-well culture plates and treated with either with
siRNA against SUN-1 and SUN-2 (siSUN) or with pCDH-EF1-
MCS1-puro-mCherry-Nesprin-1aKASH (DNKASH) plasmids using
1 lg DNA per 100,000 cell (proper controls were used for
both treatments). Eighteen hours after the transfection,
growth medium was replaced with adipogenic medium con-
taining 0.1 lM dexamethasone and 5 lg/ml insulin. Cultures
were incubated for 5 days with or without LMS treatment
(2 3 20 minutes per day separated by 2 hours).

Overexpression and Knockdown Sequences

pCDH-EF1-MCS1-puro-mCherry (mCherry control) and DNKASH
plasmids were kindly provided by Dr. Lammerding [85]. MSCs

were transfected using 1 lg DNA per 100,000 cells using
LipoD293 transfection reagent (SignaGen Laboratories, Rockville,
MD, www.signagen.com) according to manufacturer’s instruc-
tions. Seventy-two hours after the initial transfection, stably
transfected cells were selected using 10 lg/ml puromycin. For
transiently silencing specific genes, cells were transfected with
gene-specific small interfering RNA (siRNA) or control siRNA
(20 nM) using PepMute Plus transfection reagent (SignaGen
Labs) according to manufacturer’s instructions. Strain or LMS
were applied 72 hours after initial transfection. The following
Stealth Select siRNAs (Invitrogen) were used in this study: nega-
tive control for SUN-1 50- GAAATCGAAGTACCTCGAGTGATAT 230;
SUN-1 50- GAAAGGCTATGAATCCAGAGCTTAT-30; negative control
for SUN-2 50-CACCAGAGGCTAGAACTCTTACTCA-30; SUN-2 50-
CACCAAGACTCGGAAGATCTCTTCA-30; negative control for Fyn

50-GCCUCGUACAGAAGAAACGCCGAAU-30; Fyn 50-UAAAGCGCC
ACAAACAGUGUCACUC-30; negative control for Emerin 50-
CAACCCUUACUCG-GGUAUCUAGGUG-30; Emerin 50-CAACAUCCCU-
CAUGGGCCUAUUGUG-30.

Isolation of Focal Adhesions

Cells were incubated with triethanolamine (TEA)-containing low
ionic-strength buffer (2.5 mM TEA, pH 7.0) for 3 minutes at RT,
13 PBS containing protease/phosphatase inhibitors. A Waterpik
(Fort Collins, CO, www.waterpik.com) nozzle held 0.5 cm from
the plate surface at approximately 90� supplied the hydrody-
namic force to flush away cell bodies, membrane-bound organ-
elles, nuclei, cytoskeleton, and soluble cytoplasmic materials
[86] so that residual focal adhesions could be isolated.

Isolation of Nuclear Envelope Proteins

MSCs were plated on one-well (100 cm2, Greiner Bio-One, NC,
www.gbo.com) at 10,000 cell per square centimeter. Nuclear
envelope proteins were extracted using Minute Nuclear Enve-
lope Protein Extraction Kit (Invent biotech, Germany, www.
inventbiotech.com) according to manufacturer’s instructions
using at least ten million cells per group.

Real-Time PCR

Total RNA was isolated using the RNeasy mini kit (QIAGEN, Valen-
cia, CA, www.qiagen.com) and treated with deoxyribonuclease I to
remove contaminating genomic DNA. Reverse transcription was
performed with 1 lg RNA in a total volume of 20 ll per reaction.
Real-time polymerase chain reaction (PCR) was performed on a
Bio-Rad iCycler (Bio-Rad Laboratories, Inc., Hercules, CA, www.bio-
rad.com). Twenty-five-microliter amplification reactions contained
primers at 0.5 lm, deoxynucleotide triphosphates (0.2 mm each)
in PCR buffer, and 0.03 U Taq polymerase along with SYBR-green
(Molecular Probes, Inc., Eugene, OR, http://www.lifetechnologies.
com) at 1:150,000. Aliquots of cDNA were diluted 5- to 5000-fold
to generate relative standard curves with which sample cDNA was
compared. Standards and samples were run in triplicate. PCR prod-
ucts from all species were normalized for the amount of 18S ampli-
cons. Primer sequences as follows adiponectin (APN, Forward:50-
GCAGAGATGGCA CTCCTGGA-30, Reverse:50-CCCTTCAGCTCCTGTCATTCC-
30), Fatty acid binding protein 4 (AP-2, Forward:5’-CATCAGCG-
TAAATGGGGATT-3’, Reverse:5’-TCGACTTTCCATCCCACTTC-3’), Peroxisome
proliferator-activated receptor gamma (PPARc, Forward:50-GCTTATTTAT-
GATAGGTGTGATC-30, Reverse:50-GCATTGTGAGACATCCCCAC-30)
expressions were normalized to and 18S (Forward:50-
GAACGTCTGCCCTATCAACT-30, Reverse:50-CCAAGATCCAACTACGAGCT-30).
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Western Blotting

Whole cell lysates were prepared using an radio immuno-
precipitation assay lysis buffer (150 mM NaCl, 50 mM Tris

HCl, 1 mM EDTA, 0.24% sodium deoxycholate,1% Igepal, pH
7.5) to protect the samples from protein degradation NaF
(25 mM), Na3VO4 (2 mM), aprotinin, leupeptin, pepstatin,

Figure 1. RhoA enhanced cytoskeleton modulates low-magnitude mechanical signal (LMS)-induced focal adhesion kinase phosphoryla-
tion (p-FAK). (A): Schematic representation of time course experiment depicting different groups. Groups (1) and (2) were subjected to
single LMS with or without a 2-hour rest, respectively. Group (11 2) was subjected to both LMS treatments. (B): LMS acutely increased
p-FAK to 3.4-fold (p< 0.001); 2 hours later p-FAK was not significantly different than control. Reapplication of LMS resulted in sevenfold
increase, doubling the single LMS response. (C): Isolation of focal adhesion (FAs) 2 hours after a single LMS treatment was subject to
Western blot analysis; increased total vinculin, paxillin, and Akt were consistent with increased FAs. (D): FA increase was accompanied
by RhoA activity, and (E) RhoA activity was dependent on initial LMS-induced FAK activity as FAK inhibitor PF573228 (PF, 3 lM) pre-
vented LMS-activated RhoA. (F): RhoA activated with lysophosphatidic acid (LPA) (30 lM) increased p-FAK threefold (p< 0.05); following
LPA, a single LMS application increased p-FAK response by sevenfold (p< 0.001). The black bar on the representative Western blot indi-
cates that it has been cropped to change the sample positions. (G): LMS amplified the high-magnitude substrate strain (HMS) response:
1 and 23 LMS pretreatment synergistically augmented the HMS response by 30% (p< 0.01) and 60% (p< 0.01), respectively. *,
p< 0.05; ¥, p< 0.01; †, p< 0.001, against control and each other. Abbreviations: Ctrl, control; GADPH, Glyceraldehyde 3-phosphate
dehydrogenase; HMS, high-magnitude substrate strain; LMS, low-magnitude mechanical signal; LPA, lysophosphatidic acid; PF, PF573228;
p-FAK, focal adhesion kinase phosphorylation; T-FAK, total focal adhesion kinase protein.
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and phenylmethylsulfonylfluoride (PMSF) were added to the
lysis buffer. Whole cell lysates (20 lg) were separated on
7%-12% polyacrylamide gels and transferred to polyvinyli-
dene difluoride membranes. Membranes were blocked with
milk (5%, w/v) diluted in Tris-buffered saline containing
Tween20 (TBS-T, 0.05%). Blots were then incubated over-
night at 4�C with appropriate primary antibodies. Following
primary antibody incubation, blots were washed and incu-
bated with horseradish peroxidase-conjugated secondary anti-
body diluted at 1:5,000 (Cell Signaling, Danvers, MA, www.
cellsignal.com) at RT for 1 hour. Chemiluminescence was
detected with ECL plus (Amersham Biosciences, Piscataway,
NJ, www.gelifesciences.com). At least three separate experi-
ments were used for densitometry analyses of western blots
and densitometry was performed via NIH ImageJ software.

RhoA Activation Assay

Purification of recombinant proteins and construction of the
pGEX4T-1 prokaryotic expression constructs containing the
Rho-binding domain (RBD) of Rhotekin has been described
[87]. Briefly, expression of the fusion proteins in Escherichia

coli was induced using isopropyl b-D21-thiogalactopyranoside
(100 lM) for 12–16 hours at RT. Bacterial cells were lysed in
lysis buffer containing Tris HCl (50 mM, pH 7.6), NaCl
(150 mM), MgCl2 (5 mM), dithiothreitol (1 mM), aprotinin
(10 lg/ml), leupeptin (10 lg/ml), and PMSF (1 mM).
Recombinant proteins were purified by incubation with
glutathione-sepharose 4B beads (GE Healthcare, Piscataway,
NJ, http://www.gehealthcare.com/) at 4�C. Pull down of active
RhoA, using glutathione-S-transferase-RBD (GST-RBD) beads,
was performed as described [88]. MSC cells were lysed in
buffer containing Tris HCl (50 mM, pH 7.6), NaCl (500 mM),
Triton X-100 (1%, v/v), SDS (0.1%, v/v), sodium deoxycholate
(0.5%, w/v), MgCl2 (10 mM), orthovanadate (200 lM), and
protease inhibitors. Lysates were clarified by centrifugation,
equalized for total volume and protein concentration, and
rotated at 4�C for 30 minutes with 50 lg of purified GST-RBD
bound to glutathione-sepharose beads. The bead pellets were
washed in lysis buffer three times, followed by pelleting of
the beads by centrifugation between each wash, and subse-
quently processed by SDS-polyacrylamide gel electrophoresis.

Immunofluorescence

Following strain or LMS treatment, cells were fixed with para-
formaldehyde. For Nesprin-2 staining, cells were incubated in
anti-Nesprin-2 (kindly provided by Dr. Hodzic) [89] primary
antibody solution (0.5%, v/v in blocking serum) for 24 hours
at 4�C, followed by secondary antibody incubation DyLight
649 AffiniPure Donkey Anti-Mouse IgG (Jackson Immuno
Research Laboratories, West Grove, PA, www.jacksonimmuno.
com). For actin staining, cells were incubated with phalloidin-
conjugated Alexa Fluor-488 (Invitrogen).

Statistical Analysis

Results were presented as mean6 SEM. Densitometry analyses
were performed on at least three separate experiments. Differ-
ences between groups were identified by one-way analysis of
variance (ANOVA) followed by Newman-Keuls post hoc tests.
Interactions between two different treatments were evaluated
using two-way ANOVA. p< 0.05 were considered significant.

RESULTS

Repeated LMS Exposures Generate RhoA-Reinforced
Cell Structure to Augment Mechanically Induced FAK
Activity

We investigated LMS mechanotransduction, asking whether it dif-
fered from that induced by HMS where substrate strain triggers
FAK activation [21] at FA mechanosomes [90, 91]. To test whether
FAK situated at FAs was involved in LMS signaling, we performed a
detailed time course experiment. As illustrated in Figure 1A, Group
1 is subjected to a single LMS (0.7 g, 90 Hz, 20 minutes) and p-FAK
measured 2 hours after (before second LMS), Group 2 is subjected
to LMS and p-FAK measured immediately. Group 112 received
both LMS treatments with p-FAK measured after the second LMS.
Experiments were timed such that all the samples were collected
at the same time. p-FAK increased 3.4-fold (p< 0.001) immedi-
ately after LMS but, shown in Figure 1B, returned to baseline levels
after 2 hours (p< 0.001) where it was not significantly elevated
compared with control. A prior application of LMS, however, aug-
mented a second LMS (112) by two-fold compared with single
application alone (p< 0.001). This suggests generation of an ampli-
fication mechanism in response to the first LMS.

We previously showed that HMS triggered cytoskeletal
adaptations amplify signaling responses to subsequent
mechanical challenges [10]. To elucidate the amplification
mechanism resulting from the first LMS signal, we asked
whether, similar to HMS [7], LMS induced focal adhesions and
RhoA activity. Immediately before the second LMS application
(group 1, 2 hours after LMS) there were more focal adhesions
as measured by Western blot analysis of substrate attached
FAs [7, 86] against vinculin, paxilin, and t-Akt (Fig. 1C). We
also observed increased RhoA activity 2 hours after the first
application of LMS (Fig. 1D). These finding suggest that similar
to HMS [10], LMS increases cytoskeletal remodeling and
strengthens FA substrate connections. Importantly, p-FAK
activity was required for LMS activation of RhoA; pharmaco-
logic inhibition of FAK (PF573228, 3 lM) prevented LMS-
induced RhoA activation (Fig. 1E).

To confirm that the LMS signal response could be
enhanced by an increased cytoskeleton, we delivered LMS
after treatment with LPA, which increases actin bundling
through RhoA activation (Supporting Information Fig. S1). LPA
increased basal p-FAK by threefold and a single LMS applica-
tion further increased p-FAK by twofold (p< 0.001, Fig. 1F).
Two-way ANOVA showed that both LPA and LMS significantly
affect the outcome (p< 0.001) but no significant interaction
was detected (p 5 0.102).

As both HMS [7] and LMS (Fig. 1C) elicited increased focal
adhesions and an LPA-induced cytoskeleton served to amplify
LMS signaling (Fig. 1F), we asked whether LMS induced cytos-
keletal change could synergistically amplify FAK signaling situ-
ated at the focal adhesions. Depicted in Figure 1G, MSCs
were treated with one (13) or two (23) bouts of LMS fol-
lowed by HMS. While a single HMS (2% uniaxial strain, 0.17
Hz, 20 minutes) and 23 LMS induced comparable elevation
of p-FAK relative to control (2.1-fold each, p< 0.001), pre-
treatment with LMS augmented the HMS response. Pretreat-
ing MSC’s with 23 LMS before HMS yielded the largest p-FAK
response compared with control (3.5-fold, p< 0.001); this
response was higher than both HMS alone (60% p< 0.001)
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and that following a single LMS pretreatment (32% p< 0.01).
Synergistic regulation of p-FAK activity through LMS and HMS
(p< 0.001, two-way ANOVA) supports that LMS treatment
results in more robust cytoskeleton terminating in FAs, where
HMS is known to initiate signaling in MSCs [21].

LMS Induced p-FAK Requires an Intact Actin Cytoskele-
ton that Reorganizes at the Perinuclear Domain

To further implicate the cytoskeleton in the response to LMS,
we asked if an intact cytoskeleton was required for LMS acti-
vation of FAK. MSCs treated with the actin polymerization

Figure 2. Low-magnitude mechanical signal (LMS) signaling requires an intact actin cytoskeleton and induces actin rearrangement at
the perinuclear domain. Depolymerizing actin with (A) Cytochalasin D (CyD, 0.2 mM) decreased both basal and LMS-induced focal adhe-
sion kinase phosphorylation (p-FAK) (p< 0.001). (B): Inhibiting RhoA activity with ROCK inhibitor Y27632 (10 mM) ablated p-FAK due to
LMS (p< 0.001). (C): Inhibiting microtubule polymerization with colchicine (1 mM) did not change the LMS response. (D): LMS treatment
induced actin rearrangement around cell nucleus 1 hour later (arrows). Nuclear straining (40,6-diamidino-2-phenylindole, DAPI) was
merged with actin images to clarify nuclear position. (E): Quantification of cells exhibiting actin staining around perinuclear domain
revealed that LMS increased this frequency from 17% (Control, n 5 250) to 36% (p< 0.01, n 5 500). *, p< 0.05; ¥, p< 0.01; †,
p< 0.001, against control and each other. Abbreviations: Colc, colchicines Ctrl, control; CyD, Cytochalasin D; DAPI, 40,6-diamidino-2-phe-
nylindole; DMSO, dimethyl sulphoxide; LMS, low-magnitude mechanical signal; p-FAK, focal adhesion kinase phosphorylation; T-FAK, total
focal adhesion kinase protein.
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Figure 3. Linker of nucleoskeleton and cytoskeleton (LINC)-mediated actin-nuclear connectivity is required for low-magnitude mechani-
cal signal (LMS) signaling. (A): Mechanically decoupling LINC from the cytoskeleton through inhibition of Nesprin localization to the
nuclear envelope by either (B) siRNA repression of SUN expression (both SUN-1 and SUN-2) or (C) overexpressing a dominant negative
KASH domain (pCDH-EF1-MCS1-puro-mCherry-Nesprin-1aKASH [DNKASH]) prevented LMS-induced FAK activation. (D): siRNA against
SUN-1 and SUN-2 (siSUN) and (E) DNKASH treatments diminished Nesprin staining on the nuclear envelope (p< 0.001, n 5 25, Support-
ing Information Figs. S5C, S6C), visibly reducing the actin connectivity around nucleus. DNKASH and control plasmid groups were sub-
jected to puromycin selection to ensure that cells express the desired constructs (Supporting Information Fig.S7B) (F) MSC lysates were
probed for Akt phosphorylation (p-Akt; Ser 473). p-Akt was increased threefold (p< 0.01) immediately after LMS and after 2 hours p-
Akt was reduced 42% (p< 0.05) and was not different than control. Similar to FAK, a repeated LMS exposure after 2 hours increased p-
Akt 3.7-fold (p< 0.001), 46% higher than a single LMS exposure (p< 0.05). *, p< 0.05; ¥, p< 0.01; †, p< 0.001, against control and
each other. Abbreviations: Ctrl, control; DAPI, 40,6-diamidino-2-phenylindole; DNKASH, pCDH-EF1-MCS1-puro-mCherry-Nesprin-1aKASH;
LMS, low-magnitude mechanical signal; p-FAK, focal adhesion kinase phosphorylation; siSUN, siRNA against SUN-1 and SUN-2; T-
FAK, total focal adhesion kinase protein.
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inhibitor cytochalasin D (CyD, 0.2 lM) had diminished basal
and LMS-induced p-FAK (Fig. 2A, p< 0.001) but a small LMS
response was still measurable (p< 0.05). In contrast, inhibi-
ting the RhoA effector protein ROCK (Y27632, 10 lM) to
deplete cytoskeletal tension prevented response to LMS (Fig.
2B, p< 0.001). The microtubule-specific inhibitor colchicine
(Colc, 1 lM), in contrast, did not impair LMS-activation of FAK
(Fig. 2C).

Uniaxial strain induces actin stress fibers perpendicular to
loading direction [92, 93] while laminar fluid flow induces par-
allel stress fibers that span the entire cell length [94, 95]. We
tested whether LMS induced actin remodeling. 1 hour after
LMS, actin remodeling was concentrated at the perinuclear
domain, as shown in Figure 2D with increases in both basal
and apical surfaces indicating a unique cytoskeletal adaptation
arising in the absence of substrate strain [17, 20] (Supporting
Information Figs. S2 and S3). Observer blinded counting of
cells after LMS treatment showed that twice as many cells
displayed visible perinuclear actin fibers (Fig. 2E, p< 0.01).
We identified the cell for positive perinuclear remodeling
whether there was (a) a distinct bright actin ring around the
nuclear rim or (b) a distinct and bright accumulation of short
actin stress fibers that coincide with the nuclear position.

Decoupling Nucleus from Cytoskeleton by Inhibiting
LINC Function Prevents LMS Signaling

The unique LMS-induced perinuclear actin remodeling sug-
gests the presence of LMS generated force at the nucleus. We
hypothesized that the LINC scaffold (Fig. 3A) might support
the LMS response by providing mechanical coupling between
the nucleus and the actin cytoskeleton. Shown in Figure 3B,
MSCs treated with a targeted siRNA (siSUN) to deplete SUN
nuclear envelope proteins eliminated the LMS-induced FAK
response (p< 0.01) and decreased basal p-FAK levels (48%,
p< 0.05). Similarly, overexpression of a dominant negative
KASH domain of Nesprin (DNKASH, Supporting Information
Fig. S4) that competes for SUN protein binding, ablated the
LMS-induced p-FAK response (p< 0.001) (Fig. 3C). These
results imply that decoupling the nucleus from the actin cyto-
skeleton interferes with the ability of the cell to respond to
vibratory LMS signals.

As expected [63], depleting both SUN1 and SUN2 proteins
in MSCs disrupted Nesprin-2 localization to the nuclear enve-
lope (Fig. 3D; Supporting Information Fig. S5B) and decreased
Nesprin-2 signal intensity along the major axis of the nuclear
envelope (Supporting Information Fig. S5C, 43%, p< 0.01). To
confirm that our siRNA strategy to disrupt LINC was effective,
we showed that siSUN decreased MSC migration (Supporting
Information Fig. S7A). Overexpressing DNKASH fragment simi-
larly displaced Nesprin-2 from the nuclear envelope (Fig. 3E;
Supporting Information Fig. S6B), leading to reduced Nesprin
signal localization (Supporting Information Fig. S6C, 45%,
p< 0.01). The expression of DNKASH in a homogenous cell
population was ensured by puromycin selection of transfected
cells before experiments (Supporting Information Fig. S7B).

As activation of Akt is a well-accepted response to
mechanical force and is required for the MSC lineage
response to HMS [7, 21], we next evaluated the ability of
LMS to activate Akt. Similar to FAK activation, LMS activated
Akt by three-fold (p< 0.01) and a repeated LMS treatment
further amplified the Akt phosphorylation (p-Akt) (46%,

p< 0.05) to 4.4-fold (p< 0.001, Fig. 3F). Importantly, preser-
vation of LINC connectivity between the actin cytoskeleton
and the nucleus was critical: in cells treated with siSUN or
overexpressing DNKASH, LMS failed to activate Akt (Fig. 3G,
3H).

Recently, nuclear stiffness was shown to be modulated
after force applied by Nesprin bound beads, an effect depend-
ent on phosphorylation of the LINC binding partner Emerin
(EMD) [78, 96]. To test whether Emerin played a role in LMS
induced p-FAK activation, we depleted Emerin using siRNA
(siEMD) and found that the signal response to LMS was unaf-
fected (Fig. 4A). Furthermore, probing for p-FAK in isolated
nuclear membranes yielded no LMS-induced activity (Fig. 4B),
suggesting that FAK activation occurs at a distance from the
nucleus. As such, these data suggest that the stiffer and
denser cell nucleus might passively participate in the sensa-
tion of vibratory signals by virtue of nuclear-cytoskeletal cou-
pling dependent on the LINC complex.

LINC Complex Function Is Required for LMS Repression
of Adipogenic Differentiation

To further elucidate the LINC requirement for LMS-induced
mechanical signaling, we tested whether LINC function was
necessary for the LMS regulation of MSC adipogenesis.
When compared with control siRNA (siCtrl), limiting LINC
function by siRNA knockdown of both SUN 1 and 2 proteins
(siSUN) diminished the transcriptional expression of SUN pro-
teins while increasing the adipocyte specific markers APN

(287% p< 0.001) and Fatty acid binding protein 4 (AP-2,

Figure 4. Nuclear envelope protein Emerin does not contribute
to low-magnitude mechanical signal (LMS)-induced FAK signaling.
(A): Marrow-derived MSCs treated with either control siRNA
(siCtrl) or Emerin using siRNA (siEMD) were subjected to LMS
and probed for focal adhesion kinase phosphorylation (p-FAK)
(Tyr 397). Application of LMS increased p-FAK equivalently in
both siCtrl (3.6-fold, p< 0.05) and siEMD (3.9-fold, p< 0.01)
groups. Densitometry analysis used data from at least three sepa-
rate experiments. (B): Nuclear envelope proteins were isolated
from whole cell lysates immediately after LMS and probed for
possible FAK activation. Western blot analysis shows no LMS-
induced p-FAK activity at the nuclear envelope. *, p< 0.05; ¥,
p< 0.01; †, p< 0.001, against control and each other. Abbrevia-
tions: Ctrl, control; EMD, Emerin; LMS, low-magnitude mechanical
signal; p-FAK, focal adhesion kinase phosphorylation; siEMD,
Emerin using siRNA; T-FAK, total focal adhesion kinase protein.
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315%, p< 0.001) after 5 days culture with adipogenic
medium, quantified by PCR (Fig. 5A). Immunoblot analysis
confirmed increases in adipogenic protein levels of APN (Fig.
5B, 250%, p< 0.001) and AP-2 (Fig. 5C, 150%, p< 0.01) in
SUN knockdown groups. Similarly, cells treated with the
dominant negative form of Nesprin KASH domain (DNKASH)
demonstrated increases in both gene expression and protein
levels of adipogenic markers (Supporting Information Fig.
S8A. S8B).

Treatment with LMS (0.7 g, 90 Hz, 20 minutes twice daily
separated by 2 hours) for 5 days was sufficient to repress adi-
pogenic markers APN (Fig. 5D, 42%, p< 0.001) and AP-2 (Fig.
5E, 43%, p< 0.01) in MSCs treated with control siRNA. Impor-
tantly, consistent with our finding that LINC functionality is
required for LMS-induced mechanoregulation of MSCs, LMS
repression of adipogenic differentiation was abrogated when
LINC complex was disrupted through siSUN knockdown.
DNKASH groups also displayed a restrained LMS effect to
decrease adipogenesis (Supporting Information Fig. S8C). Com-
pared with knockdown experiments (Fig. 5A–5C; Supporting

Information Fig. S8A, S8B), during LMS experiments, the adi-
pogenic response due to siSUN and DNKASH treatments was
less robust (Fig. 5D, 5E; Supporting Information Fig. S8C); adi-
pogenic differentiation might be compromised by the
increased handling required for the LMS application protocol
where the cultures are removed from optimal incubator con-
ditions into RT.

HMS Signal Generation Does Not Require Functional
LINC

We showed that HMS and LMS synergistically increased FAK
signaling (Fig. 1G) suggesting a common amplification mech-
anism through regulation of cell structure. We then asked
whether HMS, which inhibits adipogenesis via signals initi-
ated at focal adhesions [10], also required LINC connections
or whether the peripheral FA mechanosome was sufficient.
Application of HMS increased p-FAK in cells overexpressing
DNKASH (1.8-fold, p< 0.05, Fig. 6A) or treated with siSUN
(1.7-fold, p< 0.01, Fig. 6D) indicating that nuclear-
cytoskeletal coupling was not critical. Akt signaling was also

Figure 5. Linker of nucleoskeleton and cytoskeleton complex is required for low-magnitude mechanical signal (LMS) inhibition of adipo-
genesis. Marrow derived MSCs were plated at a density of 100,000 cells per well into six-well culture plates and treated with siRNA
against SUN-1 and SUN-2. Approximately 18 hours after the transfection growth medium was replaced with adipogenic medium contain-
ing 0.1 lM dexamethasone and 5 lg/ml insulin. (A): After 5 days siRNA against SUN-1 and SUN-2 (siSUN) treated cells showed dimin-
ished expression of both SUN-1 and 2 (p< 0.001) and significantly increased expression of known adipogenic markers adiponectin (APN)
and AP-2 (p< 0.001). Densitometry analysis (n 5 4) showed increased protein levels of (B) APN (p< 0.001) and (C) AP-2 (p< 0.01).
Treatment with LMS (0.7 g, 90 Hz, 20 minutes twice daily separated by 2 hours) decreased (D) APN (p< 0.001) and (E) AP-2 (p< 0.01)
in control siRNA groups consistent with repressed adipogenesis. In siSUN treated cells, decoupling of cytoskeleton from nucleus limited
LMS ability to reduce adipogenesis. *, p< 0.05; ¥, p< 0.01; †, p< 0.001, against control and each other. Abbreviations: APN, adiponec-
tin; Ctrl, control; LMS, low-magnitude mechanical signal; siCtrl, control siRNA; siSUN, siRNA against SUN-1 and SUN-2.

Uzer, Thompson, Sen et al. 2071

www.StemCells.com VC AlphaMed Press 2015



tested and showed that HMS increased p-Akt despite dis-
ruption of nuclear-cytoskeletal tethers by either DNKASH
(2.3-fold, p< 0.01, Fig. 6B) or siSUN (1.7-fold, p< 0.01, Fig.

6E). As such, HMS-induced FAK and Akt signaling did not
require mechanical coupling between the nucleus and
cytoskeleton.

Figure 6. Linker of nucleoskeleton and cytoskeleton is not required for high-magnitude substrate strain (HMS)-induced signaling. HMS
activation of focal adhesion kinase phosphorylation (p-FAK) was preserved in both (A) pCDH-EF1-MCS1-puro-mCherry-Nesprin-1aKASH
(DNKASH) (1.8-fold, p< 0.05 and (D) siRNA against SUN-1 and SUN-2 (siSUN) (1.7-fold, p< 0.01) treated cells. HMS activated Akt phospho-
rylation (p-Akt) in both (B) DNKASH (2.3-fold, p< 0.01) and (E) siSUN treated cells (1.75-fold, p< 0.01). (C): FAK inhibitor PF573228 (PF, 3
mM) inhibited strain-induced Akt activation (p< 0.01), but (F) PF did not inhibit low-magnitude mechanical signal (LMS)-induced p-Akt (two-
fold, p< 0.01). (G): siRNA Fyn knockdown (siFyn) inhibited strain induced p-Akt compared with cells treated with a control siRNA. (H): Akt
response to LMS was preserved in siFyn cells (1.8-fold, p< 0.05). *, p< 0.05; ¥, p< 0.01; †, p< 0.001, against control and each other.
Abbreviations: Ctrl, control; DMSO, dimethyl sulphoxide; DNKASH, pCDH-EF1-MCS1-puro-mCherry-Nesprin-1aKASH; HMS, high-magnitude
substrate strain; LMS, low-magnitude mechanical signal; p-Akt, Akt phosphorylation; PF, PF573228; p-FAK, focal adhesion kinase phosphoryl-
ation; siCtrl, control siRNA; siSUN, siRNA against SUN-1 and SUN-2; T-Akt, total akt protein; T-FAK, total focal adhesion kinase protein.
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We considered whether different mechanotransduction
mechanisms might be invoked by HMS and LMSs. Interest-
ingly, while proximal FAK activity by HMS was required for
subsequent Akt activation (Fig. 6C), it was not required for p-
Akt due to LMS (Fig. 6F, p< 0.01), emphasizing that different
adaptive strategies may result in discrete signaling mecha-
nisms. Further evidence that distinct proximal mechanisms
differentiate HMS and LMS was the different requirement for
the FAK coregulator, Fyn. Recruitment of Fyn to the FA
mechanosome was essential for HMS Akt activation (Fig. 6G)
[21], while Fyn depletion did not prevent LMS-induced p-Akt
(Fig. 6H, 1.8-fold, p< 0.05,).

DISCUSSION

Both LMS and HMSs influence fate selection of MSCs, activat-
ing signals that can be tuned to build musculoskeletal tissues
and suppress adiposity [1, 4, 5]. Here, we asked whether the
LINC complex was involved in transducing relevant regulatory
signals. We show that LINC is necessary to allow MSC to
respond to low-magnitude high-frequency signals that induce
p-FAK and p-Akt and lead to adipogenic repression, but that
LINC is not necessary for responses to HMS transmitted at the
FA mechanosome. Furthermore, we show that, similar to the
ability of the MSC to reorganize its actin cytoskeleton to
amplify responses at the FA mechanosome [7, 10], LMS also
generates cytoskeletal change. This cytoskeletal reorganization
involves not only maturation of the FA mechanosome, which
serves to synergistically enhance HMS signaling, but also
accrual of a perinuclear actin structure that connects structures
of the cytoplasm to the inner nucleus via the LINC complex.

The perinuclear accumulation of F-actin induced by LMS
suggests the presence of force at the boundary of the nucleus
and the cytoplasmic cytoskeleton. Importantly, mechanically
decoupling the nucleus from the cytoskeleton by inhibiting
LINC connections disabled the LMS response. Considering the
integral function of LINC in providing functional connections
between the nucleus and focal adhesions [70], our findings
imply that LMS-induced FAK activity is enabled by the LINC-
connected nucleus. Although we did not show a direct a phys-
ical connection between FAK activity and LINC or measure the
level of forces required in this response, limitations of this
study, our results strongly demonstrate the importance of the
LINC complex in the cellular response to LMS. Furthermore,
our previous in silico findings suggest that in response to
LMS, the nucleus is capable of generating sufficient mechani-
cal deformation within the cell to serve as a passive, force
generating element [26]. Moreover, the lack of FAK activity at
the nuclear envelope, and the insensitivity of LMS-induced
FAK to knockdown of Emerin (a nuclear envelope protein and
LINC partner [96] shown to participate in nuclear stiffness
[78]) suggests that FAK signaling is largely due to LMS actions
that require connections between the nucleus and the cyto-
plasmic cytoskeleton. In contrast, HMS-induced FAK and Akt
signaling relies exclusively on large substrate deformations
and is unaffected by LINC disruption. Finally, our results indi-
cate that in addition to the LINC requirement for LMS-
induced signaling, a requirement for proximal Fyn signaling
also differed between LMS and HMS, reinforcing that LMS
and HMS use divergent signaling modalities.

An alternative physical mechanism by which LMS might
initiate signaling is via LMS-induced fluid shear stress. Compu-
tational studies revealed that when vibrated at high frequency
and low magnitude (30–100 Hz, 0.1–1 g), the relative velocity
of solid bodies submerged in the fluid environment can gener-
ate fluid shear up to 2 Pa [19, 24] in highly viscous environ-
ments like bone marrow (400 cP [97], water is 1 cP). In this
study, LMS-induced fluid shear was a function of surface
strain (approximately 1.4 le, Supporting Information Fig. S9A)
as the vertical well motion limited the lateral fluid sloshing
(Supporting Information Fig. S9B). Our previously validated
simulation model [25] predicted a peak velocity differential of
approximately 0.00004 m/s (Supporting Information Fig. S9C)
corresponding to a LMS-induced fluid shear of 0.0008 Pa
(0.008 dyn/cm2), a level that while comparable with fluid
shear required for maintenance of LINC-bound actin cap struc-
tures (0.001–0.005 Pa), [72] is two orders magnitudes below
that to which bone cells respond [98]. Moreover, this level of
shear is insignificant compared with fluid shear generated dur-
ing handling plates (identical for controls and LMS), particu-
larly when considering the potency of oscillating fluid shear
diminished at the higher frequencies [99]. While we cannot
exclude the possibility that LMS-induced accelerations works
synergistically with fluid shear, we previously did not detect
such interactions under much higher shear stresses (5 Pa)
where cell responses were associated more strongly with the
acceleration magnitude than the LMS-induced fluid shear
stress [16, 23, 26]; altogether this suggests that the low level
shear generated by LMS is unlikely to be responsible for FAK
and Akt activation and subsequent cytoskeletal reorganization
as well as repression of adipogenesis.

Differentiation of stem cells requires complex interactions
of multiple signaling pathways. We previously showed that adi-
pogenic commitment of MSCs was largely regulated by reduced
b-catenin signaling, and that both HMS and LMS impact this
pathway during repression of adipogenic commitment [17, 84,
100]. Interestingly, LINC function also affects b-catenin signaling
[76]. Here, we demonstrated that limiting LINC functionality by
knockdown of SUN1 and SUN2, as well by expressing the domi-
nant negative form of Nesprin KASH domain, increased MSC
adipogenesis (Fig. 5A–5C; Supporting Information Fig. S8A,
S8B). In agreement with previous work from our laboratory, we
found that application of LMS repressed adipogenesis in MSCs
in control groups, but when LINC was dysfunctional due to
interference with SUN or Nesprin, LMS failed to prevent adipo-
genesis (Fig. 5; Supporting Information Fig. S8). This indicates
that interfering with LMS activation of FAK, Akt, or RhoA, all
early events leading to preservation of b-catenin signaling, will
also interfere with LMS regulation of MSC differentiation.

In sum, cell signaling in response to extremely small
mechanical signals requires LINC complex coupling between
the nucleus and cytoskeleton and implicates the LINC interface
as a mechanosensory site. We showed for the first time that
LMS, an applied physical force that generates neither significant
fluid shear (Supporting Information Fig. S9) nor strain [101],
activates signaling events inducing FAK, Akt, RhoA, and FA mat-
uration, which have been previously associated with HMS. For
the first time we show, at the cellular level, that cytoskeletal
adaptations and proximal signaling events initiated by low and
high magnitude physical signals differ between LMS and HMS.
The LMS-induced cytoskeletal adaptations and requirement for
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the LINC interface to support LMS-induced signaling not only
provides new insights as to how cells respond to vibratory
mechanical information but also shows that perinuclear actin
remodeling amplifies the mechanoresponse. Our findings fur-
ther demonstrated that decreased connectivity between the
cell nucleus and cytoplasmic actin impairs anti-adipogenic
effects of LMS. With this in mind, it is interesting to consider
that, resembling the gradual hearing loss in LINC deficient mice
[82], alterations in nuclear-cytoskeletal connections associated
with aging or laminopathies like Hutchinson-Gilford progeria
[102] might cause a loss in LINC complex-dependent mechano-
sensitivity to vibratory signals. Such a decrease in mechanosen-
sitivity could potentially contribute to reported failure of
musculoskeletal tissues by limiting the accessible spectrum of
mechanical information thereby interfering adaptation to func-
tional loading [103]. Translating this to the clinic, physical or
chemical interventions that modulate the LINC interface might
have the potential to enhance the mechanical sensitivity of an
otherwise unresponsive cell population. Finally, our data dem-
onstrate that cells use a multitude of strategies to sense and
respond to mechanical signals. While the perception of high-
magnitude stimuli appears to rely on signaling at the substrate/
membrane interface, extremely low-magnitude mechanical
stimuli are detected through the physical connections between
nucleus and the cytoskeleton.

CONCLUSIONS

Our findings suggest that cellular response to vibration relies
on LINC mediated nuclear-cytoplasmic coupling to generate

intracellular signaling and influence cell fate. In contrast, sig-
nal initiation at focal adhesions due to high magnitude strain
is independent of LINC coupling. Vibration induces a unique
change in the perinuclear actin cytoskeleton and increases
focal adhesions; these cytoskeletal changes amplify mechani-
cal responses due to both high and low magnitude force
application. As such, vibration may be useful in treating condi-
tions marked by altered LINC interfaces such as aging, proger-
iod laminopathies and microgravity.
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