
RESEARCH ARTICLE

CRISPR/Cas9-mediated gene editing in human
tripronuclear zygotes

Puping Liang, Yanwen Xu, Xiya Zhang, Chenhui Ding, Rui Huang, Zhen Zhang, Jie Lv, Xiaowei Xie,
Yuxi Chen, Yujing Li, Ying Sun, Yaofu Bai, Zhou Songyang, Wenbin Ma, Canquan Zhou&, Junjiu Huang&

Guangdong Province Key Laboratory of Reproductive Medicine, the First Affiliated Hospital, and Key Laboratory of Gene
Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
& Correspondence: hjunjiu@mail.sysu.edu.cn (J. Huang), zhoucanquan@hotmail.com (C. Zhou)

Received March 30, 2015 Accepted April 1, 2015

ABSTRACT

Genome editing tools such as the clustered regularly
interspaced short palindromic repeat (CRISPR)-associ-
ated system (Cas) have been widely used to modify
genes in model systems including animal zygotes and
human cells, and hold tremendous promise for both
basic research and clinical applications. To date, a se-
rious knowledge gap remains in our understanding of
DNA repair mechanisms in human early embryos, and in
the efficiency and potential off-target effects of using
technologies such as CRISPR/Cas9 in human pre-im-
plantation embryos. In this report, we used tripronuclear
(3PN) zygotes to further investigate CRISPR/Cas9-me-
diated gene editing in human cells. We found that
CRISPR/Cas9 could effectively cleave the endogenous
β-globin gene (HBB). However, the efficiency of ho-
mologous recombination directed repair (HDR) of HBB
was low and the edited embryos were mosaic. Off-target
cleavage was also apparent in these 3PN zygotes as
revealed by the T7E1 assay and whole-exome se-
quencing. Furthermore, the endogenous delta-globin
gene (HBD), which is homologous to HBB, competed
with exogenous donor oligos to act as the repair tem-
plate, leading to untoward mutations. Our data also
indicated that repair of the HBB locus in these embryos
occurred preferentially through the non-crossover HDR
pathway. Taken together, our work highlights the

pressing need to further improve the fidelity and speci-
ficity of the CRISPR/Cas9 platform, a prerequisite for
any clinical applications of CRSIPR/Cas9-mediated
editing.

KEYWORDS CRISPR/Cas9, β-thalassemia, human
tripronuclear zygotes, gene editing, homologous
recombination, whole-exome sequencing

INTRODUCTION

The CRISPR/Cas9 RNA-endonuclease complex, consisting
of the Cas9 protein and the guide RNA (gRNA) (∼99 nt), is
based on the adaptive immune system of streptococcus
pyogenes SF370. It targets genomic sequences containing
the tri-nucleotide protospacer adjacent motif (PAM) and
complementary to the gRNA, and can be programmed to
recognize virtually any genes through the manipulation of
gRNA sequences (Cho et al., 2013; Cong et al., 2013; Jinek
et al., 2012; Jinek et al., 2013; Mali et al., 2013c). Following
Cas9 binding and subsequence target site cleavage, the
double strand breaks (DSBs) generated are repaired by ei-
ther non-homologous end joining (NHEJ) or homologous
recombination directed repair (HDR), resulting in indels or
precise repair respectively (Jinek et al., 2012; Moynahan and
Jasin, 2010). The ease, expedience, and efficiency of the
CRISPR/Cas9 system have lent itself to a variety of appli-
cations, including genome editing, gene function investiga-
tion, and gene therapy in animals and human cells (Chang
et al., 2013; Cho et al., 2013; Cong et al., 2013; Friedland
et al., 2013; Hsu et al., 2014; Hwang et al., 2013; Ikmi et al.,
2014; Irion et al., 2014; Jinek et al., 2013; Li et al., 2013a; Li
et al., 2013b; Long et al., 2014; Ma et al., 2014; Mali et al.,
2013c; Niu et al., 2014; Smith et al., 2014a; Wu et al., 2013;
Wu et al., 2014b; Yang et al., 2013).
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The specificity of CRISPR/Cas9 is largely dictated by
PAM and the 17–20 nt sequence at the 5′ end of gRNAs
(Cong et al., 2013; Hsu et al., 2013; Mali et al., 2013a;
Mali et al., 2013c; Pattanayak et al., 2013; Wu et al.,
2014a). Up to 5 mismatches may be tolerated for target
recognition in human cancer cells (Fu et al., 2013). Unin-
tended mutation in the genome can greatly hinder the
application of CRISPR/Cas9, especially in studies of de-
velopment and gene therapy (Hsu et al., 2014; Mali et al.,
2013b; Sander and Joung, 2014). Interestingly, three
groups recently found through whole genome sequencing
that off-target effects of CRISPR/Cas9 appeared rare in
human pluripotent stem cells (Smith et al., 2014b; Suzuki
et al., 2014; Veres et al., 2014), raising the possibility that
high frequencies of unintended targeting by CRISPR/Cas9
may be more prevalent in cancer cell lines. Additionally,
lower rates of off-target effects (compared to human cell
lines) have also been reported in mouse zygotes (Wu
et al., 2013; Yang et al., 2013). Despite great progress in
understanding the utilization of CRISPR/Cas9 in a variety
of model organisms, much remains to be learned regard-
ing the efficiency and specificity of CRISPR/Cas9-medi-
ated gene editing in human cells, especially in embryos.
Because ethical concerns preclude studies of gene editing
in normal embryos, we decided to use tripronuclear (3PN)
zygotes, which have one oocyte nucleus and two sperm
nuclei.

Extensive studies have shown that polyspermic zygotes
such as tripronuclear (3PN) zygotes, discarded in clinics,
may serve as an alternative for studies of normal human
zygotes (Balakier, 1993). Polyspermic zygotes, which occur
in ∼2%–5% of zygotes during in vitro fertilization (IVF) clinical
trials, may generate blastocysts in vitro but invariably fail to
develop normally in vivo (Munne and Cohen, 1998), pro-
viding an ideal model system to examine the targeting effi-
ciency and off-target effects of CRISPR/Cas9 during early
human embryonic development (Bredenoord et al., 2008;
Sathananthan et al., 1999).

Here, we report that the CRISPR/Cas9 system can
cleave endogenous gene efficiently in human tripronuclear
zygotes, and that the DSBs generated by CRISPR/Cas9
cleavage are repaired by NHEJ and HDR. Repair template
of HDR can be either the endogenous homologous gene
or exogenous DNA sequence. This competition between
exogenous and endogenous sequence complicates the
analysis of possible gene editing outcomes make it difficult
to predict the consequence of gene editing. Furthermore,
mosaicism and mutations at non-target sites are apparent
in the edited embryos. Taken together, our data under-
score the need to more comprehensively understand the
mechanisms of CRISPR/Cas9-mediated genome editing in
human cells, and support the notion that clinical applica-
tions of the CRISPR/Cas9 system may be premature at
this stage.

RESULTS

CRISPR/Cas9-mediated editing of HBB gene in human
cells

The human β-globin (HBB) gene, which encodes a subunit
of the adult hemoglobin and is mutated in β-thalassemia (Hill
et al., 1962). In China, CD14/15, CD17, and CD41/42, which
are frame-shift or truncated mutations of β-globin, are three
of the most common β-thalassemia mutations (Cao and
Galanello, 2010). Located on chromosome 11, HBB is within
the β-globin gene cluster that contains four other globin
genes with the order of (from 5′ to 3′) HBE, HBG2, HBG1,
HBD, and HBB (Schechter, 2008). Because the sequences
of HBB and HBD are very similar, HBD may also be used as
a template to repair HBB. The HBD footprints left in the re-
paired HBB locus should enable us to investigate whether
and how endogenous homologous sequences may be uti-
lized as HDR templates, information that will prove invalu-
able to any future endeavors that may employ CRISPR/Cas9
to repair gene loci with repeated sequences.

Using online tools developed by Feng Zhang and col-
leagues (http://crispr.mit.edu/), we designed and generated
three gRNAs (named G1, G2, and G3) that targeted different
regions of the HBB gene (Fig. 1A), and transfected the
gRNA-Cas9 expression vectors into human 293T cells.
Compared with the GFP mock vector, G1 and G2 gRNAs
exhibited efficient cleavage activities as determined by the
T7E1 assay (Fig. 1B) (Shen et al., 2014). Sequencing ana-
lysis of the two regions targeted by G1 and G2 revealed
distinct indel spectra, reflecting different NHEJ repair pref-
erences at these two sites (Fig. S1). CRISPR/Cas9 targeting
of the β-globin locus was previously reported to have sub-
stantially high off-target activity in cultured human cells
(Cradick et al., 2013). We therefore designed specific PCR
primers for the top 7 predicted off-target sites in the genome
for both G1 and G2 gRNAs, along with the predicted off-
target site of G1 gRNA in the HBD gene (Table S1). We then
carried out the T7E1 assay to assess the off-target effects of
G1 and G2 gRNAs in human 293T cells. While G2 gRNA
showed very low off-target cleavage activity in the intergenic
region (G2-OT4) (Fig. S2), gRNA G1 did not exhibit de-
tectable off-target cleavage at the top 7 predicted off-target
sites (Fig. 1C). Furthermore, we also failed to find sequence
modifications at the predicted site in the HBD gene, despite
close sequence similarity between HBD and HBB (Fig. 1D).
These data suggest that the G1 gRNA to be a better can-
didate for further studies. Next, we synthesized a ssDNA
oligo donor template that encoded 6 silent mutations and
transfected this oligo alone or together with the G1 gRNA-
Cas9 plasmid into 293T cells (Fig. 1E). We then extracted
genomic DNA from the cells 48 h later for PCR amplification
of the G1 target region. The PCR products were subse-
quently subcloned for sequencing. Compared to none from
oligo-only control, analysis of 29 independent clones
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Figure 1. Targeting of the HBB gene in human cells using CRISPR/Cas9. (A) Three gRNA targeting sites were selected for the

HBB locus, and the sequence for each gRNA (G1, G2, and G3) is shown with the PAM sequence in green. The three common HBB

mutations found in β-thalassemia are indicated in red. Exons are represented by deep blue boxes with yellow arrows indicating

transcriptional direction. (B) 293T cells were individually transfected with the three gRNA-Cas9 expression vectors and harvested for

genomic DNA isolation 48 h after transfection. A GFP expression vector was used as transfection control. The regions spanning the

gRNA target sites were then PCR amplified for the T7E1 assay. Blue arrowhead indicates the expected size for uncut (no mismatch)

PCR products. (C) 293T cells were transfected with increasing concentrations (1 μg, 2 μg, 3 μg, 4 μg) of the G1 gRNA-Cas9 vector.

A GFP expression vector was used as transfection control. Regions spanning the top 7 predicted off-target sites for each gRNA were

PCR amplified for the T7E1 assay. OT, off-target. HBB, on-target editing in the HBB gene locus. (D) The region within the HBD locus

that is highly similar to the G1 gRNA-Cas9 target sequence was analyzed as in (C). (E) A ssDNA oligo (Oligo donor) encoding 6 silent

mutations (indicated in red) was synthesized (top), and co-transfected with the G1 gRNA-Cas9 construct (pX330-G1) into 293T cells

(middle). At 48 h after transfection, genomic DNA was extracted to PCR amplify the region spanning the G1 target site. The PCR

products were then subcloned into TA cloning vectors for sequencing analysis. Representative sequencing chromatographs for wild-

type and edited alleles are shown with the mutated target region underlined in red (bottom).
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revealed 14 clones (48.3%) that perfectly matched the donor
oligo template (Fig. 1E), indicating high efficiency of our
approach and precise editing of the HBB locus in cells.

CRISPR/Cas9-mediated editing of HBB gene in human
tripronuclear zygotes

To investigate the specificity and efficacy of gene targeting in
human tripronuclear (3PN) zygotes, we co-injected G1
gRNA, Cas9 mRNA, GFP mRNA, and the ssDNA oligo into
the cytoplasm of human 3PN zygotes in different concen-
tration combinations (Fig. 2A). Based on morphology, ∼80%
of the embryos remained viable 48 h after injection (Fig. 2A),
in agreement with low toxicity of Cas9 injection in mouse
embryos (Wang et al., 2013; Yang et al., 2013). All GFP-
positive embryos were then collected for whole-genome
amplification by multiplex displacement amplification (Dean
et al., 2002; Hosono et al., 2003), followed by PCR amplifi-
cation of the G1 gRNA target region and sequencing. Of the
54 PCR-amplified embryos, 28 were cleaved by Cas9,
indicating an efficiency of ∼52% (Fig. 2A). Furthermore, 4 of
the 28 Cas9-cleaved embryos (14.3%) were clearly edited
using the ssDNA oligo as a repair template (Fig. 2A). Addi-
tionally, 7 embryos contained four identical point mutations in
tandem, an clear indication of HDR using the HBD gene as a
repair template (Fig. 2A and 2B). This finding suggests re-
combination of the HBB gene with HBD in 7 out of the 28
cleaved embryos (25%), even in the presence of co-injected
exogenous ssDNA donor template (Fig. 2A and 2B). Similar
observations have been found in mouse embryos, where
endogenous homologous templates were found to compete
with ssDNA oligos for HDR repair (Wu et al., 2013).

Because of the preference for the error-prone NHEJ
pathway, the HBB sequences from Cas9-cleaved embryos
showed double peaks near the PAM site on sequencing
chromatographs (Fig. 2C). Analysis of 5 of these embryos
using the T7E1 assay also confirmed successful cleavage
by G1 gRNA and Cas9 (Fig. 2D). In addition, the gene-edited
embryos were mosaic. For example, embryo No. 16 con-
tained many different kinds of alleles (Fig. 2E).

CRISPR/Cas9 has off-target effect in human
tripronuclear embryos

To determine the off-target effects of CRISPR/Cas9 in these
embryos, we again examined the top 7 potential off-target
sites plus the site in the HBD gene. The T7E1 assay re-
vealed off-target cleavage in the OPCML intron (G1-OT4)
and the TULP1 intron (G1-OT5) (Figs. 3A, S3 and S4),
although none of these sites appeared to be cleaved in hu-
man 293Tcells (Fig. 1C). We then randomly selected 6 HBB-
cleaved embryos (three each from groups 2 and 3, Fig. 2A)
for whole-exome sequencing. As shown in Fig. 3B, on-target
indels were identified in all of the samples. Two candidate
off-target sites within exons were found, where lower

concentration of the Cas9 mRNA and gRNA had been used
(sample A and C, Fig. 3B), and further confirmed through the
T7E1 assay (Fig. S5). These two sites reside in the exons of
the C1QC and Transthyretin (TTR) gene, both of which
closely match the G1 gRNA sequence in the seed region
(Fig. S6). These data demonstrate that CRISPR/Cas9 has
notable off-target effects in human 3PN embryos.

HDR of double strand breaks at the HBB gene occurs
preferentially through the non-crossover pathway

DSBs can be repaired through either error-prone NHEJ or
high-fidelity HDR (Ciccia and Elledge, 2010; Moynahan and
Jasin, 2010). There are three options for the HDR pathway,
non-crossover synthesis-dependent strand annealing
(SDSA), non-crossover double-strand break repair (DSBR),
and crossover DSBR (Fig. 4A). Bi-directional sequence ex-
change between the recombined genes occurs with cross-
over, while uni-directional sequence exchange occurs in
absence of crossover. Of the 3PN embryos examined thus
far, 4 were repaired using the ssDNA oligo as template and 7
were recombined with the endogenous HBD gene (Fig. 2A).
When the HBD locus from the 7 recombined 3PN embryos
were amplified and examined, we found that the HBD locus
in the 5 successfully-amplified embryos remained intact,
containing no HBB sequences (Fig. 4B). This lack of bi-di-
rectional sequence exchange supports the notion that the
HBB gene was repaired primarily through non-crossover
HDR (San Filippo et al., 2008). It is possible that one of the
alleles in 3PN embryo No.16 (group 3) (Fig. 2E), which only
contained 4 of the 6 silent mutations from the ssDNA oligo,
might have been generated by non-crossover pathway as
well (Fig. 4A). Taken together, our results suggest that ho-
mologous recombination in human early embryos preferen-
tially occur through the non-crossover HDR pathway
(Fig. 4C), similar to what has been observed in human iPS
cells (Byrne et al., 2014).

DISCUSSION

In this study, we used 3PN zygotes to investigate the
specificity and fidelity of the CRISPR/Cas9 system. Similar
to cultured human cells, most of the DSBs generated by
Cas9 in 3PN zygotes were also repaired through NHEJ
(Fig. 2A). ssDNA-mediated editing occurred only in 4 em-
bryos (14.3%), and the edited embryos were mosaic, similar
to findings in other model systems (Shen et al., 2013; Yang
et al., 2013; Yen et al., 2014). Endogenous homologous
sequences were also used as HDR templates, with an es-
timated editing efficiency of 25% (Fig. 2A). This high rate of
repair using endogenous sequences presents obvious ob-
stacles to gene therapy strategies using CRISPR/Cas9, as
pseudogenes and paralogs may effectively compete with
exogenous templates (or endogenous wild-type sequences)
during HDR, leading to unwanted mutations (Fig. 2B).
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Figure 2. Targeting of the HBB gene in human tripronuclear (3PN) zygotes using CRISPR/Cas9. (A) Four groups of 3PN

zygotes were injected intra-cytoplasmically with GFP mRNA (50 ng/μL) and Cas9/gRNA/ssDNA in different concentration

combinations. The genomes of GFP+ embryos were first amplified by multiplex displacement amplification. The region spanning the

target site was then PCR amplified, subcloned into TA vectors, and sequenced. * Indicates that target fragments in 5 GFP+ embryos

failed to be PCR amplified. (B) Sequencing chromatographs of the wild-type allele and recombined allele generated by homologous

recombination between HBB and HBD are shown here. The region with base substitution is underlined with red line. (C) A

representative sequencing chromatogram of the region spanning the target site in Cas9-cleaved 3PN embryos. Double peaks near

the PAM sequence (green) are indicated. (D) Five embryos with double peaks near the PAM sequence were randomly selected for

the T7E1 assay. Blue arrowhead indicates the expected size for uncut PCR products. Control, amplified products from target regions

with no double peaks near the PAM sequence. (E) Embryo No.16 from group 3 was used to PCR amplify sequences spanning the

gRNA target regions of the HBB gene. The PCR products were then subcloned and sequenced. A total of 50 clones were examined,

and the number of clones for each pattern indicated. PAM, green. G1 gRNA sequence, blue. Point mutations, red.
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Our whole-exome sequencing result only covered a
fraction of the genome and likely underestimated the off-
target effects in human 3PN zygotes. In fact, we found that
even with an 8 bp mismatch between the G1 gRNA and
C1QC gene (Fig. S6), the CRISPR/Cas9 system was still
able to target the C1QC locus in human 3PN embryos
(Figs. 3B and S5). Such off-target activities are similar to
what was observed in human cancer cells. Because the
edited embryos are genetically mosaic, it would be impos-
sible to predict gene editing outcomes through pre-implan-
tation genetic diagnosis (PGD). Our study underscores the
challenges facing clinical applications of CRISPR/Cas9.

Further investigation of the molecular mechanisms of
CRISPR/Cas9-mediated gene editing in human model is
sorely needed. In particular, off-target effect of CRISPR/
Cas9 should be investigated thoroughly before any clinical

application (Baltimore et al., 2015; Cyranoski, 2015; Lan-
phier et al., 2015).

MATERIALS AND METHODS

Construction and use of CRISPR plasmids

pX330 (Addgene, #42230) was used for transient transfection and

pDR274 (Addgene, #42250) was used for in vitro transcription. We

amplified the sequences encoding 3×Flag-tagged hCas9 from

pX330 and cloned it into the NotI/AgeI restriction sites of pDR274 to

obtain pT7-3×Flag-hCas9. The pT7-3×Flag-hCas9 plasmid was lin-

earized with PmeI and in vitro transcribed using the mMESSAGE

mMACHINE T7 ULTRA kit (Life Technologies). The pDR274 vector

encoding gRNA sequences was in vitro transcribed using the

MEGAshortscript T7 kit (Life Technologies). The Cas9 mRNA and

the gRNAs were subsequently purified with the MEGAclear kit (Life

A

B

Sites Sequence 

Indel frequency (mutant 
embryos/total embryos)

Locus

HBB GTAACGGCAGACTTCTCCTCAGG 11/11 17/17 chr11:5248231

G1-OT1 TTAA AGGAAGACTTCTCCTCAGG 0/11 0/12 chr3:181783903

G1-OT2 GTAATGGCATATTTCTCCTCAGG 0/11 0/12 chr1:227894389

G1-OT3 GTGACGGCACACTTCTTCTCCAG 0/10 0/10 chrX:149810034

G1-OT4 GAAA AGGCAGACTTCTCCCCTAG 4/10 2/10 chr11:132762118

G1-OT5 GGAGGGGCAGGCTTCTCCTCTGG 7/11 3/12 chr6:158896257

G1-OT6 GAAATGGCCAACTTCTCCTCAAG 0/11 0/10 chr1:204671648

G1-OT7 GAGAGGGCAGCCTTCTCCTCCAG 0/11 0/9 chr20:30590029

HBD TTGACAGCAGTCTTCTCCTCAGG 0/11 0/12 chr14:5234413

20 ng/μL gRNA 40 ng/μL gRNA
100 ng/μL Cas9 200 ng/μL Cas9

04/00202/001

FEDCBA.oNelpmaS

421111slednitegrat-nO

Candidate off-target sites 1 0 1 0 0 0

T7E1 assay confirmed off-target sites 1 0 1 0 0 0

Cas9/gRNA (ng/μL) 

CRISPR/Cas9 induced on- and off-target indels in exomes of human 3PN embryos

Figure 3. Off-target cleavage of CRISPR/Cas9 in human 3PN embryos. (A) Off-target cleavage in human embryos was

summarized here. PAM sequence are labeled in green. HBB, on-target cleavage of the HBB locus. OT1–7, the top 7 predicted off-

target sites. HBD, the predicted off-target site in the HBD locus. Mismatched nucleotides compared to the HBB locus are labeled in

red. Some of the off-target sites failed to be amplified by PCR in this experiment. (B) Six Cas9-cleaved embryos were randomly

selected (three each from groups 2 and 3) for whole-exome sequencing. Concentrations of the Cas9/gRNAs used for injections are

indicated. Candidate off-target sites were also confirmed by T7E1 assay.
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Technologies), resuspended in RNase-free water, and quantified

using NanoDrop-1000.

Sequences for cloning the G1, G2, and G3 gRNAs into the

pX330 vector are: pX330-G1-FP: CACCGTAACGGCAGACTTCTC

CTC; pX330-G1-RP: AAACGAGGAGAAGTCTGCCGTTAC; pX330-

G2-FP: CACCGTCTGCCGTTACTGCCCTGT; pX330-G2-RP: AAA

CACAGGGCAGTAACGGCAGAC; pX330-G3-FP: CACCGGCTGC

TGGTGGTCTACCCT; pX330-G3-RP: AAACAGGGTAGACCACCA

GCAGCC; Sequences for cloning the G1 gRNA into pDR274 are:

pDR274-G1-FP: TAGGTAACGGCAGACTTCTCCTC; pDR274-G1-

RP: AAACGAGGAGAAGTCTGCCGTTA.

The sequence for the ssDNA oligo used to repair HBB is: 5′-

CAACCTGCCCAGGGCCTCACCACCAACTTCATCCACGTTCACC

TTGCCCCACAGGGCAGTGACAGCGGATTTTTCTTCAGGAGTCA

GATGCACCATGGTGTCTGTTTGAGGTTGCTAGTGAACAC-3′

Identification and collection of human tripronuclear (3PN) embryos

Mature oocytes were inseminated in fertilization medium (Vitrolife,

Sweden) 4 h after retrieval by conventional in vitro fertilization (IVF).

Fertilization status was checked 16–19 h after insemination and

normal fertilization was assessed by the presence of two clear

pronuclei. Abnormal fertilized oocytes with three clear pronuclear

were selected for cryopreservation.

Embryo vitrification and recovery

Embryos were selected for cryopreservation using the CryoTop de-

vice as reported (Kuwayama et al., 2005). Briefly, embryos were

incubated in Vitrification Solution 1 (7.5% (v/v) DMSO (v/v) and 7.5%

(v/v) ethylene glycol) for 5–6 min, and then moved to Vitrification

Solution 2 (15% (v/v) DMSO, 15% (v/v) ethylene glycol, and 0.65

mol/L sucrose) for 30 s. The embryos were then quickly placed onto

a Cryotop (Kitazato Supply Co., Fujinomiya, Japan), followed by

aspiration of excess medium with a fine pipette and quick immersion

in liquid nitrogen. The embryos were then stored in liquid nitrogen.

For recovery, the embryos were warmed with the polypropylene strip

of the Cryotop immersed directly into 3 mL of 1.0 mol/L sucrose at

37°C for 1 min, retrieved and held for 3 min in 1 mL of a dilution

solution (0.5 mol/L sucrose in TCM199 medium with 20% serum

substitute supplement), and then washed at room temperature be-

fore being cultured for subsequent analysis.

Analysis of CRISPR/Cas9 induced cleavages

The T7 endonuclease 1 (T7E1) cleavage assay was performed as

described by Shen et al. (Shen et al., 2014). For verification of indels

and mutations, genomic DNA was used for PCR amplification of

target sites with primers listed in Supplementary information, Table

Non-crossover
pathway

Crossover pathway

SDSA

DSBR

A B

C

3PN zygotes edited through non-crossover HR

HBB-HBD Non-crossover

*57

DSB

Indel
Crossover pathway

NHEJ

HR

?Cas9/gRNA

Non-crossover pathway

Figure 4. Repair of double-strand breaks at the HBB gene in human early embryos occurs preferentially through the non-

crossover pathway when HDR is utilized. (A) In human cells, DSBs may be repaired through the double-strand break repair

(DSBR) pathway or the non-crossover synthesis-dependent strand annealing (SDSA) pathway. Both crossover and non-crossover

DSBR can occur. (B) The HBD locus from the 7 recombined 3PN embryos were similarly examined as above. * Indicates that the

HBD locus failed to be amplified in two of the embryos. (C) In human embryos, repair of DSBs generated by CRISPR/Cas9 occurs

mainly through NHEJ. If HDR is utilized, the non-crossover pathway is preferred.
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S1. PCR products were sequenced directly using primers from

Supplementary information, Table S1 to confirm the presence of

double peaks, and those with double peaks were then TA cloned into

the pGEM-T vector (Promega) for sequencing. In general, a total of

45–50 clones were sequenced for each embryo.

To identify potential off-target sites, we used the online tool (http://

crispr.mit.edu/). Sequences surrounding these genomic sites were

PCR amplified for the T7E1 assay with primers listed in Table S1.

Whole genome amplification using embryos

Whole genome amplification of the embryos was performed using

the PEPLI-g Midi Kit (Qiagen). Briefly, embryos were transferred into

PCR tubes containing reconstituted buffer D2 (7 μL), and then in-

cubated at 65°C for 10 min, before the addition of Stop solution (3.5

μL) and MDA master mix (40 μL) and incubation at 30°C for 8 h. The

DNA preparation was diluted with ddH2O (3:100), and 1 μL of the

diluted DNA was used for PCR analysis.

Whole-exome sequencing, data processing, and off-target analysis

The exome was captured using the 50 Mb SureSelectXT Human All

Exon V5 kit (Agilent). The enriched exome was sequenced on Illu-

mina HiSeq 2000 PE100 as paired-end 100 bp reads, which were

aligned to the human reference genome (UCSC, hg19) by means of

BWA with default parameters (v0.7.5a) (Li and Durbin, 2010).

Samtools (v0.1.19, http://samtools.sourceforge.net) and Picard tools

(version 1.102, http://picard.sourceforge.net) were used to build

indices and remove duplicates. Local realignment around indels

(RealignerTargetCreator, IndelRealigner) and base score recalibra-

tion (BaseRecalibrator) were applied by GATK (The Genome Ana-

lysis ToolKit, version 3.1-1) (McKenna et al., 2010) to ensure

accuracy in identifying indels and single nucleotide variants (SNVs).

GATK HaplotypeCaller and Samtools were used to call variants for

six samples and the union variants of both obtained by Com-

bineVariants were then divided into indels and SNVs by

SelectVariants.

We first excluded indels and SNVs located outside of exon re-

gions following annotation by ANNVAR based on RefSeq gene

models (hg19) (Wang et al., 2010). A total of 7463 indels and

188,078 SNVs passed this filter. Next, indels and SNVs with more

than two reads were retained by VariantFiltration and Python, dis-

carding low-quality and unlikely indels (8.99%) and SNVs (5.91%).

To avoid false positive calls that overlap with repeat sequences

and/or include homopolymers (Bansal and Libiger, 2011), we re-

moved indels and SNVs that overlapped with low-complexity re-

gions as defined by RepeatMasker (UCSC Genome Browser) and

filtered out indels and SNVs containing homopolymers (>7 bp) in

the low-complexity flanking region (±100 bp), removing 55.58% of

potential indels and 17.01% of potential SNVs. To more definitively

assign indels, we searched the ±100 bp regions flanking the po-

tential indel sites for potential off-target sites. Bowtie1 (version

0.12.8, http://bowtie-bio.sourceforge.net) was used to align gRNA

sequences (20 bp) to the ±100 bp sequences, allowing for ≤6
mismatches or perfect match of the last 10 nt 3′ of the gRNA.

Successfully aligned sites with an NRG PAM were deemed on/off-

target sites. Of the 12 candidate indels identified by this analysis,

there were ten on-target indels in all samples and two off-target

indels in samples A and C. Candidate off-target sites were further

confirmed by PCR and sequencing. The results are summarized in

Table S2.
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